Tight bounds for the vertices of degree k in minimally k -connected graphs

Jens M. Schmidt*
Institute of Mathematics
TU Ilmenau

Abstract

For minimally k-connected graphs on n vertices, Mader proved a tight lower bound for the number $\left|V_{k}\right|$ of vertices of degree k in dependence on n and k. Oxley observed 1981 that in many cases a considerably better bound can be given if $m:=|E|$ is used as additional parameter, i.e. in dependence on m, n and k. It was left open to determine whether Oxley's more general bound is best possible.

We show that this is not the case, but give a closely related bound that deviates from a variant of Oxley's long-standing one only for small values of m. We prove that this new bound is best possible. The bound contains Mader's bound as special case.

1 Introduction

Minimally k-connected graphs (i.e. k-connected graphs, for which the deletion of any edge decreases the connectivity) have been in the focus of both structural and extremal graph theory $[1,6]$ since their early days. For these graphs, the perhaps most heavily investigated parameter is the number $\left|V_{k}\right|$ of vertices of degree k [10].

For $k=2$, Dirac [2] and Plummer [12] showed that every minimally 2-connected graph contains a vertex of degree 2. In 1969, Halin [4] generalized this result by proving that every minimally k-connected graph contains a vertex of degree k. This proof led to a plethora of further results about the structure of minimally k-connected graphs in general, and $\left|V_{k}\right|$ in particular (see [10] for an extensive survey). In 1979, this eventually culminated in a tight lower bound for $\left|V_{k}\right|$ shown by Mader [9].

While Mader proved that his bound is tight for all $n:=|V|$ and k (up to certain parity values), Oxley [11] found, shortly after and inspired by matroids, a different lower bound for $\left|V_{k}\right|$ that uses the parameters m, n and k. Oxley states 1981 that his bound "frequently sharpens" Mader's [11]. Since then, classifying the parameters for which Oxley's bound improves Mader's and, even more importantly, finding a lower bound that is generally best possible in dependence on m, n and k, have been open problems.

[^0]We answer both problems by giving a bound that consists of an improvement of Oxley's bound if $m \geq k(k n-1) /(2 k-1)$ and of an additional simple bound if $m<$ $k(k n-1) /(2 k-1)$. This new bound contains Mader's bound as the special case $m=k(k n-1) /(2 k-1)$, and strictly improves even the best-known specialized lower bounds for $k \in\{2,3\}$ given in $[3,11]$. As main result, we show that our bound is best possible for all $m, k \geq 2$ and $n>2 k$ (up to certain parity values).

The difficult part of the result is to exhibit suitable infinite families of minimally k-connected graphs in order to prove tightness for both ranges of m mentioned above. The infinite family that we construct for small m may also be of interest in different problem settings, as it consists of minimally k-connected graphs that are "almost k regular", i.e. such that m is close to a prescribed value slightly above the (minimal possible) value $\lceil k n / 2\rceil$.

After giving the preliminaries, we revisit and generalize the existing lower bounds on $\left|V_{k}\right|$ in Section 3 and give an improvement of Oxley's bound that we will use. We then formulate the new bound and prove its tightness in Section 4.

2 Preliminaries

We consider only finite, simple and undirected graphs. For a graph $G=(V, E)$, let $n_{G}:=|V|$ and $m_{G}:=|E|$ (if G is clear from the context, we omit the subscript). A k-separator of a graph is a set of $k \geq 0$ vertices whose deletion leaves a disconnected graph. A graph G is k-connected if $n>k$ and G contains no ($k-1$)-separator. A k connected graph G is minimally k-connected if $G-e$ is not k-connected for every edge $e \in E$. Since every non-empty graph is 0 -connected according to this definition, there is no minimally 0 -connected graph that contains at least one edge. We thus assume $k \geq 1$ throughout this paper.

For a graph G, let $V_{k}:=V_{k}(G)$ be the set of vertices of degree k and let E_{k} be the set of edges in G that is induced by V_{k}. Further, let $F:=F(G):=G-V_{k}$ and let c_{F} be the number of components of F. If G is minimally k-connected, the following lemmas by Mader ensure that F carries a very special structure.

