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Abstract
For minimally k-connected graphs on n vertices, Mader proved a tight lower

bound for the number |Vk| of vertices of degree k in dependence on n and k. Oxley
observed 1981 that in many cases a considerably better bound can be given if
m := |E| is used as additional parameter, i.e. in dependence on m, n and k. It was
left open to determine whether Oxley’s more general bound is best possible.

We show that this is not the case, but give a closely related bound that deviates
from a variant of Oxley’s long-standing one only for small values of m. We prove
that this new bound is best possible. The bound contains Mader’s bound as special
case.

1 Introduction
Minimally k-connected graphs (i.e. k-connected graphs, for which the deletion of any
edge decreases the connectivity) have been in the focus of both structural and extremal
graph theory [1, 6] since their early days. For these graphs, the perhaps most heavily
investigated parameter is the number |Vk| of vertices of degree k [10].

For k = 2, Dirac [2] and Plummer [12] showed that every minimally 2-connected
graph contains a vertex of degree 2. In 1969, Halin [4] generalized this result by proving
that every minimally k-connected graph contains a vertex of degree k. This proof led
to a plethora of further results about the structure of minimally k-connected graphs in
general, and |Vk| in particular (see [10] for an extensive survey). In 1979, this eventually
culminated in a tight lower bound for |Vk| shown by Mader [9].

While Mader proved that his bound is tight for all n := |V | and k (up to certain
parity values), Oxley [11] found, shortly after and inspired by matroids, a different
lower bound for |Vk| that uses the parameters m, n and k. Oxley states 1981 that his
bound “frequently sharpens” Mader’s [11]. Since then, classifying the parameters for
which Oxley’s bound improves Mader’s and, even more importantly, finding a lower
bound that is generally best possible in dependence on m, n and k, have been open
problems.
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We answer both problems by giving a bound that consists of an improvement of
Oxley’s bound if m ≥ k(kn − 1)/(2k − 1) and of an additional simple bound if m <
k(kn − 1)/(2k − 1). This new bound contains Mader’s bound as the special case
m = k(kn − 1)/(2k − 1), and strictly improves even the best-known specialized lower
bounds for k ∈ {2, 3} given in [3, 11]. As main result, we show that our bound is best
possible for all m, k ≥ 2 and n > 2k (up to certain parity values).

The difficult part of the result is to exhibit suitable infinite families of minimally
k-connected graphs in order to prove tightness for both ranges of m mentioned above.
The infinite family that we construct for small m may also be of interest in different
problem settings, as it consists of minimally k-connected graphs that are “almost k-
regular”, i.e. such that m is close to a prescribed value slightly above the (minimal
possible) value dkn/2e.

After giving the preliminaries, we revisit and generalize the existing lower bounds
on |Vk| in Section 3 and give an improvement of Oxley’s bound that we will use. We
then formulate the new bound and prove its tightness in Section 4.

2 Preliminaries
We consider only finite, simple and undirected graphs. For a graph G = (V, E), let
nG := |V | and mG := |E| (if G is clear from the context, we omit the subscript). A
k-separator of a graph is a set of k ≥ 0 vertices whose deletion leaves a disconnected
graph. A graph G is k-connected if n > k and G contains no (k − 1)-separator. A k-
connected graph G is minimally k-connected if G− e is not k-connected for every edge
e ∈ E. Since every non-empty graph is 0-connected according to this definition, there
is no minimally 0-connected graph that contains at least one edge. We thus assume
k ≥ 1 throughout this paper.

For a graph G, let Vk := Vk(G) be the set of vertices of degree k and let Ek be the
set of edges in G that is induced by Vk. Further, let F := F (G) := G − Vk and let
cF be the number of components of F . If G is minimally k-connected, the following
lemmas by Mader ensure that F carries a very special structure.

Lemma 1 ([8, Korollar 1]). For every minimally k-connected graph, F is a forest.

Lemma 2 ([9, p. 66]). For every minimally k-connected graph, cF + |Ek| ≥ k.

