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Abstract

For minimally k-connected graphs on n vertices, Mader proved a tight lower
bound for the number |V;| of vertices of degree k in dependence on n and k. Oxley
observed 1981 that in many cases a considerably better bound can be given if
m := |E| is used as additional parameter, i.e. in dependence on m, n and k. It was
left open to determine whether Oxley’s more general bound is best possible.

We show that this is not the case, but give a closely related bound that deviates
from a variant of Oxley’s long-standing one only for small values of m. We prove
that this new bound is best possible. The bound contains Mader’s bound as special
case.

1 Introduction

Minimally k-connected graphs (i.e. k-connected graphs, for which the deletion of any
edge decreases the connectivity) have been in the focus of both structural and extremal
graph theory [1, 6] since their early days. For these graphs, the perhaps most heavily
investigated parameter is the number |Vj| of vertices of degree k [10].

For k = 2, Dirac [2] and Plummer [12] showed that every minimally 2-connected
graph contains a vertex of degree 2. In 1969, Halin [4] generalized this result by proving
that every minimally k-connected graph contains a vertex of degree k. This proof led
to a plethora of further results about the structure of minimally k-connected graphs in
general, and |Vi| in particular (see [10] for an extensive survey). In 1979, this eventually
culminated in a tight lower bound for |Vj| shown by Mader [9].

While Mader proved that his bound is tight for all n := [V| and k (up to certain
parity values), Oxley [11] found, shortly after and inspired by matroids, a different
lower bound for |Vj| that uses the parameters m, n and k. Oxley states 1981 that his
bound “frequently sharpens” Mader’s [11]. Since then, classifying the parameters for
which Oxley’s bound improves Mader’s and, even more importantly, finding a lower
bound that is generally best possible in dependence on m, n and k, have been open
problems.
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We answer both problems by giving a bound that consists of an improvement of
Oxley’s bound if m > k(kn — 1)/(2k — 1) and of an additional simple bound if m <
k(kn — 1)/(2k — 1). This new bound contains Mader’s bound as the special case
m = k(kn — 1)/(2k — 1), and strictly improves even the best-known specialized lower
bounds for k € {2,3} given in [3, 11]. As main result, we show that our bound is best
possible for all m, k > 2 and n > 2k (up to certain parity values).

The difficult part of the result is to exhibit suitable infinite families of minimally
k-connected graphs in order to prove tightness for both ranges of m mentioned above.
The infinite family that we construct for small m may also be of interest in different
problem settings, as it consists of minimally k-connected graphs that are “almost k-
regular”, i.e. such that m is close to a prescribed value slightly above the (minimal
possible) value [kn/2].

After giving the preliminaries, we revisit and generalize the existing lower bounds
on |Vi| in Section 3 and give an improvement of Oxley’s bound that we will use. We
then formulate the new bound and prove its tightness in Section 4.

2 Preliminaries

We consider only finite, simple and undirected graphs. For a graph G = (V, E), let
ng = |V| and mg := |E| (if G is clear from the context, we omit the subscript). A
k-separator of a graph is a set of £ > 0 vertices whose deletion leaves a disconnected
graph. A graph G is k-connected if n > k and G contains no (k — 1)-separator. A k-
connected graph G is minimally k-connected if G — e is not k-connected for every edge
e € E. Since every non-empty graph is 0-connected according to this definition, there
is no minimally O-connected graph that contains at least one edge. We thus assume
k > 1 throughout this paper.

For a graph G, let Vi := Vi(G) be the set of vertices of degree k and let Ej be the
set of edges in G that is induced by Vj. Further, let F' := F(G) := G — V}, and let
cr be the number of components of F. If G is minimally k-connected, the following
lemmas by Mader ensure that F' carries a very special structure.

Lemma 1 ([8, Korollar 1]). For every minimally k-connected graph, F is a forest.
Lemma 2 ([9, p. 66]). For every minimally k-connected graph, cp + |Ex| > k.

We abbreviate a = b (mod ¢) as a =, b and write the statement that a =, b for
some b € {by,...,b} asa=.by,..., b

3 Revisiting the old Bounds

Let G be a minimally k-connected graph. We revisit, compare and also generalize the
lower bounds for |Vj| that are already known and give small and streamlined proofs
for the generalizations. In particular, we show that Oxley’s bound can be improved
slightly using known methods; this improved variant will be used for our tight bound.