Lemma 1 ([8, Korollar 1]). For every minimally k-connected graph, F is a forest.
Lemma 2 ([9, p. 66]). For every minimally k-connected graph, $c_{F}+\left|E_{k}\right| \geq k$.
We abbreviate $a \equiv b(\bmod c)$ as $a \equiv_{c} b$ and write the statement that $a \equiv_{c} b$ for some $b \in\left\{b_{1}, \ldots, b_{t}\right\}$ as $a \equiv_{c} b_{1}, \ldots, b_{t}$.

3 Revisiting the old Bounds

Let G be a minimally k-connected graph. We revisit, compare and also generalize the lower bounds for $\left|V_{k}\right|$ that are already known and give small and streamlined proofs for the generalizations. In particular, we show that Oxley's bound can be improved slightly using known methods; this improved variant will be used for our tight bound.

Mader showed that $\left|V_{k}\right| \geq k+1$ and $\left|V_{k}\right| \geq \Delta$ [8, Korollar 2 and Satz 4]. Clearly, the latter bound is at least as good as the former, unless G is k-regular (in which case $\left.\left|V_{k}\right|=n\right)$. However, both bounds are far from being tight.

In his seminal paper [9, Satz 3], Mader eventually proved

$$
\begin{equation*}
\left|V_{k}\right| \geq \frac{(k-1) n+2 k}{2 k-1} \tag{1}
\end{equation*}
$$

and showed that there is a minimally k-connected graph attaining equality in (1) for every k and $n>2 k$ such that $n \equiv_{2 k-1} 0,1,2,3,5,7, \ldots, 2 k-3$. In that sense, Bound (1) is tight for the parameters n and k. We give the following slight generalization of Bound (1), which relates it to Δ.

Theorem 3. For every minimally k-connected graph,

$$
\begin{equation*}
\left|V_{k}\right| \geq \frac{(k-1) n+2\left(c_{F}+\left|E_{k}\right|\right)+\max \{0, \Delta-(k+1)\}}{2 k-1} . \tag{2}
\end{equation*}
$$

Proof. There are exactly $|E(F)|=|V(F)|-c_{F}=n-\left|V_{k}\right|-c_{F}$ edges in F. Thus, the number of edges that have exactly one end vertex in F is at least $(k+1)|V(F)|-$ $2|E(F)|+\max \{0, \Delta-(k+1)\}=(k-1)\left(n-\left|V_{k}\right|\right)+2 c_{F}+\max \{0, \Delta-(k+1)\}$. Counting these edges in dependence on V_{k}, we obtain $k\left|V_{k}\right|-2\left|E_{k}\right| \geq(k-1)\left(n-\left|V_{k}\right|\right)+2 c_{F}+$ $\max \{0, \Delta-(k+1)\}$, which gives the claim.

According to Lemma 2, Bound (2) implies Bound (1). Although Bound (1) is tight for many graphs, it is far from being tight if m is introduced as additional parameter. In fact, we will show in the next section that Bound (1) is only best possible when $m=\frac{k(k n-1)}{2 k-1}$.

Using a surprisingly simple proof, Oxley [11, Prop. 2.19][3, Fact 74 in 6.6.12] observed for $k \geq 2$ that $\left|V_{k}\right| \geq \frac{m-n+1}{k-1}$. For the parameters m, n and k, this is the best bound known so far. Since Oxley used $c_{F}+\left|E_{k}\right| \geq 1$ in his proof, we can apply Lemma 2 and strengthen the bound slightly. In addition, a closer look at the proof of the bound shows that we can actually obtain the following equality for V_{k}.

Theorem 4. For $k \geq 2$ and every minimally k-connected graph,

$$
\begin{align*}
\left|V_{k}\right| & =\frac{m-n+c_{F}+\left|E_{k}\right|}{k-1} . \tag{3}\\
\text { In particular, }\left|V_{k}\right| & \geq\left\lceil\frac{m-n+k}{k-1}\right\rceil . \tag{4}
\end{align*}
$$

Proof. The number of edges that are not in F is $k\left|V_{k}\right|-\left|E_{k}\right|$, as $k\left|V_{k}\right|$ double-counts every edge in E_{k}. Hence, $m=k\left|V_{k}\right|-\left|E_{k}\right|+|E(F)|$ and $\left|V_{k}\right|=\frac{m+\left|E_{k}\right|-|E(F)|}{k}$. There are exactly $n-\left|V_{k}\right|=|E(F)|+c_{F}$ vertices of degree greater than k in G, which implies Bound (3). Bound (4) follows from Bound (3) by applying Lemma 2.

