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Abstract

Let P be a set of n ≥ 4 points in the plane that is in general position and such that n
is even. We investigate the problem whether there is a (0-, 1- or 2-connected) cubic plane
straight-line graph on P . No polynomial-time algorithm is known for this problem. Based
on a reduction to the existence of certain diagonals of the boundary cycle of the convex hull
of P , we give the first polynomial-time algorithm that checks for 2-connected cubic plane
graphs; the algorithm is constructive and runs in time O(n3). We also show which graph
structure can be expected when there is a cubic plane graph on P ; e. g., a cubic plane graph
on P implies a connected cubic plane graph on P , and a 2-connected cubic plane graph on
P implies a 2-connected cubic plane graph on P that contains the boundary cycle of P . We
extend the above algorithm to check for arbitrary cubic plane graphs in time O(n3).
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1 Introduction
Let P be a set of n ≥ 4 points in the plane that is in general position, i. e., that does not contain
three points on a line. A straight-line embedding of a graph G = (V,E) is an injective function
π: V → R2 such that for any two distinct edges ab and cd the straight line segments π(a)π(b)
and π(c)π(d) are internally disjoint (i. e., they may only intersect at their endpoints). Let P
admit a graph G = (V,E) if |P | = |V | and there is a straight-line embedding that maps V to
P ; we also say that G is on P . Thus, P can only admit plane graphs.

We are interested in classifying the point sets P that admit at least one simple plane graph
G with a given additional property, e. g., being k-connected, k-edge-connected or k-regular.
The graph G is not part of the input: it suffices to find any graph G on P with the desired
properties. Using Euler’s formula, none of these properties can exist for k ≥ 6, so we focus on
k ∈ {0, . . . , 5}. In addition, there are no k-regular graphs for k = 1, 3, 5 when n is odd, since
every graph must have an even number of odd vertices. We will assume in these cases that n is
even. Since we are dealing only with simple graphs, we can further assume n > k throughout
the paper. If not stated otherwise, all graphs are assumed to be simple and plane, but not
necessarily connected. All point sets are assumed to be in general position.

For k ∈ {0, 1}, it is easy to see that every point set admits a 0-connected 0-regular as well
as a connected graph, but a 1-regular graph can only be found when n is even (see Table 1).
For k = 2, every point set P admits a 2-regular 2-connected (and thus also 2-edge-connected)
graph, as there is always a plane cycle on P [4].

Necessary and sufficient conditions for a Minimum number of edges
k k-connected

plane graph
k-edge-connected
plane graph

k-regular
plane graph

in a k-(edge-)connected
plane graph on P

0 none none none 0
1 none none n even n− 1
2 none none none n
3 P not in convex posi-

tion
P not in convex posi-
tion

? (known for h ≤
3
4n)

max( 3
2n, n+ h− 1)

4 ? (known for h = 3) ? ? ?
5 ? ? ? ?

Table 1: Conditions on P that are both necessary and sufficient for the existence of a k-
connected, k-edge-connected and k-regular plane graph, respectively, on a point set P in general
position, where |P | = n > k.

For k = 3, Dey et al. [2] give a construction proving that there is a 3-connected graph on
P if and only if n > 3 and P is not in convex position (the same characterization holds for
3-edge-connected graphs). García et al. [3] investigate how many edges are sufficient to allow
a 3-connected graph on P . Let h be the number of points on the convex hull boundary of P .
If P is not in convex position, they give a construction of a 3-connected graph on P that has
max(3

2n, n + h − 1) edges; the same construction on minimality constraints holds for 3-edge-
connected graphs. They also prove that this number is minimal for any 3-connected and for
any 3-edge-connected graph on P .

As a corollary, h ≤ n
2 + 1 implies the existence of a 3-regular graph on P . García et al.

show in addition that there is a 3-regular graph on P (not necessarily 3-connected, but still
2-connected) when n

2 + 1 ≤ h ≤ 3
4n [3, Theorem 4]. While this gives a characterization of the

point sets admitting 3-regular graphs for h ≤ 3
4n, the problem remained open for higher values

of h. Examples show that the existence of a 3-regular graph is then not any more dependent
only on h and n [3]. We give a characterization for all values of h, which leads to the first
polynomial time algorithm that computes a 3-regular graph on P if it exists; the running time
is O(n3). We also show that the existence of a 2-connected cubic graph on P implies that there
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is also a 2-connected cubic graph on P that contains the boundary cycle of the convex hull of
P .

If we do not insist on having degree 3 for every vertex, the result by Gritzmann et al. [5] that
every outerplanar graph is on P can be applied: We can always find a 2-connected outerplanar
graph on P that has all except two or three vertices of degree 3. In contrast to k ≤ 3, very little
is known about the case k ∈ {4, 5}. There exist point sets that are neither in convex position
nor admit 4-connected graphs. For the special case of h = 3, Dey et al. [2] could characterize
the point sets that admit 4-connected graphs.

Preliminaries. A graph is cubic if it is 3-regular. Let P be a set of n ≥ 4 points in the plane
in general position with n even. Let ch(P ) denote the boundary cycle of the convex hull of P
and let a (combinatorial) edge in

(P
2
)
be a diagonal of P if it joins two non-consecutive points

in ch(P ). Let H be the set of points in ch(P ), h := |H|, and let I = P \H be the set of inner
points in P , i := |I|.