We abbreviate a ≡ b (mod c) as a ≡c b and write the statement that a ≡c b for
some b ∈ {b1, . . . , bt} as a ≡c b1, . . . , bt.

3 Revisiting the old Bounds
Let G be a minimally k-connected graph. We revisit, compare and also generalize the
lower bounds for |Vk| that are already known and give small and streamlined proofs
for the generalizations. In particular, we show that Oxley’s bound can be improved
slightly using known methods; this improved variant will be used for our tight bound.
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Mader showed that |Vk| ≥ k + 1 and |Vk| ≥ ∆ [8, Korollar 2 and Satz 4]. Clearly,
the latter bound is at least as good as the former, unless G is k-regular (in which case
|Vk| = n). However, both bounds are far from being tight.

In his seminal paper [9, Satz 3], Mader eventually proved

|Vk| ≥
(k − 1)n + 2k

2k − 1 (1)

and showed that there is a minimally k-connected graph attaining equality in (1) for
every k and n > 2k such that n ≡2k−1 0, 1, 2, 3, 5, 7, . . . , 2k−3. In that sense, Bound (1)
is tight for the parameters n and k. We give the following slight generalization of
Bound (1), which relates it to ∆.

Theorem 3. For every minimally k-connected graph,

|Vk| ≥
(k − 1)n + 2(cF + |Ek|) + max{0, ∆− (k + 1)}

2k − 1 . (2)

Proof. There are exactly |E(F )| = |V (F )| − cF = n − |Vk| − cF edges in F . Thus,
the number of edges that have exactly one end vertex in F is at least (k + 1)|V (F )| −
2|E(F )|+max{0, ∆−(k+1)} = (k−1)(n−|Vk|)+2cF +max{0, ∆−(k+1)}. Counting
these edges in dependence on Vk, we obtain k|Vk| − 2|Ek| ≥ (k − 1)(n− |Vk|) + 2cF +
max{0, ∆− (k + 1)}, which gives the claim.

According to Lemma 2, Bound (2) implies Bound (1). Although Bound (1) is tight
for many graphs, it is far from being tight if m is introduced as additional parameter.
In fact, we will show in the next section that Bound (1) is only best possible when
m = k(kn−1)

2k−1 .
Using a surprisingly simple proof, Oxley [11, Prop. 2.19][3, Fact 74 in 6.6.12] ob-

served for k ≥ 2 that |Vk| ≥ m−n+1
k−1 . For the parameters m, n and k, this is the

best bound known so far. Since Oxley used cF + |Ek| ≥ 1 in his proof, we can apply
Lemma 2 and strengthen the bound slightly. In addition, a closer look at the proof of
the bound shows that we can actually obtain the following equality for Vk.

Theorem 4. For k ≥ 2 and every minimally k-connected graph,

|Vk| =
m− n + cF + |Ek|

k − 1 . (3)

In particular, |Vk| ≥
⌈

m− n + k

k − 1

⌉
. (4)

Proof. The number of edges that are not in F is k|Vk| − |Ek|, as k|Vk| double-counts
every edge in Ek. Hence, m = k|Vk| − |Ek| + |E(F )| and |Vk| = m+|Ek|−|E(F )|

k . There
are exactly n−|Vk| = |E(F )|+ cF vertices of degree greater than k in G, which implies
Bound (3). Bound (4) follows from Bound (3) by applying Lemma 2.
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With Bound (3), we have a bound at hand that is always optimal, as long as a
minimally k-connected graph with the given parameters exists. Unfortunately, it is
not clear at all how to decide whether there is a graph with such a given parameter
constellation. We therefore investigate bounds for the rather natural parameters m, n
and k.