With Bound (3), we have a bound at hand that is always optimal, as long as a minimally k-connected graph with the given parameters exists. Unfortunately, it is not clear at all how to decide whether there is a graph with such a given parameter constellation. We therefore investigate bounds for the rather natural parameters m, n and k.

The given bounds (apart from (3), which is always optimal) relate to each other as follows: For the interesting case $n>2 k$, both bounds (1) and (4) imply $\left|V_{k}\right| \geq$ $\left\lceil k+\frac{1}{2 k-1}\right\rceil=k+1$. The bound $\left|V_{k}\right| \geq \Delta$ however is independent of Bounds (1), (2) and (4): Clearly, Δ can be smaller than any of these bounds, as e.g. the k-regular k connected graphs show. For every sufficiently large wheel graph, $\Delta>(1)$ and $\Delta>(4)$. For every $n>2 k$ and $k>1$, the graph $K_{k, n-k}$ shows that $\Delta=n-k>\frac{k n-1}{2 k-1}=(2)$. The next section will show that Bound (4) is at least as good as (1) if and only if $m \geq k(k n-1) /(2 k-1)$ (up to parity issues).

4 A Tight Bound

Harary [5] showed $m \geq\lceil k n / 2\rceil$ for every (minimally) k-connected graph, where $m=$ $(k n+1) / 2$ can in fact be attained by such graphs when $k n$ is odd. Mader [7, Satz 2] showed $m \leq k n-\binom{k+1}{2}$ for every minimally k-connected graph, where equality is attained only for the graph K_{k+1} if $k \geq 2$. Thus, every minimally k-connected graph satisfies $\lceil k n / 2\rceil \leq m \leq k n-\binom{k+1}{2}$.

If m is large, our general lower bound for the parameters m, n and k will be (4). If m is small, we use the following lower bound instead, as it outperforms the others in that case. The bound is simple and follows directly from $2 m \geq(k+1)\left(n-\left|V_{k}\right|\right)+k\left|V_{k}\right|$.

Observation 5. For every minimally k-connected graph,

$$
\begin{equation*}
\left|V_{k}\right| \geq(k+1) n-2 m \tag{5}
\end{equation*}
$$

For $k \geq 2$, this gives the general lower bound $\left|V_{k}\right| \geq \max \{(k+1) n-2 m,\lceil(m-n+$ $k) /(k-1)\rceil\}$. In the remaining part of the paper, we show that this bound is tight.

Theorem 6. For $k \geq 2$ and every minimally k-connected graph G,

$$
\left|V_{k}\right| \geq \begin{cases}(k+1) n-2 m & \text { if } m \leq \frac{k(k n-1)}{2 k-1} \tag{6}\\ \lceil(m-n+k) /(k-1)\rceil & \text { if } m \geq \frac{k(k n-1)}{2 k-1}\end{cases}
$$

The bound is best possible (even without the ceiling) for every $m, n \geq 3 k-2$ and $k \geq 2$ such that

- $m \equiv_{k(k-1)} k(n-1)-i$ and $0 \leq i \leq 2\left\lfloor\frac{k}{2}\right\rfloor$ if $m \leq \frac{k(k n-1)}{2 k-1}$, and
- $m \equiv_{k-1} k(n-1)$ if $m \geq \frac{k(k n-1)}{2 k-1}$.

Proof. Bound (6) follows directly from the bounds (4) and (5). We prove its tightness under the given assumptions.

Take k vertex-disjoint copies T_{1}, \ldots, T_{k} of any tree T with maximum degree at most $k+1$ and $l:=|V(T)| \geq 1$. For a vertex $v \in T$, let v_{1}, \ldots, v_{k} be the vertices in T_{1}, \ldots, T_{k} that correspond to v; we call this vertex set the row of v. Obtain the graph $H_{T}(k, l)$ from $T_{1} \cup \cdots \cup T_{k}$ by adding $k+1-\operatorname{deg}_{T}(v)$ new vertices for each vertex v in T and joining these vertices to each vertex of the row of v by an edge (see Figure 1a). This way, every vertex in a tree copy has degree exactly $k+1$ in $H_{T}(k, l)$, and $F=T_{1} \cup \cdots \cup T_{k}$.