Let D be a set of non-crossing diagonals of P . We call the bounded regions in which ch(P )
and D subdivides the plane faces induced by D; let F (D) be the set of faces induced by D.
For every induced face f ∈ F (D), let Vf be the set of endpoints of diagonals on the boundary
of f , let Hf be the set of points on the boundary of f that are not in Vf and let If be the
set of points strictly inside f (see Figure 1). Moreover, let if := |If |, hf := |Hf |, vf := |Vf |,
Nf := Hf ∪̇If and nf := |Nf |.

if=4

hf=8

f

vf=2

(a) The faces induced by a set of non-crossing di-
agonals. Each diagonal is drawn with a thick edge
and black end vertices.

(b) A cubic graph on the point set of Figure 1(a)
using the given diagonals.

Figure 1: Induced Faces

For a vertex v ∈ V (G) and X ⊆ V (G) of a graph G, let G[X] be the subgraph of G that
is vertex-induced by X. For a simple cubic plane graph G on P and a face f ∈ F (D), let
G[f ] = G[Nf ∪ Vf ].

2 Necessary Conditions for Cubic Graphs
Every simple cubic plane graph G on P contains a (possibly empty) set D of non-crossing
diagonals on P . This way, G naturally defines a set of induced faces. Instead of working with
concrete cubic graphs, we will consider only their set of diagonals and, for any non-diagonal
edge e, the induced face that contains e. It will turn out that it is only important how many
non-diagonal edges in an induced face f are incident to a vertex p ∈ P ; the precise neighbors
of p in f are not crucial. We model this by representing non-diagonal edges with half-edges,
i. e., we specify for every vertex the number of incident half-edges, but not the neighbors of that
vertex.
Definition 1. A diagonal configuration C on P consists of a set D(C) of pairwise non-crossing
diagonals of P and a multiset of half-edges on the points of P such that, for every vertex p ∈ P ,
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• p has degree 3 in C (counting diagonals and half-edges) and

• each half-edge on p is assigned to a face that is induced by D(C) and contains p.

Figure 2: The diagonal configuration of the cubic plane graph in Figure 1(b).

Every simple cubic plane graph G on P determines a unique diagonal configuration CG by
cutting every non-diagonal edge e into two half-edges such that both half-edges are assigned
to the induced face that contains e; see Figure 2 for an example. We list necessary conditions
on graphs and diagonal configurations to allow cubic graphs on P . García et al. proved the
following theorem.

Theorem 2 ([3], implicitly). Let P be a set of n ≥ 4 points in general position such that n is
even. If h ≤ 3

4n, there is an algorithm with running time O(n3) that constructs a simple cubic
2-connected plane graph on P that contains ch(P ). If h = n, P does not admit a simple cubic
plane graph.

We can therefore focus on the case h > 3
4n; then, every cubic plane graph on P must contain

at least one diagonal.

Lemma 3. Let h > 3
4n. For every simple cubic (not necessarily connected) plane graph G on

P , D(CG) 6= ∅. Moreover, |D(CG)| ≥ 2(h− 3
4n) = h−3i

2 .

Proof. Every vertex v in H \ V (D(CG)) has at least one neighbor in I, as v can have at most
two neighbors in H and has degree 3. Let s be the number of edges in G that join vertices of
H with vertices of I. Then h− 2|D(CG)| ≤ s. However, s ≤ 3i, because every inner vertex can
be adjacent to at most 3 vertices in H. It follows that |D(CG)| ≥ h−3i

2 = 2(h− 3
4n). If h > 3

4n,
then the right-hand side is positive, which concludes the proof.

To establish further conditions on diagonal configurations for cubic graphs, we classify the
vertices in each induced face f . A vertex in Vf can be one of the following types with respect
to f (see Figure 3).

Definition 4. Let C be a diagonal configuration on P and let f ∈ F (D(C)). We call a vertex
v ∈ Vf sated, balanced or hungry (in f) if its number of incident diagonals and half-edges in f
is 1, 2 or 3, respectively.

A vertex in Vf that is not balanced is also called unbalanced. Let V 0
f , V

+
f and V −f be the

set of balanced, hungry and sated vertices in Vf , respectively. For a sated vertex v ∈ V −f , let w
be the unique neighbor of v in ch(P ) that is contained in f . If w is also sated in f , v is called
matched (with w) and {v, w} is called a matched vertex pair. Otherwise, v is unmatched. Let
V −m

f and V −u
f be the set of matched and unmatched vertices in Vf , respectively. Let v0

f := |V 0
f |,

v+
f := |V +

f |, v
−
f := |V −f |, v

−m
f := |V −m

f | and v−u
f := |V −u

f |.
We now assign each induced face f the following integer value ∆(f) in order to prove

necessary conditions on these values for cubic graphs.
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v

f

(a) v ∈ V −m
f is sated

(and matched)

v

f

(b) v ∈ V −u
f is sated

(and unmatched)

v

f

(c) v ∈ V 0
f is balanced

v

f

(d) v ∈ V +
f is hungry

Figure 3: Diagonal configurations that contain balanced and unbalanced vertices v (with respect
to the induced face f).

Definition 5. For a diagonal configuration C on P and each induced face f ∈ F (D(C)), let
∆(f) = 3if − hf − v+

f − v
−u
f .

It is useful to imagine hf + v+
f + v−u

f as the number of edges between inner and boundary
vertices of f that are necessary for any cubic graph on P . Note that an unmatched vertex
requires such an edge indirectly, as it forces its non-sated neighbor to require one additional
such edge.