The given bounds (apart from (3), which is always optimal) relate to each other
as follows: For the interesting case n > 2k, both bounds (1) and (4) imply |Vk| ≥
dk + 1

2k−1e = k + 1. The bound |Vk| ≥ ∆ however is independent of Bounds (1), (2)
and (4): Clearly, ∆ can be smaller than any of these bounds, as e.g. the k-regular k-
connected graphs show. For every sufficiently large wheel graph, ∆ > (1) and ∆ > (4).
For every n > 2k and k > 1, the graph Kk,n−k shows that ∆ = n − k > kn−1

2k−1 = (2).
The next section will show that Bound (4) is at least as good as (1) if and only if
m ≥ k(kn− 1)/(2k − 1) (up to parity issues).

4 A Tight Bound
Harary [5] showed m ≥ dkn/2e for every (minimally) k-connected graph, where m =
(kn + 1)/2 can in fact be attained by such graphs when kn is odd. Mader [7, Satz 2]
showed m ≤ kn −

(k+1
2
)
for every minimally k-connected graph, where equality is

attained only for the graph Kk+1 if k ≥ 2. Thus, every minimally k-connected graph
satisfies dkn/2e ≤ m ≤ kn−

(k+1
2
)
.

If m is large, our general lower bound for the parameters m, n and k will be (4). If
m is small, we use the following lower bound instead, as it outperforms the others in
that case. The bound is simple and follows directly from 2m ≥ (k +1)(n−|Vk|)+k|Vk|.

Observation 5. For every minimally k-connected graph,

|Vk| ≥ (k + 1)n− 2m. (5)

For k ≥ 2, this gives the general lower bound |Vk| ≥ max{(k + 1)n− 2m, d(m−n +
k)/(k − 1)e}. In the remaining part of the paper, we show that this bound is tight.

Theorem 6. For k ≥ 2 and every minimally k-connected graph G,

|Vk| ≥
{

(k + 1)n− 2m if m ≤ k(kn−1)
2k−1

d(m− n + k)/(k − 1)e if m ≥ k(kn−1)
2k−1 .

(6)

The bound is best possible (even without the ceiling) for every m, n ≥ 3k−2 and k ≥ 2
such that
• m ≡k(k−1) k(n− 1)− i and 0 ≤ i ≤ 2bk

2c if m ≤ k(kn−1)
2k−1 , and

• m ≡k−1 k(n− 1) if m ≥ k(kn−1)
2k−1 .

Proof. Bound (6) follows directly from the bounds (4) and (5). We prove its tightness
under the given assumptions.
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Take k vertex-disjoint copies T1, . . . , Tk of any tree T with maximum degree at
most k + 1 and l := |V (T )| ≥ 1. For a vertex v ∈ T , let v1, . . . , vk be the vertices
in T1, . . . , Tk that correspond to v; we call this vertex set the row of v. Obtain the
graph HT (k, l) from T1 ∪ · · · ∪ Tk by adding k + 1 − degT (v) new vertices for each
vertex v in T and joining these vertices to each vertex of the row of v by an edge (see
Figure 1a). This way, every vertex in a tree copy has degree exactly k + 1 in HT (k, l),
and F = T1 ∪ · · · ∪ Tk.

The subgraph that is induced by the vertices of a row and the vertices added to
this row is called a layer. Every layer of HT (k, l) is a complete bipartite graph. The
graph HT (k, l) is minimally k-connected, as it can be easily checked that there are k
internally vertex-disjoint paths between every vertex pair, and since every edge is either
incident to a vertex of degree k or contained in an edge cut of k edges.

We will use H := HT (k, l) in the construction of tight graph families; to simplify
later arguments, we first determine |Vk(H)|, nH and mH . Since |V (F (H))| = kl and
|E(F (H))| = k(l − 1) in H, we have k|Vk(H)| = (k + 1)|V (F (H))| − 2|E(F (H))| =
(k − 1)kl + 2k, which implies |Vk(H)| = (k − 1)l + 2 and nH = (2k − 1)l + 2. The
equality for nH shows that the construction is well-defined for every nH > 2k such
that nH ≡2k−1 2, but not well-defined for any nH ≤ 2k, as then l < 1. It follows
that mH = k(kl + 1), which implies mH = k(knH−1)

2k−1 . Thus, H lies on the threshold of
Bound (6). Since |Vk(H)| = (k + 1)nH − 2mH = (mH − nH + k)/(k − 1), H satisfies
both cases of Bound (6) with equality.