The subgraph that is induced by the vertices of a row and the vertices added to this row is called a layer. Every layer of $H_{T}(k, l)$ is a complete bipartite graph. The graph $H_{T}(k, l)$ is minimally k-connected, as it can be easily checked that there are k internally vertex-disjoint paths between every vertex pair, and since every edge is either incident to a vertex of degree k or contained in an edge cut of k edges.

We will use $H:=H_{T}(k, l)$ in the construction of tight graph families; to simplify later arguments, we first determine $\left|V_{k}(H)\right|, n_{H}$ and m_{H}. Since $|V(F(H))|=k l$ and $|E(F(H))|=k(l-1)$ in H, we have $k\left|V_{k}(H)\right|=(k+1)|V(F(H))|-2|E(F(H))|=$ $(k-1) k l+2 k$, which implies $\left|V_{k}(H)\right|=(k-1) l+2$ and $n_{H}=(2 k-1) l+2$. The equality for n_{H} shows that the construction is well-defined for every $n_{H}>2 k$ such that $n_{H} \equiv{ }_{2 k-1} 2$, but not well-defined for any $n_{H} \leq 2 k$, as then $l<1$. It follows that $m_{H}=k(k l+1)$, which implies $m_{H}=\frac{k\left(k n_{H}-1\right)}{2 k-1}$. Thus, H lies on the threshold of Bound (6). Since $\left|V_{k}(H)\right|=(k+1) n_{H}-2 m_{H}=\left(m_{H}-n_{H}+k\right) /(k-1)$, H satisfies both cases of Bound (6) with equality.

(a) The graph $H_{T}(3,4)$, where T is the star graph on $l=4$ vertices. The thick blue subgraph depicts F.

(b) The graph $H_{T}^{\prime}(5,3,3)$, where T is the path on $l=3$ vertices with end vertices s and t. The dashed red lines depict the $i=3$ edges that were deleted from $H_{T}(5,3)$ as part of deleting a 1- and a 2-matching in the layers of s and t in order to obtain $H_{T}^{\prime}(5,3,3)$. As $j=1$, the middle row consists only of vertices in V_{k}. The thick blue subgraph depicts F, which consists of four isolated vertices.

Figure 1: $H_{T}(k, l)$ and $H_{T}^{\prime}(k, l, i)$.
Consider the case $m \leq \frac{k(k n-1)}{2 k-1}$ and let $m \equiv_{k(k-1)} k(n-1)-i$ for any $0 \leq i \leq 2\left\lfloor\frac{k}{2}\right\rfloor$.

We construct a minimally k-connected graph satisfying $\left|V_{k}\right|=(k+1) n-2 m$. An i-matching is a matching of size i. The high-level idea of the construction is to use a modification of H and delete a carefully chosen i-matching as well as j vertices such that the resulting graph is minimally k-connected.

Let $l:=\frac{k(n-1)-i-m}{k(k-1)}$. Since $m \equiv_{k(k-1)} k(n-1)-i, l$ is an integer. From $m \leq \frac{k(k n-1)}{2 k-1}$ follows $l \geq \frac{n-2}{2 k-1}-\frac{i}{k(k-1)}$, which implies $l \geq 1-\frac{1}{k-1}$ due to $n>2 k$ and $i \leq k$. Hence, $l \geq 1$. Let $j:=l(2 k-1)-n+2$; clearly, j is an integer.

We prove that $0 \leq j \leq l$ such that $j=l-1$ implies $i \leq\left\lfloor\frac{k}{2}\right\rfloor$, and $j=l$ implies $i=0$. Since $\frac{k(k n-1)}{2 k-1} \equiv_{k(k-1)} k(n-1)$, we have $m \equiv_{k(k-1)} \frac{k(k n-1)}{2 k-1}-i$. As $m \leq \frac{k(k n-1)}{2 k-1}$, this implies $m \leq \frac{k(k n-1)}{2 k-1}-i$. Using this bound in the definition of j gives $j \geq 0$. Basic calculus on m, l and j shows that $l=\frac{n-2+(j-l)}{2(k-1)}$ and $m=k(n-1)-i-k(k-1) l$, which implies $m \leq \frac{k n}{2}-i-\frac{k}{2}(j-l)$. If $j \geq l$, we conclude $j=l$ and $i=0$, since $m \geq \frac{k n}{2}$ (in addition, n is even in this case, as $n=(2 k-1) l-j+2)$. If $j=l-1, n$ is odd, since $n=(2 k-1) l-j+2$. Then $m \leq \frac{k n}{2}+\frac{k}{2}-i$ implies $i \leq\left\lfloor\frac{k}{2}\right\rfloor$, as $m \geq\left\lceil\frac{k n}{2}\right\rceil$.