Lemma 6. Let G be a simple cubic plane graph on P . For every face f ∈ F (D(CG)), ∆(f) ≥ 0.

Proof. Let f be a face in F (D(CG)). We count the number sf of edges in G that are incident
with exactly one vertex in If . Each of the v+

f hungry vertices in Vf is incident to at least one
such edge. There is no diagonal of Hf ∪Vf in G, as otherwise this diagonal would be a diagonal
of P due to Hf ∪ Vf ⊆ H and contradict f to be an induced face. Therefore, every vertex v
in Hf has at most two neighbors in Hf ∪ Vf and, hence, at least one neighbor in If . Each
unmatched vertex v ∈ Vf has a unique neighbor w in ch(P ) ∩Hf such that vw /∈ E(G). This
forces w to be incident with an additional edge to a vertex in If for each such vertex v. It
follows that hf + v+

f + v−u
f ≤ sf . Since sf ≤ 3if , ∆(f) ≥ 0.

Let a set of diagonals be disjoint if no two of them contain a common end vertex. Note that
D(CG) in Lemma 6 does not have to be disjoint. However, if G contains ch(P ), all diagonals are
disjoint and consist of balanced vertices only. This gives the following corollary from Lemma 6.

Corollary 7. Let G be a simple cubic plane graph on P that contains ch(P ). Then hf ≤ 3
4nf

for every induced face f ∈ F (D(CG)).

We show a necessary parity condition for ∆(f).

Lemma 8. Let G be a simple cubic plane graph on P . Then ∆(f) is even for every induced
face f ∈ F (D(CG)).

Proof. Consider the graph G[f ] and its vertex set If ∪Hf ∪V +
f ∪V

−u
f ∪V −m

f ∪V 0
f . By definition,

the degree in G[f ] of all vertices in V 0
f is even while the degree of all other vertices in G[f ] is

odd. As every graph has an even number of odd-degree vertices, if +hf +v+
f +v−u

f +v−m
f must

be even. However, v−m
f is even, as matched vertices come in pairs. Thus, if + hf + v+

f + v−u
f is

even and it follows that 3if − hf − v+
f − v

−u
f = ∆(f) is even.

3 Constructions
We give sufficient conditions for diagonal configurations to admit cubic graphs. The following
result of Tamura and Tamura will be used.
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Lemma 9 (Tamura and Tamura [7]). For points p1, p2, . . . , pn in general position in the plane
and any assignment of degrees from {1, 2, . . . , n− 1} to the points such that the sum of degrees
is 2n − 2, there is a plane tree with these prescribed degrees on p1, p2, . . . , pn. Moreover, the
plane tree can be constructed in time O(n logn) [1, 3].

We call an induced face f empty if if = hf = 0. The following lemmas clarify for which di-
agonal configurations we can expect cubic plane graphs and, for a special type of configurations,
how these graphs can be constructed.

Lemma 10. Let C be a diagonal configuration without unmatched vertices such that for every
non-empty induced face f ∈ F (D(C)), ∆(f) is even and 0 ≤ ∆(f) < 2if . Then there is a
simple cubic plane graph G on P with D(CG) = D(C). If C has additionally no matched
vertices, there is a simple cubic 2-connected plane graph G on P with D(CG) = D(C) that
contains the boundary cycle of P .

Proof. The proof for the first claim builds on a construction given in [3], but avoids the creation
of additional diagonals. Let G′ be the graph that consists of D(C) and of all edges in ch(P )
that do not join a matched vertex pair. We will construct a cubic graph by adding edges to G′
in each induced face f ∈ F (D(C)). As there is no unmatched vertex in D(C), every vertex in
Hf ∪ V +

f of an induced face f needs exactly one additional incident edge to the interior of f .
Note that the inner vertices If in f are not necessarily contained in the convex hull of Hf ∪V +

f

(see, e. g., Figure 4).
In each induced face f ∈ F (D(C)), we augment G′ by a collection L of plane trees, each on

at least three vertices, such that

(1) the union of all trees is plane,

(2) every vertex v in If ∪Hf ∪ V +
f is contained in exactly one tree T ∈ L and

(3) v has degree 3 in T if v ∈ If and degree 1 in T if v ∈ Hf ∪ V +
f .

In particular, no tree in L contains a boundary edge of f , as it contains at least three
vertices. We prove that the second claim can be deduced from the first. As there are neither
matched nor unmatched vertices, C has only balanced vertices. Thus, G′ = ch(P ) ∪D(C) is a
cycle with chords. Since every tree in a collection L contains at least two leafs, the constructed
graph contains two internally vertex-disjoint paths from every vertex in If to distinct boundary
vertices of f . Therefore, the constructed graph must be 2-connected if D(C) is disjoint.

It remains to prove the first claim. Let f be any induced face. According to Lemma 8,
∆(f) ≤ 2if − 2. Let k be the integer such that ∆(f) = 2if − 2k, i. e., 1 ≤ k ≤ if . We first show
how to construct a collection of k plane trees T1, T2, . . . , Tk in f that satisfy properties (2) and
(3). The first k− 1 trees are chosen as any collection of vertex-disjoint trees K1,3 such that the
degree-3 vertex of every K1,3 is in If .