Mader showed that V| > k + 1 and |Vi| > A [8, Korollar 2 and Satz 4]. Clearly,
the latter bound is at least as good as the former, unless G is k-regular (in which case
|Vi| = n). However, both bounds are far from being tight.

In his seminal paper [9, Satz 3], Mader eventually proved

(k—1)n+ 2k

> 1
Vil > S M

and showed that there is a minimally k-connected graph attaining equality in (1) for
every k and n > 2k such that n =91 0,1,2,3,5,7,...,2k—3. In that sense, Bound (1)
is tight for the parameters n and k. We give the following slight generalization of
Bound (1), which relates it to A.

Theorem 3. For every minimally k-connected graph,

(k= 1)n+2(cr + |Ex|) + max{0,A — (E+ 1)} @)
2k — 1 ‘

|Vie| >

Proof. There are exactly |E(F)| = |V(F)| — cr = n — |Vg| — cr edges in F. Thus,
the number of edges that have exactly one end vertex in F is at least (k + 1)|V (F)| —
2|E(F)|+max{0,A—(k+1)} = (k—1)(n—|Vi|) +2cp+max{0, A— (k+1)}. Counting
these edges in dependence on Vi, we obtain k|Vy| — 2|Eg| > (k — 1)(n — |Vi|) + 2¢cp +
max{0,A — (k+ 1)}, which gives the claim. O

According to Lemma 2, Bound (2) implies Bound (1). Although Bound (1) is tight
for many graphs, it is far from being tight if m is introduced as additional parameter.

In fact, we will show in the next section that Bound (1) is only best possible when
k(kn—1
m= (an—1 L.
Using a surprisingly simple proof, Oxley [11, Prop. 2.19][3, Fact 74 in 6.6.12] ob-

served for k > 2 that Vx| > m%”# For the parameters m, n and k, this is the
best bound known so far. Since Oxley used cp + |Ex| > 1 in his proof, we can apply
Lemma 2 and strengthen the bound slightly. In addition, a closer look at the proof of
the bound shows that we can actually obtain the following equality for V.

Theorem 4. For k > 2 and every minimally k-connected graph,

m—n+cp+ |Eg
vy = o er + B 0

o).

In particular, |Vi| > {

Proof. The number of edges that are not in F' is k|Vi| — | Ex|, as k|Vi| double-counts
every edge in Ej. Hence, m = k|Vi| — |Ex| + |E(F)| and |Vj| = w There
are exactly n— |Vi| = |E(F)| + cF vertices of degree greater than k in G, which implies
Bound (3). Bound (4) follows from Bound (3) by applying Lemma 2. O



With Bound (3), we have a bound at hand that is always optimal, as long as a
minimally k-connected graph with the given parameters exists. Unfortunately, it is
not clear at all how to decide whether there is a graph with such a given parameter
constellation. We therefore investigate bounds for the rather natural parameters m, n
and k.

The given bounds (apart from (3), which is always optimal) relate to each other
as follows: For the interesting case n > 2k, both bounds (1) and (4) imply Vx| >
[k + 521 = k+ 1. The bound [Vj| > A however is independent of Bounds (1), (2)
and (4): Clearly, A can be smaller than any of these bounds, as e.g. the k-regular k-
connected graphs show. For every sufficiently large wheel graph, A > (1) and A > (4).
For every n > 2k and k > 1, the graph K}, ,_j, shows that A =n —k > gz:ll = (2).
The next section will show that Bound (4) is at least as good as (1) if and only if
m > k(kn —1)/(2k — 1) (up to parity issues).

4 A Tight Bound

Harary [5] showed m > [kn/2] for every (minimally) k-connected graph, where m =
(kn 4+ 1)/2 can in fact be attained by such graphs when kn is odd. Mader [7, Satz 2]
showed m < kn — (k;rl) for every minimally k-connected graph, where equality is
attained only for the graph K, if £ > 2. Thus, every minimally k-connected graph
satisfies [kn/2] <m < kn — (*1).

If m is large, our general lower bound for the parameters m, n and k will be (4). If
m is small, we use the following lower bound instead, as it outperforms the others in
that case. The bound is simple and follows directly from 2m > (k+1)(n—|V|) + k| Vi|.

Observation 5. For every minimally k-connected graph,
Vil > (K + 1)n — 2m. (5)

For k > 2, this gives the general lower bound |Vi| > max{(k+ 1)n —2m, [(m —n+
k)/(k —1)]}. In the remaining part of the paper, we show that this bound is tight.

