
Mondshein Sequences (a.k.a. (2, 1)-Orders)

Jens M. Schmidt
Institute of Mathematics

TU Ilmenau∗

Abstract

Canonical orderings [STOC’88, FOCS’92] have been used as a key tool in graph drawing,
graph encoding and visibility representations for the last decades. We study a far-reaching
generalization of canonical orderings to non-planar graphs that was published by Lee Mondshein
in a PhD-thesis at M.I.T. as early as 1971.

Mondshein proposed to order the vertices of a graph in a sequence such that, for any i, the
vertices from 1 to i induce essentially a 2-connected graph while the remaining vertices from
i + 1 to n induce a connected graph. Mondshein’s sequence generalizes canonical orderings
and became later and independently known under the name non-separating ear decomposition.
Surprisingly, this fundamental link between canonical orderings and non-separating ear decom-
position has not been established before. Currently, the fastest known algorithm for computing
a Mondshein sequence achieves a running time of O(nm); the main open problem in Mondshein’s
and follow-up work is to improve this running time to subquadratic time.

After putting Mondshein’s work into context, we present an algorithm that computes a
Mondshein sequence in optimal time and space O(m). This improves the previous best running
time by a factor of n. We illustrate the impact of this result by deducing linear-time algo-
rithms for five other problems, for four out of which the previous best running times have been
quadratic. In particular, we show how to

– compute three independent spanning trees in a 3-connected graph in time O(m), improving
a result of Cheriyan and Maheshwari [J. Algorithms 9(4)],

– improve the preprocessing time from O(n2) to O(m) for the output-sensitive data structure
by Di Battista, Tamassia and Vismara [Algorithmica 23(4)] that reports three internally
disjoint paths between any given vertex pair,

– derive a very simple O(n)-time planarity test once a Mondshein sequence has been com-
puted,

– compute a nested family of contractible subgraphs of 3-connected graphs in time O(m),
– compute a 3-partition in time O(m), while the previous best running time is O(n2) due to

Suzuki et al. [IPSJ 31(5)].

1 Introduction
Canonical orderings are a fundamental tool used in graph drawing, graph encoding and visibility
representations; we refer to [2] for a wealth of applications. For maximal planar graphs, canonical
orderings were introduced by de Fraysseix, Pach and Pollack [9, 10] in 1988. Kant then generalized
canonical orderings to 3-connected planar graphs [23, 24]. In polyhedral combinatorics, canonical

∗This research was partly done at Max Planck Institute for Informatics, Saarbrücken. An extended abstract of
this paper has been published at ICALP’14.

1

orders are in addition related to shellings of (dual) convex 3-dimensional polytopes [42]; however,
such shellings are often, as in the Bruggesser-Mani theorem, dependent on the geometry of the
polytope. A combinatorial generalization to arbitrary planar graphs was given by Chiang, Lin and
Lu [7].

Surprisingly, the concept of canonical orderings can be traced back much further, namely to
a long-forgotten PhD-thesis at M.I.T. by Lee F. Mondshein [29] in 1971. In fact, Mondshein
proposed a sequence that generalizes canonical orderings to non-planar graphs, hence making them
applicable to arbitrary 3-connected graphs. Mondshein’s sequence was, independently and in a
different notation, found later by Cheriyan and Maheshwari [6] under the name non-separating
ear decompositions and is sometimes also called (2,1)-order (e.g., see [5]). In addition, Mondshein
sequences provide a generalization of Schnyder’s famous woods to non-planar 3-connected graphs.
One key contribution of this paper is to establish the above fundamental link between canonical
orderings and non-separating ear decompositions in detail.

Computationally, it is an intriguing question how fast a Mondshein sequence can be computed.
Mondshein himself gave an involved algorithm with running time O(m2). Cheriyan showed that
it is possible to achieve a running time of O(nm) by using a theorem of Tutte that proves the
existence of non-separating cycles in 3-connected graphs [36]. Both works state as main open
problem, whether it is possible to compute a Mondshein sequence in subquadratic time (see [29, p.
1.2] and [6, p. 532]).

We present the first algorithm that computes a Mondshein sequence in optimal time and space
O(m), hence solving the above 45-year-old problem. The interest in such a computational result
stems from the fact that 3-connected graphs play a crucial role in algorithmic graph theory. We
illustrate this in five applications by giving linear-time algorithms. For four of them, the previous
best running times have been quadratic.

We start by giving an overview of Mondshein’s work and its connection to canonical orderings
and non-separating ear decompositions in Section 3. Section 4 explains the linear-time algorithm
and proves its main technical lemma, the Path Replacement Lemma. Section 5 covers five applica-
tions of our linear-time algorithm.

2 Preliminaries
We use standard graph-theoretic terminology and assume that all graphs are simple.

Definition 1 ([26, 40]). An ear decomposition of a graph G = (V, E) is a sequence (P0, P1, . . . , Pk)
of subgraphs of G that partition E such that P0 is a cycle and every Pi, 1 ≤ i ≤ k, is a path that
intersects P0 ∪ · · · ∪ Pi−1 in exactly its endpoints. Each Pi is called an ear. An ear is short if it is
an edge and long otherwise.

According to Whitney [40], every ear decomposition has exactly m−n+1 ears and G has an ear
decomposition if and only if G is 2-connected. For any i, let Gi := P0∪· · ·∪Pi and Vi := V −V (Gi).
We write Gi to denote the graph induced by Vi. Note that Gi does not necessarily contain all edges
in E −E(Gi); in particular, there may be short ears in E −E(Gi) that have both endpoints in Gi.

For a path P and two vertices x and y in P , let P [x, y] be the subpath in P from x to y. A
path with endpoints v and w is called a vw-path. A vertex x in a vw-path P is an inner vertex of
P if x /∈ {v, w}. For convenience, every vertex in a cycle is called an inner vertex of that cycle.

For an ear P , let inner(P) be the set of its inner vertices. The inner vertex sets of the ears in
an ear decomposition of G play a special role, as they partition V . Every vertex of G is contained
in exactly one long ear as inner vertex. This readily gives the following characterization of Vi.

2

Observation 2. For every i, Vi is the union of the inner vertices of all long ears Pj with j > i.

We will compare vertices and edges of G by their first occurrence in a fixed ear decomposition.

Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge e ∈ G, let
birthD(e) be the index i such that Pi contains e. For a vertex v ∈ G, let birthD(v) be the minimal
i such that Pi contains v (thus, PbirthD(v) is the ear containing v as an inner vertex). Whenever D
is clear from the context, we will omit D.

Clearly, for every vertex v, the ear Pbirth(v) is long, as it contains v as an inner vertex.

3 Generalizing Canonical Orderings
Although canonical orderings of (maximal or 3-connected) planar graphs are traditionally defined
as vertex partitions, we will define them as special ear decompositions. This will allow for an easy
comparison of canonical orderings to the more general Mondshein sequences, which extend them
to non-planar graphs. We assume that the input graphs are 3-connected and, when talking about
canonical orderings, planar. It is well-known that maximal planar graphs (which were considered
in [9] in this setting) form a subclass of 3-connected graphs, apart from the triangle-graph.

Definition 4. An ear decomposition is non-separating if, for every long ear Pi except the last one,
every inner vertex of Pi has a neighbor in Gi.