For convenience, let z = hf + v+
f . Recall that ∆(f) = 3if − z and that z is the number of

distinct boundary vertices of f that need exactly one additional incident edge to some inner
vertex in f . Choosing the first k − 1 trees as described above leaves precisely if − k + 1 inner
vertices of f and z− 3k+ 3 vertices in Hf ∪V +

f , giving a total of if + z− 4k+ 4 vertices. Thus,
the degrees that are still needed for these remaining vertices sum up to 3if−3k+3+z−3k+3 =
2if + 2z − 8k + 6, which is equal to 2(if + z − 4k + 4)− 2. Therefore, we can apply Lemma 9
to construct a last plane tree Tk with properties (2) and (3).

Now choose L as a collection of plane trees on at least three vertices that satisfies (2) and
(3) and for which the sum of all edge lengths is minimal. This collection exists, as we know
that T1, . . . , Tk exists. We need to show that L satisfies (1). Assume to the contrary that two
edges ab and cd that are contained in distinct trees, cross. Using the triangle inequality, we can
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v

u

...a

b

c

f

Figure 4: An induced face f with ∆(f) = 2if = 6 that does not admit a simple cubic plane
graph.

delete ab and cd and either add the edges ac and bd or the edges ad and bc to generate two
collections L1 and L2 of trees that have a smaller sum of edge lengths. As at most two vertices
of {a, b, c, d} can be boundary vertices of f , at most one of L1 and L2 contains a boundary edge
of f . The other collection then preserves properties (2) and (3), which gives a contradiction to
L being minimal; thus, L satisfies (1).

Remark. Intuitively, the precondition ∆(f) < 2if in Lemma 10 avoids that we have to build
cycles in the induced face f . If ∆(f) ≥ 2if , the desired sum of degrees for L would exceed the
sum of degrees of every forest in f . The precondition is tight for the statement of Lemma 10,
as there are counterexamples even for ∆(f) = 2if (⇔ if = hf + v+

f ): E. g., in Figure 4, each of
the vertices a, b and c has to be adjacent with exactly one of the 3 white boundary vertices for
a cubic graph in face f . Thus, a, b and c must form a triangle, which forces every possible edge
from b to the boundary to induce a crossing.

For the special case that ∆(f) = 0 for every face f in Lemma 10, each tree will be a K1,3.
We give an efficient algorithm to construct the trees for this case.

Lemma 11. Let C be a diagonal configuration without unmatched vertices and ∆(f) = 0 for
every induced face f ∈ F (D(C)). There is a O(n logn) algorithm that constructs a simple cubic
plane graph G on P with D(CG) = D(C) and no edge that joins two points of I.

Proof. We create a graph G′ and, for every induced face f ∈ F (D(C)), a collection L of trees
satisfying properties (1)–(3), as shown in the proof of Lemma 10. As ∆(f) = 0, the number
of vertices in Hf ∪ V +

f for every face f is exactly 3if and every such vertex needs exactly one
additional incident edge to the interior of f . Thus, L must consist of if trees, each of which
is a K1,3. We take two point sets of equal size: one is Z := Hf ∪ V +

f and the other set Y is
generated from If by replacing each point p ∈ If with three points that are in a sufficiently
small ε-neighborhood of p (such an ε can be found efficiently).

We need to compute a plane matching between Y and Z. Clearly, it can be assumed that
Y ∪ Z is in general position. We compute a ham-sandwich cut for Y and Z in time O(n) [6].
Iterating the computation for the subsets of Y ∪ Z that are contained in each side of the cut,
respectively, will terminate with cells containing exactly one point of Y and one point of Z.
Joining the two points for every cell by an edge constructs L, giving a total running time of
O(n logn).

4 Reduction to Diagonal Configurations
We have shown that a suitable diagonal configuration allows to construct a cubic graph on P .
If we can show that every cubic graph on P implies the existence of such a suitable diagonal
configuration, we have reduced the problem of computing cubic graphs to diagonal configura-
tions. We will give an efficient algorithm for finding such a diagonal configuration in the next
section. Let h > 3

4n due to Theorem 2.
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Let CG be the diagonal configuration of a simple cubic plane graph G on P . We will
transform CG to the desired diagonal configuration by iteratively applying four operations. In
each step, we maintain a diagonal configuration C, which is initialized with CG. We stress
that the operations are applied in the order of appearance, i.e. an operation is only applied
if the operations before are not applicable. Note that all operations transform only diagonal
configurations and not graphs (so we forget about the initial graph G).

Operation 1. Let ∆(f) > 0 for an induced face f of D(C) (see, e. g., any graph in Figure 3).
Cut a diagonal vw on the boundary of f into two (non-diagonal) half-edges. Both half-
edges are assigned to the newly generated induced face z.

Operation 2. Let v ∈ V −u
f for an induced face f of D(C) (see, e. g., Figures 8(b) and 8(c)).

Cut the unique diagonal vw on the boundary of f into two (non-diagonal) half-edges.
Both half-edges are assigned to the newly generated induced face z.

Operation 3. Let f be an induced face of D(C) whose boundary vertices consist of exactly two
matched vertex pairs {v, w} and {x, y} (see Figure 5). Cut the diagonals vy and wx into
two (non-diagonal) half-edges each. All half-edges are assigned to the newly generated
induced face z.

Operation 4. Let none of the Operations 1–3 be applicable and let f be an induced face of
D(C) that contains two matched vertex pairs {v, w} and {x, y} in this order counterclock-
wise. We denote the unique neighbors of v and w on the boundary of f by v′ and w′,
respectively (see Figure 6(a)). Note that it is possible that v′ = y or w′ = x but not both,
as Operation 3 is not applicable. Let g1 and g2 be the induced faces that are separated
from f by vv′ and ww′, respectively.