(a) The graph HT (3, 4), where T is the star
graph on l = 4 vertices. The thick blue sub-
graph depicts F .

v3

w3 wkv2

...

w1 v4

v1 w2

... ...

...

z3z1 z2 z4 zk

s

t

vkw4

(b) The graph H ′T (5, 3, 3), where T is the path
on l = 3 vertices with end vertices s and t. The
dashed red lines depict the i = 3 edges that were
deleted from HT (5, 3) as part of deleting a 1- and
a 2-matching in the layers of s and t in order to
obtain H ′T (5, 3, 3). As j = 1, the middle row con-
sists only of vertices in Vk. The thick blue sub-
graph depicts F , which consists of four isolated
vertices.

Figure 1: HT (k, l) and H ′T (k, l, i).

Consider the case m ≤ k(kn−1)
2k−1 and let m ≡k(k−1) k(n− 1)− i for any 0 ≤ i ≤ 2bk

2c.
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We construct a minimally k-connected graph satisfying |Vk| = (k + 1)n − 2m. An
i-matching is a matching of size i. The high-level idea of the construction is to use a
modification of H and delete a carefully chosen i-matching as well as j vertices such
that the resulting graph is minimally k-connected.

Let l := k(n−1)−i−m
k(k−1) . Since m ≡k(k−1) k(n−1)−i, l is an integer. From m ≤ k(kn−1)

2k−1
follows l ≥ n−2

2k−1 −
i

k(k−1) , which implies l ≥ 1− 1
k−1 due to n > 2k and i ≤ k. Hence,

l ≥ 1. Let j := l(2k − 1)− n + 2; clearly, j is an integer.
We prove that 0 ≤ j ≤ l such that j = l − 1 implies i ≤ bk

2c, and j = l implies
i = 0. Since k(kn−1)

2k−1 ≡k(k−1) k(n− 1), we have m ≡k(k−1)
k(kn−1)

2k−1 − i. As m ≤ k(kn−1)
2k−1 ,

this implies m ≤ k(kn−1)
2k−1 − i. Using this bound in the definition of j gives j ≥ 0. Basic

calculus on m, l and j shows that l = n−2+(j−l)
2(k−1) and m = k(n−1)− i−k(k−1)l, which

implies m ≤ kn
2 − i− k

2 (j − l). If j ≥ l, we conclude j = l and i = 0, since m ≥ kn
2 (in

addition, n is even in this case, as n = (2k − 1)l − j + 2). If j = l − 1, n is odd, since
n = (2k − 1)l − j + 2. Then m ≤ kn

2 + k
2 − i implies i ≤ bk

2c, as m ≥ dkn
2 e.

Let T be the path on l vertices, let s and t be its end vertices and let v ∈ {s, t}.
Then the layer of v in HT (k, l) is the graph Kk,k; let its two color classes be black
and white such that the row vertices v1, . . . , vk are white and the non-row vertices
w1, . . . , wk are black. For any row vertex vi, let zi be its (unique) neighbor in HT (k, l)
that is not in the layer of v. Let a swap of vi delete the edge vizi and add the edge wizi

(this makes wi the row vertex instead of vi). In order to describe the construction, we
need the following operation of deleting an x-matching, 0 ≤ x ≤ bk/2c, in the layer of
v (see Figure 1b): For every 1 ≤ z ≤ x, perform a swap on the (white) row vertex v2z

and delete the edge v2z−1w2z. This way, the graph obtained has exactly x edges less,
and these edges form an x-matching in HT (k, l). Since every edge in the x-matching
decreases the degree of two vertices of degree k + 1 by one and does not increase any
degree, deleting an x-matching decreases |Vk| by 2x.