Let T be the path on l vertices, let s and t be its end vertices and let $v \in\{s, t\}$. Then the layer of v in $H_{T}(k, l)$ is the graph $K_{k, k}$; let its two color classes be black and white such that the row vertices v_{1}, \ldots, v_{k} are white and the non-row vertices w_{1}, \ldots, w_{k} are black. For any row vertex v_{i}, let z_{i} be its (unique) neighbor in $H_{T}(k, l)$ that is not in the layer of v. Let a swap of v_{i} delete the edge $v_{i} z_{i}$ and add the edge $w_{i} z_{i}$ (this makes w_{i} the row vertex instead of v_{i}). In order to describe the construction, we need the following operation of deleting an x-matching, $0 \leq x \leq\lfloor k / 2\rfloor$, in the layer of v (see Figure 1b): For every $1 \leq z \leq x$, perform a swap on the (white) row vertex $v_{2 z}$ and delete the edge $v_{2 z-1} w_{2 z}$. This way, the graph obtained has exactly x edges less, and these edges form an x-matching in $H_{T}(k, l)$. Since every edge in the x-matching decreases the degree of two vertices of degree $k+1$ by one and does not increase any degree, deleting an x-matching decreases $\left|V_{k}\right|$ by $2 x$.

Let $i_{t}:=\min \{i,\lfloor k / 2\rfloor\}$ and $i_{s}:=\max \{0, i-\lfloor k / 2\rfloor\}$; thus, $i_{s}+i_{t}=i$. Obtain the graph $H^{\prime}:=H_{T}^{\prime}(k, l, i)$ from $H_{T}(k, l)$ by deleting an i_{t}-matching in the layer of t, an i_{s}-matching in the layer of s, and one vertex of degree k from each of j layers that are chosen according to the following preference list on their corresponding vertices in T : inner vertices of T, s, t. This construction is well-defined, because we previously showed $l \geq 1$ (which is needed for the construction of $H_{T}(k, l)$) and $0 \leq j \leq l$ such that $j=l-1$ implies $i \leq\left\lfloor\frac{k}{2}\right\rfloor\left(\right.$ hence, $i_{s}=0$), and $j=l$ implies $i=0$ (hence, $i_{t}=i_{s}=0$).

By applying Menger's theorem, H^{\prime} is k-connected: The desired k internally vertexdisjoint paths between all vertex pairs $\{u, v\}$ can be obtained from the ones in $H_{T}(k, l)$ as follows. First, assume that u and v are in one layer of H^{\prime}. Then we can substitute every edge of the deleted x-matching with either a path through exactly two vertices in the layer of s or t, or with a path of length 3 in the same layer, such that all substituted paths are pairwise internally vertex-disjoint (see the fully drawn edges in the layer of t in Figure 1b). Otherwise, u and v are in different layers. Then, in all cases, there are vertex-disjoint fans from u to the row of its layer and from v to the row of its layer, and connecting these gives the desired k paths.

Clearly, every edge is incident to a vertex of degree k or contained in an edge cut that consists of k tree-edges; hence, H^{\prime} is minimally k-connected. Counting edges and vertices of H^{\prime} in the same way as done for H, we obtain $\left|V_{k}\left(H^{\prime}\right)\right|=(k-1)(l+j)+2+2 i$, $n_{H^{\prime}}=(2 k-1) l+2-j$ and $m_{H^{\prime}}=k(k l+1-j)-i$. Thus, expanding j in the equality for $n_{H^{\prime}}$ shows $n_{H^{\prime}}=n$, and expanding j and substituting l with $\frac{n-2+j}{2 k-1}$ in the equality for $m_{H^{\prime}}$ shows $m_{H^{\prime}}=m$. Hence, H^{\prime} satisfies $\left|V_{k}\left(H^{\prime}\right)\right|=(k+1) n-2 m$, as claimed.

Now consider the case $m \geq \frac{k(k n-1)}{2 k-1}$ and let $m \equiv_{k-1} k(n-1)$. We construct a minimally k-connected graph satisfying $\left|V_{k}\right|=(m-n+k) /(k-1)$. In particular, this shows that Bound (6) is tight without the ceiling. The high-level idea of the construction is to contract $i<k$ suitably chosen edges in H such that the resulting graph is minimally k-connected, followed by adding sufficiently many new vertices of degree k in order to compensate for the vertex loss.