Operation 4.1. The quadrangle {v, v′, w′, w} contains no point in If .
Cut the diagonals vv′ and ww′ into two (non-diagonal) half-edges each and add the
diagonal v′w′ (see Figure 6). Let z and z′ be the two new induced faces separated
by v′w′ such that z′ contains v. The two new half-edges at v and w are assigned to
z′ and all half-edges that were originally in f are assigned to z.

Operation 4.2. The quadrangle {v, v′, w′, w} contains a point in If .
We partition V +

f ∪ Hf into the two subsets X ′ and Y ′ such that X ′ contains the
points of V +

f ∪Hf to the left of the line vy (oriented from v to y) and Y ′ contains the
remaining points of V +

f ∪Hf . Note that X ′ ∪Y ′ does not contain any of the vertices
{v, w, x, y} and that no unmatched vertex exists due to Operation 2; hence, ∆(f) is
only dependent on if , |X ′| and |Y ′|. We set X = X ′ ∪ {v′} and Y = Y ′ ∪ {w′}. Let
x1, x2, . . . , xs with x1 = v′ be the points in X ordered clockwise and let y1, y2, . . . , yt

with y1 = w′ be the points in Y ordered counterclockwise (see Figure 7).
For i ∈ {1, . . . , s} and j ∈ {1, . . . , t}, let Cij be the diagonal configuration obtained
from C by removing the diagonals vv′ and ww′ and adding the diagonal xiyj . Let z
and z′ be the two new induced faces separated by xiyj such that z′ contains v. We
will replace C by some Cij such that ∆(z) = 0 (the existence of such i and j will
be shown in the next lemma). The two new half-edges at v and w are assigned to
z′. It remains to assign the half-edges at v′, w′, xi and yj that were originally in f
and that are not used for creating the new diagonal xiyj : The half-edges at v′ and
w′ are assigned to z′. If xi 6= v′, the half-edges at xi are distributed to z and z′ in
the unique way such that xi is neither sated in z nor in z′; the half-edges at yj when
yj 6= w′ are assigned similarly. Note that Operation 4.2 does not create any new
sated vertex in z and z′ due to this assignment.

Note that every of the Operations 1–4 decreases the number of diagonals by at least one.
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(a) Before Operation 3

x
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(b) After Operation 3.

Figure 5: Operation 3

f

v w

y x

v' w'

g1 g2

(a) Before Operation 4.1

z

v w

y x

v' w'

z'

(b) After Operation 4.1

Figure 6: Operation 4.1

f

v w

x4

x2

x3

x5

x6

g1 g2

y x

v' x1 y1

x7

w'

x8

y3

y2

y5

y4

X Y

(a) Before Operation 4.2. The dotted edges depict a
possible cubic graph. The dashed edge depicts a choice
for i and j such that adding the diagonal xiyj creates
a face z with ∆(z) = 0.

z

v w

x4

x2

x3

x5

x6

z'

y x

v' x1 y1

x7

w'

x8

y3

y2

X Y

y5

y4

r

(b) After Operation 4.2, which deletes the diagonals
vv′ and ww′ and inserts the diagonal x5y5. Note that
it may be impossible to draw a cubic graph in z′, as
new unmatched vertices like r may be created. Future
applications of Operation 2 will eventually get rid of
these unmatched vertices; here, the diagonal at r will
be cut.

Figure 7: Operation 4.2
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Lemma 12. In Operation 4.2, i ∈ {1, . . . , s} and j ∈ {1, . . . , t} can be chosen such that
∆(z) = 0 in Cij and such that i = 1 or j = t.

Proof. Since Operation 1 is not applicable, ∆(f) = 0 before Operation 4.2. If i = j = 1,
∆(z) < 0 in Cij , since ∆(f) = 0 and the quadrilateral vv′w′w contains at least one point of
If . If i = s and j = t, ∆(z) ≥ 0 in Cij . Changing Cij to C(i+1)j either increases the value
of ∆(z) by one (if the wedge between the two rays xiyj and xi+1yj contains no point of If )
or decreases ∆(z). Similarly, if Cij is changed to Ci(j+1), the value of ∆(z) either increases
by one or decreases. It follows that ∆(z) = 0 for at least one of the diagonal configurations
C11, C12, . . . , C1t, C2t, . . . , Cst, giving the claim.

For being able to construct a cubic graph from a diagonal configuration, we need in particular
that ∆(f) ≥ 0 and ∆(f) is even for every induced face f . We prove that the above operations
preserve these properties of C in every step.

Lemma 13. Operations 1–4 preserve for every induced face f ′ that ∆(f ′) ≥ 0 and that ∆(f ′)
is even.

Proof. Consider the diagonal configuration C before an Operation 1. As D(C) 6= ∅ due to
h > 3

4n, at least one diagonal vw exists. Let g be the induced face of D(C) that is separated
from f by vw. According to Lemmas 6 and 8, ∆(f) ≥ 2 and ∆(g) ≥ 0. We check the effects of
Operation 1 on ∆(z) in dependence of the type of v. By symmetry, the same effects hold for
w. Figure 8 lists the five possible configurations for vertex types of v in f and g; note that this
covers all cases, as v cannot be hungry or sated in both faces, respectively. We illustrate the
most involved case v ∈ V −m

f and v ∈ V +
g (see Figure 8(e)).