The name non-separating refers to the following helpful property.

Lemma 5. In a non-separating ear decomposition D, Gi is connected for every i.

Proof. For all i satisfying Gi = ∅ the claim is true, in particular if i is at least the index of the last
long ear. Otherwise, i is such that the inner vertex set A of the last long ear in D is contained in
Gi. Consider any vertex x in Gi. In order to show connectedness, we exhibit a path from x to A
in Gi. If x ∈ A, we just take the path of length zero. Otherwise, the vertex x has a neighbor in
Gbirth(x), since D is non-separating. According to Observation 2, this neighbor is an inner vertex
of some ear Pj with j > birth(x). Applying induction on j gives the desired path to A.

A plane graph is a graph that is embedded into the plane. In particular, a plane graph has a
fixed outer face. We define canonical orderings as follows.

Definition 6 (canonical ordering). Let G be a 3-connected plane graph and let rt and ru be edges
of its outer face. A canonical ordering through rt and avoiding u is an ear decomposition D of G
such that

1. rt ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not contain ru, and
3. D is non-separating.

The fact that D is non-separating plays a key role for both canonical orderings and their gener-
alization to non-planar graphs. E.g., Lemma 5 implies that the plane graph G can be constructed
from P0 by successively inserting the ears of D into only one dedicated face of the current embed-
ding, a routine that is heavily applied in graph drawing and embedding problems. Put simply, the
second condition forces u to be “added last” in D. Further motivations are given by 3-connectivity:
If we would not restrict u to be the only vertex in Pbirth(u), other vertices in the same ear could
have degree two, as the non-separateness does not imply any later neighbors for the last ear.

3

The condition ru /∈ Pbirth(u) ensures that u has degree at least three in G (which is necessary
for 3-connectivity) and will also lead to the existence of a third independent spanning tree (see
Application 1 in Section 5).

We note that forcing one edge rt in P0 is optimal in the sense that two edges rz and rt cannot
be forced: Let W be a sufficiently large wheel graph with center vertex r and rim vertices t and z
such that t and z are not adjacent. Then a canonical ordering with rt, rz ∈ P0 and avoiding u does
not exist, as any inner vertex on the rim-path from t to z not containing u has no larger neighbor
with respect to birth, and thus violates the non-separateness.

The original definition of canonical orderings by Kant [24] states the following additional prop-
erties.

Lemma 7 (further properties). For every 0 ≤ i ≤ m− n in a canonical ordering,
4. the outer face Ci of the plane subgraph Gi ⊆ G is a (simple) cycle that contains rt,
5. Gi is 2-connected and every separation pair of Gi has both its vertices in Ci, and
6. for i > 0, the neighbors of inner(Pi) in Gi−1 are contained consecutively in Ci−1.

Further, the canonical ordering implies the existence of one satisfying the following property:
7. if |inner(Pi)| ≥ 2, each inner vertex of Pi has degree two in G− Vi

Properties 4–6 can be easily deduced from Definition 6 as follows: Every Gi is a 2-connected
plane subgraph of G, as Gi has an ear decomposition. According to [34, Corollary 1.3], all faces of
a 2-connected plane graph form cycles. Thus, every Ci is a cycle and Property 4 follows directly
from the fact that rt is assumed to be in the fixed outer face of G. Property 5 is implied by the
3-connectivity of G and Property 4. Property 6 follows from Property 4, the fact that every inner
vertex of Pi must be outside Ci−1 (in G) and the Jordan Curve Theorem.

For the sake of completeness, we show how Property 7 is derived. Although it is not directly
implied by Definition 6 (in that sense our definition is more general), the following lemma shows
that we can always find a canonical ordering satisfying it.

Lemma 8. Every canonical ordering can be transformed to a canonical ordering satisfying Prop-
erty 7.7 in linear time.

Proof. First, consider any ear Pi 6= P0 with |inner(Pi)| ≥ 2 such that an inner vertex x of Pi has a
neighbor y in G−Vi that is different from its predecessor and successor in Pi. Then Pbirth(xy) = xy
and birth(xy) > i. If y is in Pi, let Z be the path obtained from Pi by replacing Pi[x, y] ⊆ Pi

with xy; we call this latter operation short-cutting. We replace Pi with the two ears Z and Pi[x, y]
in that order and delete Pbirth(xy) = xy. This preserves Properties 1–3 (note that u /∈ Pi, as
|inner(Pi)| ≥ 2) and therefore the canonical ordering. If y is not in Pi, let Z1 be a shortest path
in Pi from an endpoint of Pi to x and let Z2 be the path in Pi from x to the remaining endpoint.
Replace Pi with the two ears Z1 ∪ xy and Z2 in that order and delete Pbirth(xy). This preserves
Properties 1–3.

Now, consider a vertex x ∈ P0 not having degree 2 in G − V0, i.e. x has a non-consecutive
neighbor y in P0 in the graph that is vertex-induced by V (P0). If x ∈ {r, t}, we replace P0 with the
shortest cycle C in P0 ∪ xy that contains r, t and y, delete Pbirth(xy) = xy and add the remaining
path from x to y in P0 − E(C) as new ear directly after C. This clearly preserves Properties 1–3.
If x /∈ {r, t}, we can shortcut P0 in a similar way. The above operations can be computed in linear
total time.

Our definition of canonical orderings uses planarity only in one place: tr ∪ ru is assumed to be
part of the outer face of G. Note that the essential part of this assumption is that tr∪ ru is part of
some face of G, as we can always choose an embedding for G having this face as outer face. Hence,

4

there is a natural generalization of canonical orderings to non-planar graphs G: We merely require
rt and ru to be edges of G! The following ear-based definition is similar to the one given in [6] but
does not need additional degree-constraints.

Definition 9 ([29, 6]). Let G be a graph with edges rt and ru. A Mondshein sequence through rt
and avoiding u (see Figure 1) is an ear decomposition D of G such that

1. rt ∈ P0,
2. Pbirth(u) is the last long ear, contains u as its only inner vertex and does not contain ru, and
3. D is non-separating.

This definition is in fact equivalent to the one Mondshein used 1971 to define a (2,1)-sequence
[29, Def. 2.2.1], but which he gave in the notation of a special vertex ordering. This vertex ordering
actually refines the partial order inner(P0), . . . , inner(Pm−n) by enforcing an order on the inner
vertices of each path according to their occurrence on that path (in any direction). The statement
that canonical orderings can be extended to non-planar graphs can also be found in [14, p.113],
however, no further explanation is given.

P
8

P7

P6

P1
1

P3

P
2

P9

P
0

P 1

r

t

u

P10

P
4

P 5

P12

Figure 1: A Mondshein sequence of a non-planar 3-connected graph.

Note that Definition 9 implies u /∈ P0, as P0 6= Pbirth(u), since Pbirth(u) contains only one inner
vertex. As a direct consequence of this and the fact that D is non-separating, G must have minimum
degree at least 3 in order to have a Mondshein sequence. Mondshein proved that every 3-connected
graph has a Mondshein sequence. In fact, also the converse is true.