Since $m \equiv_{k-1} k(n-1), \frac{k(n-1)-m}{k-1}$ is an integer. Let $i \in\{0, \ldots, k-1\}$ such that $\frac{k(n-1)-m}{k-1}+i$ is divisible by k; thus, we have $m \equiv_{k(k-1)} k(n-1)+(k-1) i$. Therefore, $l:=\frac{k(n-1)-m+(k-1) i}{k(k-1)}$ is an integer.

We prove that $l \geq 1$ and, if $i \neq 0, l \geq 2$. Since G is minimally k-connected, $m \leq k n-\binom{k+1}{2}$, where equality is only attained for $G=K_{k+1}$, as mentioned before. Since $G=K_{k+1}$ contradicts $n>2 k$, we have $m<k n-\binom{k+1}{2}$. From $m<k n-$ $\binom{k+1}{2} \leq k(n-1)$ and $i \geq 0$ follows $l>0$ and thus $l \geq 1$. For $i \geq \frac{k}{2}$, we have $m<k n-\binom{k+1}{2} \leq k(n-1)+(k-1) i-k(k-1)$, which implies $l \geq 2$. Consider the remaining case $1 \leq i<\frac{k}{2}$. Since $n \geq 3 k-2$, we can use a result of Mader (see e.g. [1, Thm. 4.9]), which proves $m \leq k n-k^{2}$. Because $i \geq 1$, we have $m \leq k n-k^{2}<$ $k n-k^{2}+(k-1) i=k(n-1)+(k-1) i-k(k-1)$, which shows $l \geq 2$. We conclude for all cases $l \geq 1$ and, if $i \neq 0, l \geq 2$.

Let $j:=n-2+i-(2 k-1) l$; this will be the number of vertices that is added to the contracted graph. Clearly, j is an integer and, since $i<(2 k-1) l$, we have $j \leq n-3$. We prove that $j \geq i$. If $m=\frac{k(k n-1)}{2 k-1}, m \equiv_{k(k-1)} k(n-1)+(k-1) i$ implies $(2 k-1)(k-1) i \equiv_{k(k-1)} 0$ and, as $2 k-1$ and k are co-prime, $i=0$. Since $m \geq \frac{k(k n-1)}{2 k-1}$, $m \geq \frac{k(k n-1)}{2 k-1}+(k-1) i$ follows from $m \equiv_{k(k-1)} k(n-1)+(k-1) i$. Inserting this lower bound into the definition of l and using the result in the definition of j gives $j \geq i$. Hence, $0 \leq i \leq j \leq n-3$.

Obtain the graph $H^{\prime \prime}:=H_{T}^{\prime \prime}(k, l, i, j)$ from $H_{T}(k, l)$ by first adding j new vertices of degree k such that the neighbors of every new vertex are in the same row, and then contracting i edges of (the possibly altered) F that are incident to the k copies of a leaf of T. This construction is well-defined, as we have $l \geq 1$ and, if $i>0$, the desired $i<k$ edges in F exist due to $l \geq 2$. As before, applying Menger's theorem and reusing internally vertex-disjoint paths from $H_{T}(k, l)$ for $H^{\prime \prime}$ shows that $H^{\prime \prime}$ is k-connected. In addition, $H^{\prime \prime}$ is minimally k-connected, as every edge e is incident to a vertex of degree k, contained in an edge cut that consists of k tree-edges, or such that $G-e$ contains a ($k-1$)-separator that consists of $k-1$ copies of the leaf chosen in T.

Counting edges and vertices as before, we obtain $\left|V_{k}\left(H^{\prime \prime}\right)\right|=(k-1) l+2+j$,
$n_{H^{\prime \prime}}=(2 k-1) l+2+j-i$ and $m_{H^{\prime \prime}}=k(k l+1+j)-i$. Thus, expanding j in the equality for $n_{H^{\prime \prime}}$ shows $n_{H^{\prime \prime}}=n$, and expanding j and then l in the equality for $m_{H^{\prime \prime}}$ shows $m_{H^{\prime \prime}}=m$. Hence, $H^{\prime \prime}$ satisfies $\left|V_{k}\left(H^{\prime \prime}\right)\right|=(m-n+k) /(k-1)$, as claimed.