Since v ∈ V −m
f ∩ V +

g , the contribution of v to ∆(g) in C is −1, while the contribution of v
to ∆(f) is 0, as matched vertices do not influence ∆. Applying Operation 1 replaces these two
contributions to ∆(f) and ∆(g) with one contribution to ∆(z). The difference between the new
and the two old contributions of v is called the effect of v on ∆(z); it reflects the difference of
the ∆-values before and after the operation in dependence of v. If v has been incident to only
one diagonal of D, v will be a new vertex in Hz (and, thus, in Nz) after performing Operation 1,
causing ∆(z) to decrease by 1. Otherwise, v will be in V +

z , which also decreases ∆(z) by 1.
Additionally, ∆(z) decreases by another 1 in both cases, since the vertex in f that was formerly
matched to v is now unmatched. In total, the effect of v on ∆(z) is thus −2 + 1 = −1. Table 2
lists the effects for the other four cases.

v ∈ ∆(f) v ∈ ∆(g) v ∈ ∆(z) effect on ∆(z) Fig.
V 0

f +0 V 0
g +0 Hz ∪ V +

z −1 −1 8(a)
V −u

f −1 V 0
g +0 V 0

z +0 +1 8(b)
V −u

f −1 V +
g −1 Hz ∪ V +

z −1 +1 8(c)
V −m

f +0 V 0
g +0 V 0

z −1(?) −1 8(d)
V −m

f +0 V +
g −1 Hz ∪ V +

z −2(?) −1 8(e)

Table 2: The five possible configurations of a diagonal end vertex v before Operation 1. Columns
2 and 4 depict the contribution of v to the given value. Column 6 depicts the contribution of v
to ∆(z) after Operation 1. For entries marked with (?), the sated vertex in f that was matched
to v becomes unmatched in z.

According to Table 2, ∆(z) = ∆(f)+∆(g)+x with x ∈ {−2, 0, 2} after applying Operation 1,
since exactly two vertices change. This implies ∆(z) ≥ 0 and that ∆(z) is still even.

Consider the diagonal configuration C before an Operation 2. As v ∈ V −u
f , v must be either

contained in V 0
g or in V +

g (see Figures 8(b) and 8(c)). In both cases, the effect of v on ∆(z)

10



v

f g

(a) v is in V 0
f

and V 0
g

f g

v

(b) v is in
V −u

f and V 0
g

f g

v

(c) v is in
V −u

f and V +
g

f g

v

(d) v is in
V −m

f and V 0
g

f g

v

(e) v is in
V −m

f and V +
g

Figure 8: Possible initial configurations for v.

is +1, according to Table 2. Thus, after applying Operation 2, ∆(z) = ∆(f) + ∆(g) + x with
x ∈ {0, 2} and the claim follows.

Consider the diagonal configuration C before an Operation 3. All four vertices v, w, x and
y are matched and therefore either in V 0

gi
or in V +

gi
for i ∈ {0, 1} (see Figures 8(d) and 8(e)).

Cutting the diagonal vy therefore gives twice an effect of −1 on the new induced face, according
to Table 2. Afterwards, w and x are unmatched in this new face. Cutting the diagonal wx then
gives twice an effect of +1 on ∆(z). Thus, after applying Operation 3, ∆(z) = ∆(f) + ∆(g1) +
∆(g2) and the claim follows.

Consider the diagonal configuration C before an Operation 4.1. Note that applying Oper-
ation 4.1 yields ∆(z) = ∆(f) = 0, as v and w do not contribute anything to ∆(f). Note that
∆(z′) differs from ∆(f) + ∆(g1) + ∆(g2) = 0 only by the effects of the vertices v and w, as
∆(z) = 0. Similarly as for Operation 3, the effects of v and w on ∆(z′) cancel each other. Thus,
∆(z′) = 0, which gives the claim.

Consider the diagonal configuration C before an Operation 4.2. Then ∆(f) = ∆(g1) =
∆(g2) = 0. Since ∆(z) = 0 in Cij , it remains to show that ∆(z′) is even and non-negative.
Note that ∆(z′) differs from ∆(f) + ∆(g1) + ∆(g2) = 0 only by the effects of the vertices
{v, v′, w, w′, xi, yj}, as ∆(z) = 0. The vertices xi and yj are both not sated in z and z′ and
therefore balanced in z and z′, as they were formerly contained in Hf ∪ V +

f . Thus, the effect of
xi and yj on ∆(z′) is +1 each. The effect of the vertices v and w cancels each other, as shown
for Operation 3. The effect of v′ if v′ 6= xi and of w′ if w′ 6= yj is given by Table 2: Since no
vertex is unmatched in C, the effect is −1 per vertex. This amounts to a total effect of +0,
which gives ∆(z′) = 0 and the claim.

We are now able to state our main structural results.

Theorem 14. The following statements are equivalent:

(1) P admits a simple cubic plane graph G.

(2) P admits a simple connected cubic plane graph G′.

(3) h ≤ 3
4n or there is a diagonal configuration C on P such that ∆(f) = 0 for every induced

face f ∈ F (D(C)) and no vertex is unmatched.