Theorem 10 (compare also [6, 41]). Let rt and ru be edges of G. Then G is 3-connected if and only
if G has three internally vertex-disjoint paths between t and u and a Mondshein sequence through
rt and avoiding u.

We state two additional facts about Mondshein sequences. For the first, let G be planar. Clearly,
every canonical ordering of an embedding of G is also a Mondshein sequence. Conversely, let D
be a Mondshein sequence of G through rt and avoiding u. Then Theorem 10 implies that G is
3-connected. If G has an embedding in which tr ∪ ru is contained in a face, we can choose this
face as outer face and get an embedding of G for which D is a canonical ordering. This embedding
must be unique, as Whitney proved that any 3-connected planar graph has a unique embedding
(up to flipping) [39]. Otherwise, there is no embedding of G such that tr ∪ ru is contained in some
face. Since the faces of a 3-connected planar graph are precisely its non-separating cycles [36], we
conclude the following observation.

Observation 11. For a planar graph G and edges tr and ru, the following statements are equiva-
lent:

5

• There is a planar embedding of G whose outer face contains tr ∪ ru, and D is a canonical
ordering of this (unique) embedding through rt and avoiding u.

• D is a Mondshein sequence through rt and avoiding u, and tr ∪ ru is contained in a non-
separating cycle of G.

For the second fact, let a chord of an ear Pi be an edge in G that joins two non-adjacent vertices
of Pi. Note that the definition of a Mondshein sequence allows chords for every Pi. Once having
a Mondshein sequence, one can aim for a slightly stronger structure. Let a Mondshein sequence
be induced if P0 is induced in G and every ear Pi 6= P0 has no chord, except possibly the one
joining the endpoints of Pi. It has been shown [6] that every Mondshein sequence can be made
induced. The following lemma shows the somewhat stronger statement that we can always expect
Mondshein sequences to satisfy Property 7.7. In fact, its proof is precisely the same as the one for
Lemma 8, since none of its arguments uses planarity.

Lemma 12. Every Mondshein sequence can be transformed into a Mondshein sequence D satisfying
Property 7.7 in linear time. In particular, D is induced.

4 Computing a Mondshein Sequence
Mondshein gave an involved algorithm [29] that computes his sequence in time O(m2). Indepen-
dently, Cheriyan and Maheshwari gave an algorithm that runs in time O(nm) and which is based on
a theorem of Tutte. At the heart of our linear-time algorithm is the following classical construction
sequence for 3-connected graphs due to Barnette and Grünbaum [3] and Tutte [37, Thms. 12.64
and 12.65].

Definition 13. The following operations on simple graphs are BG-operations (see Figure 2).
(a) vertex-vertex-addition: Add an edge between two distinct non-adjacent vertices
(b) edge-vertex-addition: Subdivide an edge ab, a 6= b, with a vertex v and add the edge vw for a

vertex w /∈ {a, b}
(c) edge-edge-addition: Subdivide two distinct edges (the edges may intersect in one vertex) with

vertices v and w, respectively, and add the edge vw

v

w

v

w

(a) vertex-vertex-addition

a b a b

w w

v

(b) edge-vertex-addition

a

c

b

d

a

c

b

d

v

w

(c) edge-edge-addition

Figure 2: BG-operations

Theorem 14 ([3, 37]). A graph is 3-connected if and only if it can be constructed from K4 using
BG-operations.

Hence, applying a BG-operation on a 3-connected graph preserves it to be simple and 3-
connected. Let a BG-sequence of a 3-connected graph G be a sequence of BG-operations that
constructs G from K4. It has been shown that such a BG-sequence can be computed efficiently.

Theorem 15 ([31, Thms. 6.(2) and 52]). A BG-sequence of a 3-connected graph can be computed
in time O(m).

6

The outline of our algorithm is as follows. Assume we want a Mondshein sequence of G through
rt and avoiding u. We will first compute a suitable BG-sequence of G using Theorem 15 and start
with a Mondshein sequence of its first graph, the K4. The crucial part is then a careful analysis that
a Mondshein sequence of a 3-connected graph can be modified to one of G′, where G′ is obtained
from the former by applying a BG-operation.

In more detail, we need a special BG-sequence to harness the dynamics of the vertices r, t and
u throughout the BG-sequence. A BG-sequence is determined by an (arbitrary) DFS-tree and two
fixed incident edges of its root. We choose a DFS-tree with root r and fix the edges rt and ru.
This way the initial K4 will contain the vertex r and r will never be relabeled [30, Section 5].

However, t and u are not necessarily vertices of the K4. This is a problem, as we have to
specify an edge rt and vertex u of K4 which the Mondshein sequence of K4 goes through and
avoids, respectively, for induction purposes. Fortunately, the relation between the graphs in a BG-
sequence and subdivisions of these graphs in G [30, Section 4] gives us such replacement vertices
for t and u efficiently: We find vertices t and u of the initial K4 such that the following labeling
process ends with the input graph G in which t = t and u = u: For every BG-operation of the
BG-sequence from K4 to G that subdivides the edge rt or ru, we label the subdividing vertex with
t or u, respectively (the old vertex t or u is then given a different label). As desired, the final t and
u upon completion of the BG-sequence will be t and u. We refer to [30, Section 4] for details on
how to efficiently compute such a labeling scheme.

For the K4, it is easy to compute a Mondshein sequence through rt and avoiding u efficiently.
We iteratively proceed to a Mondshein sequence of the next graph in the sequence. The following
modifications and their computational analysis are the main technical contribution of this paper
and depend on the various positions in the sequence in which the vertices and edges that are
involved in the BG-operation can occur.

Note that any short ear xy in a Mondshein sequence can be moved to an arbitrary position of
the sequence without destroying the Mondshein property, as long as both x and y are created at
an earlier position. Thus, the essential information of a Mondshein sequence is its order on long
ears. We will prove that there is always a modification that is local in the sense that the only long
ears that are modified are the ones containing a vertex that is involved in the BG-operation.

Lemma 16 (Path Replacement Lemma). Let G be a 3-connected graph with edges rt and ru and
let D = (P0, P1, . . . , Pm−n) be a Mondshein sequence of G through rt and avoiding u. Let G′ be
obtained from G by applying a BG-operation Γ and let rt′ and ru′ be the edges of G′ that correspond
to rt and ru in G. Then a Mondshein sequence D′ of G′ through rt′ and avoiding u′ can be computed
from D using only constantly many (amortized) constant-time modifications.

We split the proof into three parts. First, we state two preprocessing routines leg() and belly()
on D that will reduce the number of subsequent cases considerably. Second, we show how to modify
D to D′ using these routines and, third, we discuss computational issues.

From now on, let vw be the edge that was added by Γ such that v subdivides ab ∈ E(G) and w
subdivides cd ∈ E(G) (if applicable). Thus, the vertex u′ in G′ is either u, v or w, and likewise t′ in
G′ is either t, v or w. By symmetry, we assume w.l.o.g. that birth(a) ≤ birth(b), birth(c) ≤ birth(d)
and birth(d) ≤ birth(b). Recall that {a, b} may intersect {c, d} in at most one vertex. If not stated
otherwise, the birth-operator refers always to D in this section.