Theorem 6. For k > 2 and every minimally k-connected graph G,

_ . k(kn—1)
Vil > {“" +1)n = 2m pms e (©)
[ —n+k)/(k—1)] ifm> rn-D

The bound is best possible (even without the ceiling) for every m, n > 3k —2 and k > 2
such that
o m=pp_ k(n—1)—iand0<i<2\%] ifm< k(kn=1) 4

%1
e m=, 1 k(n—1) ifm > %

Proof. Bound (6) follows directly from the bounds (4) and (5). We prove its tightness
under the given assumptions.



Take k vertex-disjoint copies T7i,...,T) of any tree T' with maximum degree at
most k + 1 and [ := |V(T)| > 1. For a vertex v € T, let vy,...,v; be the vertices
in T7,...,T} that correspond to v; we call this vertex set the row of v. Obtain the
graph Hp(k,l) from T} U --- U T} by adding k& + 1 — degr(v) new vertices for each
vertex v in T" and joining these vertices to each vertex of the row of v by an edge (see
Figure 1a). This way, every vertex in a tree copy has degree exactly k + 1 in Hp(k,1),
and F =T\ U---UT}.

The subgraph that is induced by the vertices of a row and the vertices added to
this row is called a layer. Every layer of Hr(k,l) is a complete bipartite graph. The
graph Hp(k,l) is minimally k-connected, as it can be easily checked that there are k
internally vertex-disjoint paths between every vertex pair, and since every edge is either
incident to a vertex of degree k or contained in an edge cut of k edges.

We will use H := Hyp(k,l) in the construction of tight graph families; to simplify
later arguments, we first determine |Vi(H)|, ng and myg. Since |V(F(H))| = kl and
|E(F(H))| = k(l—1) in H, we have k|Vi,(H)| = (k+ D)|V(F(H))| — 2|E(F(H))| =
(k — 1)kl + 2k, which implies |Vi(H)| = (k — 1)l + 2 and ny = (2k — 1)l + 2. The
equality for ngy shows that the construction is well-defined for every ny > 2k such
that ng =or_1 2, but not well-defined for any ngy < 2k, as then [ < 1. It follows
that my = k(kl + 1), which implies myg = % Thus, H lies on the threshold of
Bound (6). Since |Vi(H)| = (k+ 1)ng —2myg = (myg —ng + k)/(k — 1), H satisfies
both cases of Bound (6) with equality.

G

(a) The graph Hr(3,4), where T is the star (b) The graph H7(5,3,3), where T is the path

graph on [ = 4 vertices. The thick blue sub- on | = 3 vertices with end vertices s and t. The

graph depicts F. dashed red lines depict the ¢ = 3 edges that were
deleted from Hr (5, 3) as part of deleting a 1- and
a 2-matching in the layers of s and ¢ in order to
obtain H1(5,3,3). As j = 1, the middle row con-
sists only of vertices in Vi. The thick blue sub-
graph depicts F', which consists of four isolated
vertices.

Figure 1: Hp(k,l) and H}(k,1,17).

k(kn—1)

Consider the case m < =5 —

and let m =1y k(n —1) —i for any 0 < < 2{%



We construct a minimally k-connected graph satisfying |Vi| = (kK + 1)n — 2m. An
i-matching is a matching of size ¢. The high-level idea of the construction is to use a
modification of H and delete a carefully chosen i-matching as well as j vertices such
that the resultmga graph is minimally k-connected.

Let [ := Xl

follows | > 5= 21 k(kil) which implies [ > 1 — = due to n > 2k and ¢ < k. Hence,

[ >1. Let j:=1(2k — 1) — n + 2; clearly, j is an mteger.
We prove that 0 < j <[ such that j = — 1 implies i < L%J, and j = [ implies

Z ™ Since m =pk—1) k(n— 1)—1 [ is an integer. From m < k(fkn_ll)

i =0. Since k(Qkk _11) =p(k—1) k(n — 1), we have m =,_1) k(Qk,:L__ll) —1. Asm < k(Qk,?__ll),
this implies m < k(zk,?:ll) — 1. Using this bound in the definition of j gives 7 > 0. Basic
calculus on m, [ and j shows that [ = %_(31)—0 and m = k(n—1) —i—k(k—1)Il, which

implies m < %" —i— %(] —1). If j > 1, we conclude j =1 and ¢ = 0, since m > %" (in
addition, n is even in this case, as n = (2k — 1)l —j+2). If j =1 — 1, n is odd, since
n=2k—1)l—j+2. Then m < k—;+§—iimpliesi§ L%J, as m > [%”]