Let it := min{i, bk/2c} and is := max{0, i − bk/2c}; thus, is + it = i. Obtain the
graph H ′ := H ′T (k, l, i) from HT (k, l) by deleting an it-matching in the layer of t, an
is-matching in the layer of s, and one vertex of degree k from each of j layers that
are chosen according to the following preference list on their corresponding vertices in
T : inner vertices of T , s, t. This construction is well-defined, because we previously
showed l ≥ 1 (which is needed for the construction of HT (k, l)) and 0 ≤ j ≤ l such that
j = l − 1 implies i ≤ bk

2c (hence, is = 0), and j = l implies i = 0 (hence, it = is = 0).
By applying Menger’s theorem, H ′ is k-connected: The desired k internally vertex-

disjoint paths between all vertex pairs {u, v} can be obtained from the ones in HT (k, l)
as follows. First, assume that u and v are in one layer of H ′. Then we can substitute
every edge of the deleted x-matching with either a path through exactly two vertices in
the layer of s or t, or with a path of length 3 in the same layer, such that all substituted
paths are pairwise internally vertex-disjoint (see the fully drawn edges in the layer of t
in Figure 1b). Otherwise, u and v are in different layers. Then, in all cases, there are
vertex-disjoint fans from u to the row of its layer and from v to the row of its layer,
and connecting these gives the desired k paths.
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Clearly, every edge is incident to a vertex of degree k or contained in an edge cut
that consists of k tree-edges; hence, H ′ is minimally k-connected. Counting edges and
vertices of H ′ in the same way as done for H, we obtain |Vk(H ′)| = (k−1)(l+j)+2+2i,
nH′ = (2k− 1)l + 2− j and mH′ = k(kl + 1− j)− i. Thus, expanding j in the equality
for nH′ shows nH′ = n, and expanding j and substituting l with n−2+j

2k−1 in the equality
for mH′ shows mH′ = m. Hence, H ′ satisfies |Vk(H ′)| = (k + 1)n− 2m, as claimed.

Now consider the case m ≥ k(kn−1)
2k−1 and let m ≡k−1 k(n − 1). We construct a

minimally k-connected graph satisfying |Vk| = (m − n + k)/(k − 1). In particular,
this shows that Bound (6) is tight without the ceiling. The high-level idea of the
construction is to contract i < k suitably chosen edges in H such that the resulting
graph is minimally k-connected, followed by adding sufficiently many new vertices of
degree k in order to compensate for the vertex loss.

Since m ≡k−1 k(n − 1), k(n−1)−m
k−1 is an integer. Let i ∈ {0, . . . , k − 1} such that

k(n−1)−m
k−1 + i is divisible by k; thus, we have m ≡k(k−1) k(n− 1) + (k − 1)i. Therefore,

l := k(n−1)−m+(k−1)i
k(k−1) is an integer.

We prove that l ≥ 1 and, if i 6= 0, l ≥ 2. Since G is minimally k-connected,
m ≤ kn −

(k+1
2
)
, where equality is only attained for G = Kk+1, as mentioned before.

Since G = Kk+1 contradicts n > 2k, we have m < kn −
(k+1

2
)
. From m < kn −(k+1

2
)
≤ k(n − 1) and i ≥ 0 follows l > 0 and thus l ≥ 1. For i ≥ k

2 , we have
m < kn −

(k+1
2
)
≤ k(n − 1) + (k − 1)i − k(k − 1), which implies l ≥ 2. Consider

the remaining case 1 ≤ i < k
2 . Since n ≥ 3k − 2, we can use a result of Mader (see

e.g. [1, Thm. 4.9]), which proves m ≤ kn− k2. Because i ≥ 1, we have m ≤ kn− k2 <
kn − k2 + (k − 1)i = k(n − 1) + (k − 1)i − k(k − 1), which shows l ≥ 2. We conclude
for all cases l ≥ 1 and, if i 6= 0, l ≥ 2.