We need some notation for describing the modifications. Suppose Pi is an ear containing an
inner vertex z. If an orientation of Pi is given, let Pi[, z] be the prefix of Pi ending at z in this
orientation and let Pi[z,] be the suffix of Pi starting at z. Occasionally, the orientation does not
matter; if none is given, an arbitrary orientation can be taken. For paths A and B that end and
start at a unique common vertex, let A+B be the concatenation of A and B. Similarly, for disjoint

7

paths A and B such that exactly one endpoint x of A is a neighbor of exactly one endpoint y of
B, let A + B be the path A ∪ xy ∪B.

Of legs and bellies: We describe two preprocessing routines. These will be used on D in the
next section to ensure that ab ∈ Pbirth(b) and cd ∈ Pbirth(d) (up to some special cases). Let an edge
xy /∈ Pbirth(y) be a leg of Pbirth(y) if xy 6= ru and birth(x) < birth(y). For each such leg, Pbirth(y) is
a long ear, xy is a short ear, and x is either not contained in Pbirth(y) or an endpoint of Pbirth(y) (see
Figures 3a and 3b). In the first case, if y is not the only inner vertex of Pbirth(y), orient Pbirth(y) such
that the successor of y is also an inner vertex of Pbirth(y); this will preserve the non-separateness at
y for some later cases. In the latter case, orient Pbirth(y) toward x.

y

x

(a) A leg xy with x /∈ Pbirth(y)
and the result of Operation leg(x, y)
(dashed lines).

y x

(b) A leg xy with x ∈ Pbirth(y) and
the result of Operation leg(x, y).

y x

a

(c) A belly xy with birth(y) > 0 and
the result of Operation belly(x, y).

x y

rt

(d) A belly xy with birth(y) = 0 and
the result of Operation belly(x, y).

Figure 3

A leg xy of Pbirth(y) has the feature that it may be incorporated into Pbirth(y) such that the
resulting sequence is still a Mondshein sequence: Let leg(x, y) be the operation that deletes the
short ear xy in the sequence D and replaces the long ear Pbirth(y) by the two ears Pbirth(y)[, y] + x

and Pbirth(y)[y,] in that order. We prove that the resulting sequence D is a Mondshein sequence.
Clearly, D is an ear decomposition. In addition, we still have rt ∈ P0, as P0 did not change due
to birth(y) > birth(x) ≥ 0. Since every inner vertex of the two new ears is also an inner vertex of
Pbirth(y), it has a neighbor in some larger ear (with respect to birth) in D; thus D is non-separating
by Definition 4. Since xy 6= ru, the last long ear in D does not contain ru. The last long ear in D
may be different from the one in D if y = u, but since the replacement does not introduce any new
inner vertex, it will still contain the same vertex u as only inner vertex. Hence, D is a Mondshein
sequence through rt and avoiding u by Definition 9.

Let an edge xy of G be a belly of Pbirth(y) if birth(x) = birth(y) 6= birth(xy). Then Pbirth(y)
contains both x and y as inner vertices, but does not contain xy; hence xy is a short ear (see
Figures 3c and 3d).

For a belly xy, we can again find a Mondshein sequence that ensures xy ∈ Pbirth(y). First,
consider the case birth(y) > 0, in which we orient Pbirth(y) from y to x. For this case, let belly(x, y)
be the operation that deletes the short ear xy in the sequence D and replaces the long ear Pbirth(y)
by the two long ears Pbirth(y)[, y] + Pbirth(y)[x,] and Pbirth(y)[y, x] in that order (see Figure 3c). For
the same reasons as before, the resulting sequence D is an ear decomposition and non-separating.

8

Since Pbirth(y) contains two inner vertices, we have birth(y) 6= birth(u), and it follows that the last
long ear in D is exactly the last long ear of D. In addition, rt ∈ P0, as P0 did not change due to
birth(y) > birth(x) ≥ 0. Hence, D is a Mondshein sequence through rt and avoiding u.

Now consider the case birth(y) = 0. The vertices x and y cut P0 into two distinct paths A and
B having endpoints x and y; let A be the one containing rt. Let belly(x, y) be the operation that
deletes the short ear xy in D and replaces P0 by the two long ears A ∪ xy and B in that order
(see Figure 3d). This preserves P0 to be a cycle that contains rt and, thus, gives also a Mondshein
sequence through rt and avoiding u. Note that both operations leg() and belly() leave the vertices
u, r and t unchanged.

Modifying D to D′: We use the operations leg() and belly() for a preprocessing on the sub-
divided edges ab and cd (if applicable) by Γ. Suppose first that ru /∈ {ab, cd}; we will solve the
remaining case ru ∈ {ab, cd} later. Assume birth(ab) 6= birth(b) and recall that birth(a) ≤ birth(b).
If birth(a) < birth(b), ab is a leg of Pbirth(b) and we apply the operation leg(a, b). Otherwise,
birth(a) = birth(b) and we apply the operation belly(a, b). In both cases, this leaves a Mondshein
sequence in which birth(ab) = birth(b), i.e. ab is contained in the long chain Pbirth(b).

Similarly, if birth(cd) 6= birth(d), we want to apply either leg(c, d) or belly(c, d) to obtain
birth(cd) = birth(d). However, doing this without any restrictions may result in loosing birth(ab) =
birth(b), e.g. when cd is a belly of Pbirth(b). Thus, we apply leg(c, d) or belly(c, d) only if birth(d) <
birth(b), as then d is no inner vertex of Pbirth(b). Since birth(d) ≤ birth(b), we have therefore
birth(d) ∈ {birth(b), birth(cd)}. Subdivide the edge ab in G and Pbirth(ab) with v and likewise
subdivide cd with w if applicable for Γ. Call the resulting sequence D; D satisfies birth(v) = birth(b)
and birth(d) ∈ {birth(b), birth(w)}. We obtain the desired Mondshein sequence D′ through rt′ and
avoiding u from D by distinguishing the following cases (see Figure 4).

(1) Γ is a vertex-vertex-addition
Obtain D′ from D by adding the new short ear vw to the end of D. This way v and w exist
when vw is born.

(2) Γ is an edge-vertex-addition . birth(v) = birth(b)
(a) birth(w) > birth(b) . w /∈ Gbirth(b)

Obtain D′ from D by adding the new ear vw to the end of D. Since birth(w) > birth(b),
v has a larger neighbor with respect to birth.

(b) birth(w) < birth(b)
Then wv 6= ru′, as otherwise we would have w = r and v = u′ and thus ab = ru, which
contradicts our assumption. Hence, wv is a leg of Pbirth(v). We apply leg(w, v). By the
orientation assigned to Pbirth(v), this ensures that v has a larger neighbor with respect to
birth (e.g., b).

(c) birth(w) = birth(b)
Then wv /∈ Pbirth(v), since v is adjacent to only a and b in Pbirth(v) and w /∈ {a, b} for
edge-vertex-additions. Thus, birth(w) = birth(v) 6= birth(wv) and hence wv is a belly of
Pbirth(v). We apply belly(w, v). By the orientation assigned to Pbirth(v), this ensures that v
has a larger neighbor.