Let T be the path on [ vertices, let s and ¢ be its end vertices and let v € {s,t}.
Then the layer of v in Hrp(k,l) is the graph Kj x; let its two color classes be black
and white such that the row vertices vy,...,vr are white and the non-row vertices
wi, ..., wy are black. For any row vertex v;, let z; be its (unique) neighbor in Hy(k,[)
that is not in the layer of v. Let a swap of v; delete the edge v;z; and add the edge w;z;
(this makes w; the row vertex instead of v;). In order to describe the construction, we
need the following operation of deleting an xz-matching, 0 < x < |k/2], in the layer of
v (see Figure 1b): For every 1 < z < z, perform a swap on the (white) row vertex vo,
and delete the edge v, _1wo,. This way, the graph obtained has exactly x edges less,
and these edges form an z-matching in Hp(k,l). Since every edge in the z-matching
decreases the degree of two vertices of degree k + 1 by one and does not increase any
degree, deleting an z-matching decreases |Vi| by 2x.

Let i; := min{i, |k/2]} and is := max{0,7 — |k/2]}; thus, i5s +i; = i¢. Obtain the
graph H' := H/.(k,l,i) from Hp(k,l) by deleting an i;-matching in the layer of ¢, an
is-matching in the layer of s, and one vertex of degree k from each of j layers that
are chosen according to the following preference list on their corresponding vertices in
T: inner vertices of T', s, t. This construction is well-defined, because we previously
showed | > 1 (which is needed for the construction of Hr(k,[)) and 0 < j <[ such that
j=1-1implies i < |4] (hence, i = 0), and j = [ implies i = 0 (hence, i; = is = 0).

By applying Menger’s theorem, H' is k-connected: The desired k internally vertex-
disjoint paths between all vertex pairs {u, v} can be obtained from the ones in Hp(k,1)
as follows. First, assume that u and v are in one layer of H’. Then we can substitute
every edge of the deleted x-matching with either a path through exactly two vertices in
the layer of s or ¢, or with a path of length 3 in the same layer, such that all substituted
paths are pairwise internally vertex-disjoint (see the fully drawn edges in the layer of ¢
in Figure 1b). Otherwise, u and v are in different layers. Then, in all cases, there are
vertex-disjoint fans from wu to the row of its layer and from v to the row of its layer,
and connecting these gives the desired k£ paths.



Clearly, every edge is incident to a vertex of degree k or contained in an edge cut
that consists of k tree-edges; hence, H' is minimally k-connected. Counting edges and
vertices of H' in the same way as done for H, we obtain |Vi(H')| = (k—1)(1+7)+2+2i,
ng = (2k—1)l+2—j and mpy = k(kl+1— j) —i. Thus, expanding j in the equality
for ng+ shows ng: = n, and expanding j and substituting [ with n{,f_tj in the equality
for mp shows mpg: = m. Hence, H' satisfies |Vi(H')| = (k + 1)n — 2m, as claimed.

Now consider the case m > k(;;_—ll) and let m =1 k(n —1). We construct a

minimally k-connected graph satisfying |Vi| = (m — n + k)/(k — 1). In particular,
this shows that Bound (6) is tight without the ceiling. The high-level idea of the
construction is to contract ¢ < k suitably chosen edges in H such that the resulting
graph is minimally k-connected, followed by adding sufficiently many new vertices of
degree k in order to compensate for the vertex loss.

Since m =k_1 k(n — 1), k(n,;# is an integer. Let i € {0,...,k — 1} such that

I
7k(n}:_1)1—m + i is divisible by k; thus, we have m =1y k(n — 1) + (k — 1)i. Therefore,

l:= k(”fll)g(*kmiir)(kfl)i is an integer.

We prove that [ > 1 and, if ¢ £ 0, [ > 2. Since G is minimally k-connected,
m < kn — (k;rl), where equality is only attained for G = Kj11, as mentioned before.