Let j := n − 2 + i − (2k − 1)l; this will be the number of vertices that is added
to the contracted graph. Clearly, j is an integer and, since i < (2k − 1)l, we have
j ≤ n− 3. We prove that j ≥ i. If m = k(kn−1)

2k−1 , m ≡k(k−1) k(n− 1) + (k − 1)i implies
(2k− 1)(k− 1)i ≡k(k−1) 0 and, as 2k− 1 and k are co-prime, i = 0. Since m ≥ k(kn−1)

2k−1 ,
m ≥ k(kn−1)

2k−1 + (k− 1)i follows from m ≡k(k−1) k(n− 1) + (k− 1)i. Inserting this lower
bound into the definition of l and using the result in the definition of j gives j ≥ i.
Hence, 0 ≤ i ≤ j ≤ n− 3.

Obtain the graph H ′′ := H ′′T (k, l, i, j) from HT (k, l) by first adding j new vertices
of degree k such that the neighbors of every new vertex are in the same row, and then
contracting i edges of (the possibly altered) F that are incident to the k copies of a
leaf of T . This construction is well-defined, as we have l ≥ 1 and, if i > 0, the desired
i < k edges in F exist due to l ≥ 2. As before, applying Menger’s theorem and reusing
internally vertex-disjoint paths from HT (k, l) for H ′′ shows that H ′′ is k-connected. In
addition, H ′′ is minimally k-connected, as every edge e is incident to a vertex of degree
k, contained in an edge cut that consists of k tree-edges, or such that G− e contains a
(k − 1)-separator that consists of k − 1 copies of the leaf chosen in T .

Counting edges and vertices as before, we obtain |Vk(H ′′)| = (k − 1)l + 2 + j,

7



nH′′ = (2k − 1)l + 2 + j − i and mH′′ = k(kl + 1 + j) − i. Thus, expanding j in the
equality for nH′′ shows nH′′ = n, and expanding j and then l in the equality for mH′′

shows mH′′ = m. Hence, H ′′ satisfies |Vk(H ′′)| = (m− n + k)/(k − 1), as claimed.

In the tightness proof above, the precondition n ≥ 3k − 2 is used only in the case
m ≥ k(kn−1)

2k−1 for the parity values 1 ≤ i < k
2 . Hence, for the remaining values i = 0 and

dk
2e ≤ i ≤ k − 1 that satisfy m ≡k(k−1) k(n − 1) − i, the weaker precondition n > 2k

suffices:

Corollary 7. Bound (6) is best possible (even without the ceiling) for every k ≥ 2,
n > 2k and m ≡k(k−1) k(n− 1)− i such that dk

2e ≤ i ≤ 2bk
2c.

(a) A 3D-plot for k = 3. A blue (m ≤ k(kn −
1)/(2k − 1)) or green (m ≥ k(kn − 1)/(2k −
1)) dot at point (n, m, |Vk|) shows the existence
of a graph for which Bound (6) is tight. Red
dots depict values for which Bound (1) is tight
(neglecting m).

(b) A 2D-plot for k = 4 and n = 100 that shows
tight values of Bound (6) (green and blue) and
Bound (1) (red) for the relevant ranges of m.

Figure 2: Comparing tight values of Bounds (1) and (6).

Bound (6) implies the best known special-purpose bounds for k = 2 and k = 3
(see [11, Prop. 2.14+20] and [3, Fact 81]) and improves them for every m < bk(kn−1)

2k−1 c.
By comparing Bound (6) with Mader’s Bound (1), we obtain immediately that the two
bounds match if and only if m = k(kn−1)

2k−1 . Hence, for the given parities, Mader’s bound
is only best possible if m = k(kn−1)

2k−1 ; see Figure 2 for a comparison of these two bounds.
While Corollary 7 shows that Bound (6) is tight for n > 2k, we leave the problem

of determining tight bounds for n ≤ 2k as open question. Note that Bound (6) is not
tight for n = 2k and m = k(kn−1)

2k−1 , as every minimally k-connected graph satisfying
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these constraints has strictly more than d(m − n + k)/(k − 1)e = k + 1 vertices in Vk

due to [9, Satz 4].
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