(3) Γ is an edge-edge-addition . birth(v) = birth(b) and birth(d) ∈ {birth(b), birth(w)}
(a) birth(d) < birth(b) . d ∈ Gbirth(b)−1 and birth(b) > 0

Then birth(c) ≤ birth(d) = birth(w) < birth(b) = birth(v). We further have vw 6= ru′, as
otherwise we would have w = r and v = u′ and thus r ∈ {a, b} which contradicts r = w.
Hence, wv is a leg of Pbirth(b). Obtain D′ from D by applying leg(w, v).

9

(b) birth(d) = birth(b) = birth(w) . d, w ∈ inner(Pbirth(b))
Then vw is a belly of Pbirth(b). Obtain D′ from D by applying belly(v, w).

(c) birth(d) = birth(b) 6= birth(w) and birth(c) = birth(b) . c, d ∈ inner(Pbirth(b)) 63 w
Then birth(w) > birth(b) and thus Pbirth(w) = cw∪wd. Let Z be a shortest path in Pbirth(b)
that contains c, d and v, but not the edge rt′ (the latter is only relevant for birth(b) = 0).
Let z be the inner vertex of Z that is contained in {c, d, v}. At least one of the two paths
Z[; z] and Z[z;], say Z[z;], contains an inner vertex, as otherwise Γ would not be a BG-
operation. Obtain D′ from D by deleting Pbirth(w), replacing the path Z in Pbirth(b) with
the two edges connecting w to the endpoints of Z, and adding the two new ears Z[; z] + w
and Z[z;] directly afterward in that order. Clearly, rt′ ∈ P0 in D′.

(d) birth(d) = birth(b) 6= birth(w) and birth(c) 6= birth(b) . d ∈ inner(Pbirth(b)) 63 c, w
Then birth(c) < birth(d) < birth(w) and hence birth(b) > 0 and Pbirth(w) = cw ∪wd. One
of the paths Pbirth(b)[; v] and Pbirth(b)[v;], say Pbirth(b)[v;], contains d as an inner vertex.
Obtain D′ from D by replacing Pbirth(b) with the two ears Pbirth(b)[; v]+w+c and Pbirth(b)[v;]
in that order and replacing Pbirth(w) with the short ear wd. If birth(b) 6= birth(u), it follows
directly that u′ = u and thus that D′ avoids u′ = u. Otherwise birth(b) = birth(u), which
implies u = b = d and c 6= r, since we assumed cd 6= ru. Thus, in this case D′ avoids
u′ = u = b as well.

v

w

Case (1)

v

w

a b

Case (2a)

v

w

a b

Case (2b)

v wa b

Case (2c)

va b

c dw

P
b

1

Case (3a)

v wa cb

a

d

Case (3b)

a

va bc d

w

Case (3c)

va b

c

d

w

Case (3d)

Figure 4: Cases when modifying D to D′. Black vertices are endpoints of ears that are contained
in Gbirth(b). The dashed paths depict (parts of) the ears in D′.

In all these cases, we obtain a Mondshein sequence D′ through rt′ and avoiding u′ as desired.
Now consider the remaining case ru ∈ {ab, cd}. If birth(d) = birth(b) (for an edge-edge-addition),
we have b = d = u and can w.l.o.g. assume ru = ab. Otherwise, birth(d) < birth(b) and it follows
directly that we have in all cases, even for edge-vertex-additions, r = a and u = b. If cd is a short

10

ear, we move cd to the position in D directly after Pbirth(d); this preserves a Mondshein sequence.
As before, subdivide ab and cd with v and w.

Let Γ be an edge-vertex-addition. Then u′ = v and hence birth(w) < birth(u) < birth(v).
Obtain D′ from D by replacing Pbirth(v) with the long ear uv ∪ vw and adding the short ear
av = ru′ directly afterward. Then D′ avoids u′.

Let Γ be an edge-edge-addition and suppose first that birth(w) 6= birth(u). Then u′ = v and
birth(w) < birth(v) > birth(u). Obtain D′ from D by replacing Pbirth(v) with the long ear uv ∪ vw
and adding the short ear av = ru′ directly afterward. Then D′ avoids u′. Now suppose that
birth(w) = birth(u). Then b = d = u, u′ = v and birth(u) = birth(w) < birth(v). Obtain D′

from D by replacing Pbirth(v) with the long ear uv ∪ vw and adding the short ear av = ru′ directly
afterward. Hence, in all cases, we obtain a Mondshein sequence D′ through rt′ and avoiding u′.

Computational Complexity: For proving the Path Replacement Lemma 16, it remains to show
that each modification can be computed in amortized constant time. Note that ears may become
arbitrarily long in the path replacement process and therefore may contain up to Θ(n) vertices.
Moreover, we have to maintain the birth-values of all vertices that are involved in future BG-
operations in order to compute which of the subcases in Case (1)–(3) applies. Thus, we cannot use
the standard approach of storing the ears of D explicitly by using doubly-linked lists, as then the
birth-values of linearly many vertices may change for every modification.

Instead, we will represent the ears as the sets of a data structure for set splitting, which main-
tains disjoint sets online under an intermixed sequence of find and split operations. Gabow and
Tarjan [15] discovered the first data structure for set splitting with linear space and constant amor-
tized time per operation. Their and our model of computation is the standard unit-cost word-RAM.
Imai and Asano [20] enhanced this data structure to an incremental variant, which additionally
supports adding single elements to certain sets in constant amortized time. In both results, all sets
are restricted to be intervals of some total order. To represent the Mondshein sequence D in the
path replacement process, we will use the following more general data structure due to Djidjev [12,
Section 3.2], which does not have that restriction but still supports the add-operation.

The data structure maintains a collection P of edge-disjoint paths under the following opera-
tions:
new_path(x,y): Creates a new path that consists of the edge xy. The edge xy must not be in any

other path of P .
find(e): Returns the integer-label of the path containing the edge e.
split(xy): Splits the path containing the edge xy into the two subpaths from x to one endpoint

and from x to the other endpoint of that path.
sub(x,e): Modifies the path containing e by subdividing e with the vertex x.
replace(x,y,e): Neither x nor y may be an endpoint of the path Z containing e. This operation

cuts Z into the subpath from x to y and the path that consists of the two remaining subpaths
of Z joined by the new edge xy.

add(x,yz): The vertex y must be an endpoint of the path Z containing the edge yz and x is either
a new vertex or not in Z. Add the new edge xy to Z.

Note that all ears are not only edge-disjoint but also internally disjoint. Djidjev proved that
each of the above operations can be computed in amortized constant time [12, Theorem 1]. We
will only represent long ears in this data structure; the remaining short ears do not contain any
essential birth-value information and can therefore be maintained simply as edges. As the data
structure can only store paths, we need to clarify how the unique cycle P0 in D can be maintained:
We store P0 as paths, namely as the two paths in P0 with endpoints r and t. For every ear different

11

from P0, we store its two endpoints at its find()-label. These endpoints can therefore be accessed
and updated in constant time.

Now we initialize the data structure with the Mondshein sequence of K4 in constant time using
the above operations. Every modification of the Cases (1)–(3) and ru ∈ {ab, cd} can then be realized
with a constant number of operations of the data structure, and hence in amortized constant time.