Proof. The proof for (2) ⇒ (1) is immediate. We prove (1) ⇒ (3). Assume that h > 3
4n. Then

D(CG) 6= ∅ by Lemma 3 and we can iteratively apply (any of the) Operations 1 and 2 on CG

as long as possible until the process terminates with a diagonal configuration C ′. Note that the
application of each operation decreases the number of diagonals by one; thus, D(C ′) ⊆ D(CG).
Due to Lemma 13, every induced face f ∈ F (D(C ′)) satisfies ∆(f) = 0 and no vertex can be
unmatched.

We prove (3) ⇒ (2). If h ≤ 3
4n, the proof follows directly from Theorem 2. Assume that

h > 3
4n. Let C ′ be the diagonal configuration obtained from C by applying Operations 1–4 to

C as long as possible. As every operation decreases the number of diagonals by at least one,
only finitely many operations are applied. Every face f induced by the diagonals of C ′ satisfies
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∆(f) = 0 and contains neither an unmatched vertex nor more than one matched vertex pair.
Applying Lemma 11 to C ′ therefore constructs a cubic plane graph on P that is connected.

Corollary 15. If h > 3
4n, every simple cubic plane graph on P implies the existence of a simple

connected cubic plane graph G on P that contains no unmatched vertex, no edge joining two
vertices in I, at most one matched vertex pair for every induced face f ∈ F (D(CG)) and having
∆(f) = 0 for every such face f .

Theorem 16. The following statements are equivalent:

(1) P admits a simple cubic 2-connected plane graph G.

(2) P admits a simple cubic 2-connected plane graph G′ such that G′ contains ch(P ), CG′ has
no unbalanced vertex and the diagonals D(CG′) are disjoint.

(3) h ≤ 3
4n or there is a diagonal configuration C on P such that there are no unbalanced

vertices and hf = 3
4nf for each induced face f ∈ F (D(C)).

Proof. The proof for (2) ⇒ (1) is immediate. We prove (3) ⇒ (2). In case that h ≤ 3
4n,

Theorem 2 settles the claim. Let h > 3
4n. Then D(C) must be disjoint, as every vertex v

that is end point of two diagonals would contradict that v is balanced in every induced face.
With hf = 3

4nf and v+
f = v−f = 0 for every induced face f , ∆(f) = 0 follows. Applying the

construction of Lemma 11 yields the desired graph G′ and ensures ch(P ) ⊆ G′.
It remains to prove (1) ⇒ (3). We can assume h > 3

4n. Then G contains at least one
diagonal by Lemma 3. As any unbalanced vertex in CG would imply G to contain a cut vertex,
there are no unbalanced vertices in CG. Iteratively applying Operation 1 on CG results in a
diagonal configuration that satisfies ∆(f) = 0 for every induced face f . As Operation 1 does
not introduce new unbalanced vertices, hf = 3

4nf for every f , which gives the claim.

The properties we can deduce from not being able to apply Operations 1–4 are valid also
for cubic plane graphs that contain the least possible number of diagonals for P .

Corollary 17. If h > 3
4n, every simple 2-connected cubic plane graph on P that contains the

least possible number of diagonals contains ch(P ) and no unmatched vertex.

In particular, the number of diagonals in these graphs is completely determined by n and
h: Given n and h, the number of diagonals is 2h − 3

2n, which follows from Lemma 3 and the
construction of Lemma 11, in which no two vertices in I are joined by an edge. Additionally,
h > 3

4n implies for every induced face f that every vertex in If can be joined to exactly three
vertices in Hf . We get the following corollary.

Corollary 18. If h > 3
4n, every simple cubic 2-connected plane graph on P implies the existence

of a simple cubic 2-connected plane graph G on P such that ch(P ) ⊆ G, D(CG) is disjoint,
|D(CG)| = 2h− 3

2n and there is no edge in G that joins two vertices in I.

One could be tempted to prove that every point set P admitting a connected cubic plane
graph also admits a 2-connected cubic plane graph. However, this is not true because of the
following counterexample.

Lemma 19. There is no simple 2-connected cubic plane graph on the point set P in Figure 9.

Proof. Assume to the contrary there is such a graph G. Since h > 3
4n, we may assume with

Corollary 18 that G contains ch(P ) and exactly 3 disjoint diagonals. For every diagonal Z with
an end vertex in {x, y, z, k, l,m}, let hp(Z) be the open halfplane defined by Z that does not
contain a. Note that hp(Z) does not contain b either. Assuming there is a diagonal ending at
a vertex in {x, y, z, k, l,m}, we choose one such diagonal Z with a minimal number of points in
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Figure 9: A point set that admits no 2-connected cubic plane graph but a connected cubic plane
graph.

hp(Z). As hp(Z) is non-empty, but contains no inner vertex, every vertex in hp(Z) has degree
2, contradicting the cubicness of G. This leaves the six remaining candidates {1, . . . , 6} for an
end vertex of a diagonal. No diagonal can join two vertices of {1, . . . , 4}, as these vertices form
a path in ch(P ). Thus, there can be only two disjoint diagonals that have end vertices 5 and 6,
respectively, contradicting that there have to be 3 disjoint diagonals.

With a bit more effort, one can show that the simple cubic plane graph shown in Figure 9
is the only one possible.

5 The Algorithms
In this section we describe two algorithms. We first describe an algorithm for finding a 2-
connected cubic plane graph on a given point set P (if it exists). By Theorem 16, it suffices to
look for a plane graph G that contains all edges of ch(P ) and in which all faces induced by the
set of the diagonals of G satisfy ∆(f) = 0. Then we give a similar, very technical algorithm for
finding a cubic plane graph (not necessarily connected) on a given point set P (if it exists). In
both cases we use a dynamic programming approach. For an ordered pair (a, b) of points, let
R(a, b) be the closed halfplane to the right of the line ab (oriented from a to b). For a point
x ∈ H, let x+ and x− be the points of H counterclockwise and clockwise of x, respectively.