In the tightness proof above, the precondition $n \geq 3 k-2$ is used only in the case $m \geq \frac{k(k n-1)}{2 k-1}$ for the parity values $1 \leq i<\frac{k}{2}$. Hence, for the remaining values $i=0$ and $\left\lceil\frac{k}{2}\right\rceil \leq i \leq k-1$ that satisfy $m \equiv_{k(k-1)} k(n-1)-i$, the weaker precondition $n>2 k$ suffices:

Corollary 7. Bound (6) is best possible (even without the ceiling) for every $k \geq 2$, $n>2 k$ and $m \equiv_{k(k-1)} k(n-1)-i$ such that $\left\lceil\frac{k}{2}\right\rceil \leq i \leq 2\left\lfloor\frac{k}{2}\right\rfloor$.

(a) A 3D-plot for $k=3$. A blue $(m \leq k(k n-$ 1) $/(2 k-1)$) or green $(m \geq k(k n-1) /(2 k-$ 1)) dot at point ($\left.n, m,\left|V_{k}\right|\right)$ shows the existence of a graph for which Bound (6) is tight. Red dots depict values for which Bound (1) is tight (neglecting m).

(b) A 2D-plot for $k=4$ and $n=100$ that shows tight values of Bound (6) (green and blue) and Bound (1) (red) for the relevant ranges of m.

Figure 2: Comparing tight values of Bounds (1) and (6).
Bound (6) implies the best known special-purpose bounds for $k=2$ and $k=3$ (see [11, Prop. 2.14+20] and [3, Fact 81]) and improves them for every $m<\left\lfloor\frac{k(k n-1)}{2 k-1}\right\rfloor$. By comparing Bound (6) with Mader's Bound (1), we obtain immediately that the two bounds match if and only if $m=\frac{k(k n-1)}{2 k-1}$. Hence, for the given parities, Mader's bound is only best possible if $m=\frac{k(k n-1)}{2 k-1}$; see Figure 2 for a comparison of these two bounds.

While Corollary 7 shows that Bound (6) is tight for $n>2 k$, we leave the problem of determining tight bounds for $n \leq 2 k$ as open question. Note that Bound (6) is not tight for $n=2 k$ and $m=\frac{k(k n-1)}{2 k-1}$, as every minimally k-connected graph satisfying
these constraints has strictly more than $\lceil(m-n+k) /(k-1)\rceil=k+1$ vertices in V_{k} due to [9, Satz 4].

References

[1] B. Bollobás. Extremal graph theory. Courier Corporation, 2004.
[2] G. A. Dirac. Minimally 2-connected graphs. Journal für die reine und angewandte Mathematik, 228:204-216, 1967.
[3] J. L. Gross, J. Yellen, and P. Zhang. Handbook of Graph Theory. CRC Press, second edition, 2013.
[4] R. Halin. A theorem on n-connected graphs. Journal of Combinatorial Theory, $7(2): 150-154,1969$.
[5] F. Harary. The maximum connectivity of a graph. Proceedings of the National Academy of Sciences of the United States of America, 48(7):1142-1146, 1962.
[6] M. Kriesell. Minimal connectivity. In L. W. Beineke and R. J. Wilson, editors, Topics in Structural Graph Theory, pages 71-94. Cambridge University Press, 2013.
[7] W. Mader. Minimale n-fach zusammenhängende Graphen mit maximaler Kantenzahl. Journal für die reine und angewandte Mathematik, 249:201-207, 1971.
[8] W. Mader. Ecken vom Grad n in minimalen n-fach zusammenhängenden Graphen. Archiv der Mathematik, 23(1):219-224, 1972.
[9] W. Mader. Zur Struktur minimal n-fach zusammenhängender Graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 49(1):49-69, 1979.
[10] W. Mader. On vertices of degree n in minimally n -connected graphs and digraphs. Bolyai Society Mathematical Studies (Combinatorics, Paul Erdös is Eighty, Keszthely, 1993), 2:423-449, 1996.
[11] J. G. Oxley. On connectivity in matroids and graphs. Transactions of the American Mathematical Society, 265(1):47-58, 1981.
[12] M. D. Plummer. On minimal blocks. Transactions of the American Mathematical Society, 134:85-94, 1968.

[^0]: *This research was supported by the DFG grant SCHM 3186/1-1.