Additionally, we need to maintain the order of ears in D. The incremental list order-maintenance
problem is to maintain a total order subject to the operations of (i) inserting an element after a
given element and (ii) comparing two distinct given elements by returning the one that is smaller
in the order. Tsakalidis [35] and Bender et al. [4] showed a simple solution with amortized constant
time per operation (the latter holds even if, additionally, deletions of elements are supported); we
will call this the order data structure. It is easy to see that the Path Replacement Lemma inserts
in every step at most two new ears directly after Pbirth(b) and at most one new short ear at the end
of D. Hence, we can maintain the order of ears in D by applying the order data structure to the
find()-labels of ears; this costs amortized constant time per step.

For deciding which of the subcases in (1)–(3) and ru ∈ {ab, cd} applies, we additionally need to
maintain the birth-values of the vertices and edges in D. In fact, it suffices to support the queries
“birth(x) < birth(y)” and “birth(x) = birth(y)”, where x and y may be arbitrary edges or vertices
in D. If x and y are edges, both queries can be computed in constant amortized time by comparing
the labels find(x) and find(y) in the order data structure. In order to allow birth-queries on
vertices, we will store pointers at every vertex x to the two edges e1 and e2 that are incident to x
in Pbirth(x). The desired query involving birth(x) can then be computed by comparing find(e1)
in the order data structure.

For any new vertex x that is added to D, we can find e1 and e2 in constant time, as these are in
{av, vb, cw, wd, vw}. Since Pbirth(x) may change over time, we have to update e1 and e2 after each
step. The only situation in which Pbirth(x) may loose e1 or e2 (but not both) is a split or replace
operation on Pbirth(x) at x (the split operation must be followed by an add operation on x, as x is
always inner vertex of some ear). This cuts Pbirth(x) into two paths, each of which contains exactly
one edge in {e1, e2}. Checking find(e1)=find(e2) recognizes this case efficiently. Dependent on
the particular case, we compute a new consistent pair {e′1, e′2} that differs from {e1, e2} in exactly
one edge. This allows to check the desired comparisons in amortized constant time.

We conclude that D′ can be computed from D in amortized constant time; this proves the Path
Replacement Lemma. Thus, we deduce the following theorem.

Theorem 17. Given edges rt and ru of a 3-connected graph G, a Mondshein sequence D of G
through rt and avoiding u can be computed in time O(m).

The above algorithm is certifying in the sense of [27]: First, check in linear time that D is an
ear decomposition of G. Second, check the side constraints on the first and last ear. Third, check
in linear time that D is non-separating by testing that every ear satisfies Definition 4.

5 Applications
Application 1: Independent Spanning Trees
Let k spanning trees of a graph be independent if they all have the same root vertex r and, for
every vertex x 6= r, the paths from x to r in the k spanning trees are internally disjoint (i.e.,
vertex-disjoint except for their endpoints; see Figure 5). The following conjecture from 1988 due
to Itai and Rodeh [21] has received considerable attention in graph theory throughout the past
decades.

12

Conjecture (Independent Spanning Tree Conjecture [21]). Every k-connected graph contains k
independent spanning trees.

14

11

1

2

12

9

3

8
10

7 6

4

5

13

Figure 5: Three independent spanning trees in the graph of Figure 1, which were computed from
its Mondshein sequence (vertex numbers depict a consistent tr-numbering).

The conjecture has been proven for k ≤ 2 [21], k = 3 [6, 41] and k = 4 [8], with running times
O(m), O(n2) and O(n3), respectively, for computing the corresponding independent spanning trees.
For every k ≥ 5, the conjecture is open. For planar graphs, the conjecture has been proven by
Huck [19].

We show how to compute three independent spanning trees in linear time, using an idea of [6].
This improves the previous best quadratic running time. It may seem tempting to compute the
spanning trees directly and without using a Mondshein sequence, e.g. by local replacements in an
induction over BG-operations or inverse contractions. However, without additional restrictions this
is bound to fail, as shown in Figure 6.

v

r

y zx

Figure 6: A 3-connected graph G (some edges are not drawn). G is obtained from the 3-connected
graph G′ := (G − v) ∪ xy by performing a BG-operation (or inverse contraction) that adds the
vertex v (with added edge vy). Two of the three independent spanning trees of G′ are given, rooted
at r (thick edges). However, not both of them can be extended to v.

Compute a Mondshein sequence through rt and avoiding u, as described in Theorem 17. Choose
r as the common root vertex of the three spanning trees and let x 6= r be an arbitrary vertex.

First, we show how to obtain two internally disjoint paths from x to r that are both contained
in the subgraph Gbirth(x). A tr-numbering < is a total order v1 < · · · < vn of the vertices of a graph
such that t = v1, r = vn, and every other vertex has both a higher-numbered and a lower-numbered
neighbor. Let a tr-numbering < be consistent [6] to a Mondshein sequence if < is a tr-numbering

13

for every graph Gi, 0 ≤ i ≤ m− n. We can compute a consistent tr-numbering < in linear time as
follows: Let <0 be the total order on V (P0) from t to r; then <0 is a consistent tr-numbering of G0.
We maintain <i−1 in the order data structure of [4] (see the computational complexity paragraph).
Now we add iteratively the next ear Pi and obtain <i from <i−1 by ordering the new inner vertices
of Pi from the lower to the larger endpoint of Pi in <i−1 (such that inner(Pi) is between these
endpoints in <i). This takes amortized time proportional to the length of Pi and, hence, gives a
total linear running time.

According to <, every vertex x 6= r has a higher-numbered neighbor in Gbirth(x) and every
vertex x /∈ {r, t} a lower-numbered neighbor in Gbirth(x). Fixing arbitrary such neighbors, the first
two spanning trees T1 and T2 then consist of the incident edges to higher neighbors and of the edge
tr and the incident edges to lower neighbors, respectively. Clearly, T1 and T2 are independent due
to the numbering used.

We construct the third independent spanning tree T3. As a Mondshein sequence is non-
separating, every vertex x 6= {r, u} has an incident edge with an endpoint in Gbirth(x) (as seen
before, iterating this argument gives a path to u in Gbirth(x)). Let T3 consist of arbitrary such in-
cident edges and of the edge ru. Since Gbirth(x) and Gbirth(x) are vertex-disjoint, T3 is independent
from T1 and T2.
Remark. We remark that the three independent spanning trees constructed this way satisfy the
following additional condition: Due to the fact that T2 and T3 are extended to r by one single edge,
all incident edges of r are contained in at most one of T1, T2, T3. In particular, no edge of G is
contained in all three independent trees, which is a fact that cannot be derived from the definition
of independent spanning trees (an edge that is incident to r may be contained in all three trees).

Application 2: Output-Sensitive Reporting of Disjoint Paths
Given two vertices x and y of an arbitrary graph, a k-path query reports k internally disjoint paths
between x and y or outputs that these do not exist. Di Battista, Tamassia and Vismara [11] give
data structures that answer k-path queries for k ≤ 3. A key feature of these data structures is
that every k-path query has an output-sensitive running time, i.e., a running time of O(`) if the
total length of the reported paths is ` (and running time O(1) if the paths do not exist). The
preprocessing time of these data structures is O(m) for k ≤ 2, but O(n2) for k = 3.