Since G = K1 contradicts n > 2k, we have m < kn — (k;rl) From m < kn —

(k;rl) < k(n —1) and ¢ > 0 follows I > 0 and thus [ > 1. For i > %, we have
m < kn — (k;1> < k(n —1)+ (k= 1)i — k(k — 1), which implies [ > 2. Consider
the remaining case 1 < 7 < % Since n > 3k — 2, we can use a result of Mader (see
e.g. [1, Thm. 4.9]), which proves m < kn — k2. Because i > 1, we have m < kn — k? <
kn —k*+ (k—1)i =k(n—1)+ (k — 1)i — k(k — 1), which shows [ > 2. We conclude
for all cases [ > 1 and, if ¢ # 0, [ > 2.

Let j := n — 2414 — (2k — 1)I; this will be the number of vertices that is added
to the contracted graph. Clearly, j is an integer and, since ¢ < (2k — 1)I, we have

j <n—3. We prove that j >i. If m = k(;,?__ll), m =p—1) k(n — 1) + (k — 1)i implies

(2k —1)(k —1)i =g(x—1) 0 and, as 2k — 1 and k are co-prime, i = 0. Since m > %,
m > kgkkn:ll) + (k — 1)i follows from m =,_1) k(n — 1) + (k — 1)i. Inserting this lower

bound into the definition of | and using the result in the definition of j gives 57 > 1.
Hence, 0 <1 <5< n—3.

Obtain the graph H” := HJ.(k,l,i,7) from Hr(k,l) by first adding j new vertices
of degree k such that the neighbors of every new vertex are in the same row, and then
contracting i edges of (the possibly altered) F' that are incident to the k copies of a
leaf of T". This construction is well-defined, as we have [ > 1 and, if ¢ > 0, the desired
i < k edges in F exist due to | > 2. As before, applying Menger’s theorem and reusing
internally vertex-disjoint paths from Hrp(k,1) for H” shows that H” is k-connected. In
addition, H” is minimally k-connected, as every edge e is incident to a vertex of degree
k, contained in an edge cut that consists of k tree-edges, or such that G — e contains a
(k — 1)-separator that consists of k — 1 copies of the leaf chosen in T

Counting edges and vertices as before, we obtain |Vi(H")| = (k — 1)l + 2 + 7,



ngr = 2k — 1)l + 2+ j —i and mygr = k(kl + 1 + j) — . Thus, expanding j in the
equality for ng» shows ng» = n, and expanding j and then [ in the equality for mgn»
shows mp» = m. Hence, H" satisfies |Vi,(H")| = (m —n+k)/(k — 1), as claimed. O

In the tightness proof above, the precondition n > 3k — 2 is used only in the case
m > k(Qkkn_zl) for the parity values 1 <1 < % Hence, for the remaining values ¢ = 0 and
[g] < i < k — 1 that satisfy m =p4._1) k(n — 1) — 4, the weaker precondition n > 2k

suffices:

Corollary 7. Bound (6) is best possible (even without the ceiling) for every k > 2,
n > 2k and m =1y k(n — 1) — i such that [%] <i< 2L§J
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(a) A 3D-plot for k = 3. A blue (m < k(kn—  (b) A 2D-plot for k = 4 and n = 100 that shows
1)/(2k — 1)) or green (m > k(kn — 1)/(2k —  tight values of Bound (6) (green and blue) and

1)) dot at point (n, m, |Vx|) shows the existence ~ Bound (1) (red) for the relevant ranges of m.
of a graph for which Bound (6) is tight. Red

dots depict values for which Bound (1) is tight

(neglecting m).

Figure 2: Comparing tight values of Bounds (1) and (6).

Bound (6) implies the best known special-purpose bounds for £ = 2 and k = 3

(see [11, Prop. 2.144-20] and [3, Fact 81]) and improves them for every m < Lk(;kn__ll)j.

By comparing Bound (6) with Mader’s Bound (1), we obtain immediately that the two

bounds match if and only if m = k(Qkkn__ll) . Hence, for the given parities, Mader’s bound
is only best possible if m = k(2kkn_—11) ; see Figure 2 for a comparison of these two bounds.

While Corollary 7 shows that Bound (6) is tight for n > 2k, we leave the problem

of determining tight bounds for n < 2k as open question. Note that Bound (6) is not

tight for n = 2k and m = k(zkkn__ll), as every minimally k-connected graph satisfying




these constraints has strictly more than [(m —n +k)/(k—1)] = k + 1 vertices in Vj
due to [9, Satz 4].
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