For k = 3, Di Battista et al. show how the input graph can be restricted to be 3-connected using
a standard decomposition. For every 3-connected graph we can compute a Mondshein sequence,
which allows us to compute three independent spanning trees T1–T3 in a linear preprocessing time,
as shown in Application 1. If x or y is the root r of T1–T3, this gives a straight-forward output-
sensitive data structure that answers 3-path queries: we just store T1–T3 and extract one path from
each tree per query.

In order to extend these queries to k-path queries between arbitrary vertices x and y, [11] gives
a case distinction that shows that the desired paths can be found efficiently in the union of the
six paths in T1–T3 that join either x with r or y with r. This case distinction can be used for the
desired output-sensitive reporting in time O(`) without changing the preprocessing. We conclude
that the preprocessing time of O(n2) for allowing k-path queries with k ≤ 3 in arbitrary graphs
can be improved to O(n + m).

Application 3: Planarity Testing
We give a conceptually very simple planarity test based on Mondshein’s sequence for any 3-
connected graph G in time O(n). The 3-connectivity requirement is not crucial, as the planarity of
G can be reduced to the planarity of all 3-connected components of G, which in turn are computed

14

as a side-product from the computation of the BG-sequence [28, Appendix 2]. Alternatively, one
could also use standard algorithms [18, 16] for reducing G to be 3-connected.

If m > 3n − 6, G is not planar due to Euler’s formula and we reject the instance, so let
m ≤ 3n − 6. Let rt be an edge of G. We will find an embedding whose outer face is left of rt,
unless G is non-planar. Due to Whitney [39], this embedding is unique. In light of Observation 11,
we need to pick an edge ru 6= rt such that tr ∪ ru is in a non-separating cycle. We can easily find
such an edge by computing a Mondshein sequence through rt and avoiding some vertex u′ /∈ {r, t},
and then taking the edge that is incident to r in P0 − rt (alternatively, any linear-time algorithm
that computes a non-separating cycle containing rt like the one in [6] can be used).

Now we compute a Mondshein sequence D through rt and avoiding u that satisfies Property 7.7
in time O(n). If G is planar, Observation 11 ensures that D is a canonical ordering of our fixed
embedding; in particular, the last vertex u and the edge rt will be embedded in the outer face.
Due to Property 7.7, P0 has no chords and every short ear xy satisfies birth(x) 6= birth(y). For
the embedding process, we rearrange the order of short ears in D such that all short ears xy with
birth(x) < birth(y) are direct successors of the long ear Pbirth(y) (this can be done in linear time
using bucket sort).

We start with a planar embedding M0 of P0. Step by step, we attempt to augment Mi with the
next long ear Pj in D as well as all short ears directly succeeding Pj in order to construct a planar
embedding Mj of Gj .

Once the current embedding Mi contains u, we have added all edges of G and are done. Oth-
erwise, u is contained in Gi, according to Definition 6.2. Then Gi contains a path from each inner
vertex of Pj to u, according to Lemma 5. Since u is contained in the outer face of the unique
embedding of G, adding the long ear Pj to Mi can preserve planarity only when it is embedded
into the outer face f of Mi. Thus, we only have to check that both endpoints of Pj are contained
in f (this is easy to test by maintaining the vertices of the outer face). For the same reason, the
short ears directly succeeding Pj can preserve planarity only if the set S of their endpoints in Gi is
contained in f . Note that, if there is at least one such short ear, Pj has precisely one inner vertex
v due to Property 7.7 and all short ears directly succeeding Pj have v as endpoint.

Thus, if the endpoints of Pj and S are contained in f , we embed Pj and the short ears into f in
the only possible way, i.e. as a path or as one new vertex v with the short ears and the two edges of
Pj as incident edges. Otherwise, we output “not planar”. If desired, a Kuratowski-subdivision can
then be easily extracted in time O(n), as shown in [32, Lemma 5] (the extraction is even simpler,
as we do not make use of adding “claws”).

Application 4: Contractible Subgraphs in 3-Connected Graphs
A connected subgraph H of a 3-connected graph G is called contractible if contracting H to a single
vertex generates a 3-connected graph. It is easy to show that a connected subgraph H is contractible
if and only if G−V (H) is 2-connected. While many structural results about contractible subgraphs
are known in graph theory, we are not aware of any non-trivial result that computes them.

Using a Mondshein sequence, we can identify a nested family of m − n contractible induced
subgraphs in linear time, namely the subgraphs Gi for every 0 ≤ i < m − n. Clearly, these
subgraphs are contractible, as G−Gi is 2-connected due to Lemma 7.5. Moreover, for each i > 0,
Gi is an induced subgraph of the induced subgraph Gi−1. In particular, every Gi contains u, since
Vm−n−1 = {u} due to Definition 9.2.

Application 5: The k-Partitioning Problem
Given vertices a1, . . . , ak of a graph G and natural numbers n1, . . . , nk with n1 + · · ·+ nk = n, we

15

want to find a partition of V into sets A1, . . . , Ak with ai ∈ Ai and |Ai| = ni for every i such that
every set Ai induces a connected graph in G. We call this a k-partition.

If the conditions ai ∈ Ai are ignored, the problem becomes NP-hard even for k = 2 and bipartite
input graph G [13]; although often stated otherwise, this does not seem to imply an NP-hardness
proof for the k-partitioning problem directly. If the input graph is k-connected, however, Györi [17]
and Lovász [25] proved that there is always a k-partition. Thus, let G be k-connected. If k = 2,
the k-partitioning problem is easy to solve: If G does not contain the edge a1a2, add this edge to
G. Compute an a1a2-numbering a1 = v1, v2, . . . , vn = a2 and observe that, for any vertex vi (in
particular for vn1), the graphs induced by {v1, . . . , vi} and by {vi+1, . . . , vn} are connected. For
every k ≥ 4, the k-partitioning problem on a k-connected input graph is not even known to be in
P (although its decision variant is), so we will focus on the 3-partitioning problem of a 3-connected
input graph.

This problem can be solved in quadratic time [33] and, if the graph is additionally planar,
even in linear time [22]. As suggested in [38, 1], the problem (as well as a related extension) can
be solved with the aid of a non-separating ear decomposition. For planar graphs, it thus suffices
with Observation 11 to compute just a canonical ordering, which simplifies previous algorithms
considerably.

More generally, we get the first O(m) time algorithm for arbitrary 3-connected graphs as follows.
Consider a Mondshein sequence through a1a2 and avoiding a3 (if the edges a1a2 and a1a3 do not
exist in G, we add them in advance). If Gi contains exactly n1 + n2 vertices for some i, we set
A3 := Gi and compute A1 and A2 by solving the 2-partitioning problem on Gi in linear time using an
a1a2-numbering, as described above. Otherwise, let Pi be the first ear such that |V (Gi)| > n1 + n2.

We partition inner(Pi) into the vertex sets B1, B3 and B2 (designated to be part of A1, A3 and
A2, respectively) of three consecutive paths in Pi − a1a2 such that |B3| = n3 − |Vi|. In particular,
0 < |B3| < |inner(Pi)|. Let l := |B1| + |B2|; then there are l + 1 choices for B3. For any such
choice, setting A3 := B3 ∪ Vi satisfies the claim for A3, as A3 contains a3, has cardinality n3 and is
connected, as a Mondshein sequence is non-separating.

We specify how to compute B1; this determines the sets B3 and B2. If i = 0, choose B1 as the
path in P0 − a1a2 that starts at a1 and consists of n1 vertices. The desired 2-partition of G − A3
is then given by A1 := B1 and A2 := B2. If i > 0, we aim for a coloring of Gi−1 into blue and red
vertices such that A1 consists of B1 and the blue vertices, and A2 consists of B2 and the red vertices.
In order to make A1 connected, we have to prevent that both endpoints of Gi−1 are colored red
as long as |B1| > 0. Clearly, |B1| < n1, as a1 has to be in A1; similarly, |B2| < n2, which implies
|B1| > l− n2. Hence, the valid choices for |B1| are between max{0, l− n2 + 1} and min{l, n1− 1}.

For every max{0, l − n2 + 1} ≤ |B1| ≤ min{l, n1 − 1}, we compute a 2-partition of Gi−1 into
n1− |B1| blue and n2− |B2| red vertices. The first 2-partition for |B1| = max{0, l−n2 + 1} can be
computed in linear time using an a1a2-numbering as described above. For each increase of |B1| by
one, we can construct the new 2-partition in constant time from the old one, as exactly one blue
vertex is recolored red. If the coloring of one of these choices for |B1| colors the endpoints x and
y of Pi differently, we choose B1 as the path in Pi next to the blue endpoint that consists of |B1|
vertices. Then A1 and A2 as stated above give a 3-partition.

Otherwise, x and y have always the same color. Moreover, this color is identical, say red by
symmetry, for every computed choice of |B1|, since only one vertex is recolored per increase of |B1|.
Consider the smallest choice |B1| := max{0, l − n2 + 1}. As x and y are red, n2 − |B2| ≥ 2, which
implies |B1| > l−n2 + 1. Hence, |B1| = 0 and we choose B1 := ∅. Then A1 and A2 as stated above
give the desired 3-partition.

16

Acknowledgments. I wish to thank Joseph Cheriyan for valuable hints, the anonymous referee
who drew my attention to Lee F. Mondshein’s work, David R. Wood for suggesting the graph in
Figure 6, and the anonymous reviewers that gave me very valuable feedback, which led to a decrease
of the number of cases in the Path Replacement Lemma.

References
[1] T. Awal and M. S. Rahman. A linear algorithm for resource tripartitioning triconnected planar

graphs. INFOCOMP Journal of Computer Science, 9(2):39–48, 2010.

[2] M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph Algo-
rithms and Applications, 15(1):97–126, 2011.

[3] D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-polytopes and
on some properties of planar graphs. In The Many Facets of Graph Theory, pages 27–40, 1969.

[4] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified al-
gorithms for maintaining order in a list. In Proceedings of the 10th European Symposium on
Algorithms (ESA’02), pages 152–164, 2002.

[5] T. Biedl and M. Derka. The (3,1)-ordering for 4-connected planar triangulations. Journal of
Graph Algorithms and Applications, 20(2):347–362, 2016.

[6] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs. Journal of Algorithms, 9(4):507–537, 1988.

[7] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications. SIAM Journal
on Computing, 34(4):924–945, 2005.

[8] S. Curran, O. Lee, and X. Yu. Finding four independent trees. SIAM Journal on Computing,
35(5):1023–1058, 2006.

[9] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fáry embeddings of planar
graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC
’88), pages 426–433, 1988.

[10] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990.

[11] G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of disjoint paths.
Algorithmica, 23(4):302–340, 1999.

[12] H. N. Djidjev. A linear-time algorithm for finding a maximal planar subgraph. SIAM J.
Discrete Math., 20(2):444–462, 2006.

[13] M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected sub-
graphs. Discrete Applied Mathematics, 10:139–153, 1985.

[14] H. d. Fraysseix and P. O. de Mendez. Regular orientations, arboricity, and augmentation. In
Proceedings of the DIMACS International Workshop on Graph Drawing 1994, volume LNCS
894, pages 111–118, 1995.

17

[15] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30(2):209–221, 1985.

[16] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In Proceedings of
the 8th International Symposium on Graph Drawing (GD’00), pages 77–90, 2001.

[17] E. Győri. Partition conditions and vertex-connectivity of graphs. Combinatorica, 1(3):263–273,
1981.

[18] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

[19] A. Huck. Independent trees in planar graphs. Graphs and Combinatorics, 15(1):29–77, 1999.

[20] H. Imai and T. Asano. Dynamic orthogonal segment intersection search. Journal of Algorithms,
8(1):1–18, 1987.

[21] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. Infor-
mation and Computation, 79:43–59, 1988.

[22] L. Jou, H. Suzuki, and T. Nishizeki. A linear algorithm for finding a non-separating ear decom-
position of triconnected planar graphs. Technical Report AL40-3 (in Japanese), Information
Processing Society of Japan, Tokyo, 1994.

[23] G. Kant. Drawing planar graphs using the lmc-ordering. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science (FOCS’92), pages 101–110, 1992.

[24] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32, 1996.

[25] L. Lovász. A homology theory for spanning trees of a graph. Acta Mathematica Hungarica,
30(3-4):241–251, 1977.

[26] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS’85), pages 464–467, 1985.

[27] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, 2011.

[28] K. Mehlhorn, A. Neumann, and J. M. Schmidt. Certifying 3-edge-connectivity. Algorithmica,
77(2):309–335, 2017.

[29] L. F. Mondshein. Combinatorial Ordering and the Geometric Embedding of Graphs. PhD
thesis, M.I.T. Lincoln Laboratory / Harvard University, 1971. Technical Report available at
www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882.

[30] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Proceedings of
the 27th Symposium on Theoretical Aspects of Computer Science (STACS’10), pages 633–644,
2010.

[31] J. M. Schmidt. Contractions, removals and certifying 3-connectivity in linear time. SIAM
Journal on Computing, 42(2):494–535, 2013.

[32] J. M. Schmidt. A planarity test via construction sequences. In 38th International Symposium
on Mathematical Foundations of Computer Science (MFCS’13), pages 765–776, 2013.

18

www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882

[33] H. Suzuki, N. Takahashi, T. Nishizek, H. Miyano, and S. Ueno. An algorithm for tripartitioning
3-connected graphs. Information Processing Society of Japan (IPSJ), 31(5):584–592, 1990. (In
Japanese).

[34] C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5(3):225–241, 1981.

[35] A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica, 21(1):101–
112, 1984.

[36] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 13:743–
767, 1963.

[37] W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15. University of
Toronto Press, 1966.

[38] K. Wada and K. Kawaguchi. Efficient algorithms for tripartitioning triconnected graphs and
3-edge-connected graphs. In 19th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’93), pages 132–143, 1993.

[39] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathe-
matics, 54(1):150–168, 1932.

[40] H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical
Society, 34(1):339–362, 1932.

[41] A. Zehavi and A. Itai. Three tree-paths. Journal of Graph Theory, 13(2):175–188, 1989.

[42] G. M. Ziegler. Lectures on Polytopes. Springer, corrected second printing, 1998.

19

	Introduction
	Preliminaries
	Generalizing Canonical Orderings
	Computing a Mondshein Sequence
	Applications