Let T be the set of ordered pairs of distinct non-neighboring vertices of ch(P ). In the first
algorithm, we will compute the following value for each pair (a, b) ∈ T :

Definition 20. Let d(a, b) be the maximum number of a set D of pairwise disjoint diagonals
of P such that all these diagonals lie in R(a, b) and all faces induced by them satisfy ∆(f) = 0,
with the possible exception of the unique face intersecting the complement of R(a, b).

For (a, b) ∈ T , let H(a, b) be the set of points of H lying in the interior of R(a, b), let
I(a, b) be the set of points of I lying in R(a, b), and let ∆(a, b) := 3|I(a, b)| − |H(a, b)|. When
computing the numbers d(a, b), we make use of the following observation:

Observation 21. Let (a, b) ∈ T and let D be defined as in Definition 20. We distinguish the
following two cases.

(i) D does not contain the diagonal ab.
Let f be the unique face induced by D that contains the segment ab and some points to
the right of the segment ab. Then there is a point c ∈ H(a, b) ∪ {a} such that the face f
contains the pair c, c+ of adjacent vertices of ch(P ). Consequently, every diagonal of D
lies entirely in one of the closed halfspaces R(a, c) and R(c+, b).

(ii) D contains the diagonal ab.
Then all the other diagonals of D lie entirely in R(a+, b−).
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Algorithm for Finding a 2-Connected Cubic Graph

If n is odd or n ≤ 3, there is no cubic graph on P ; we therefore assume that n is even and n ≥ 4.
If h ≤ 3

4n, we can find a 2-connected cubic plane graph on P in time O(n3) due to Theorem 2.
Let h > 3

4n. In particular, h > 3.
For all pairs (a, b) ∈ T with |H(a, b)| ≤ 2, no diagonal in H(a, b) can exist and we set

d(a, b) := 0. For technical reasons, we also set d(a, a+) := d(a, a) := 0 for each a ∈ H. The
values d(a, b) for pairs (a, b) ∈ T with |H(a, b)| ≥ 3 are computed in the order of increasing
value of |H(a, b)|. Thus, we first compute d(a, b) for all pairs (a, b) ∈ T with |H(a, b)| = 3,
then for all pairs (a, b) ∈ T with |H(a, b)| = 4, etc.. For each pair d(a, b), we proceed using the
following recursion rule.

For a given (a, b) ∈ T with |H(a, b)| ≥ 3, let

d := max{d(a, c) + d(c+, b) | c ∈ H(a, b) ∪ {a}}.

Note that no diagonal in R(a, b) is counted twice by taking d(a, c)+d(c+, b) in the recursion,
as R(a, c) and R(c+, b) are disjoint.

We show how to obtain d(a, b) from d. According to Observation 21(i), the number d(a, b)
equals d, unless d(a, b) is witnessed only by sets of diagonals that contain the diagonal ab. In
this remaining case, however, d(a, b) equals d + 1 by Observation 21(ii), where the +1 comes
from the additional diagonal ab. Note in this case that, by Definition 20, ∆(f) = 0 also for the
induced face f in R(a, b) that contains ab; hence ∆(f ′) = 0 for all induced faces f ′. For this
reason and since every diagonal different from ab contains exactly two vertices of H(a, b), we
deduce 2d = |H(a, b)| − 3|I(a, b)| = −∆(a, b).

This gives the following case distinction for computing d(a, b): If d = d(a+, b−) and ∆(a, b)+
2d = 0, we can add the diagonal ab to the d(a+, b−) diagonals and, thus, set d(a, b) := d + 1.
Otherwise, we set d(a, b) := d.

The computation of d(a, b) takes time O(n) for each pair (a, b) ∈ T . Clearly, all the com-
putation so far can be done in time O(n3) by dynamic programming. After having computed
d(a, b) for all pairs (a, b) ∈ T in this way, we check if there is a pair (a, b) ∈ T satisfying

2(d(a, b) + d(b, a)) ≥ h− 3i.

Lemma 22. If h > 3 then P admits a 2-connected cubic plane graph if and only if 2(d(a, b) +
d(b, a)) ≥ h− 3i for some pair (a, b) ∈ T .

Proof. If P admits a 2-connected cubic plane graph, then by Theorem 16.(3), there is a diagonal
configuration C on P with diagonal set D := D(C) such that ∆(f) = 0 for every induced face
f ∈ F (D) and no vertex is unmatched. Choose any diagonal ab of D. By the definition of
d(a, b), the number of diagonals of D contained in R(a, b) is at most d(a, b). Similarly, the
number of diagonals of D contained in R(b, a) is at most d(b, a). Since each diagonal of D lies
in R(a, b) or in R(b, a), we obtain that d(a, b) + d(b, a) ≥ |D|. Consequently, by Lemma 3,
2(d(a, b) + d(b, a)) ≥ |2|D| ≥ h− 3i.

On the other hand, suppose now that 2(d(a, b) + d(b, a)) ≥ h− 3i for some pair (a, b) ∈ T .
Consider the two sets, D1 and D2, of diagonals witnessing the values of d(a, b) and d(b, a),
respectively. By definition of d(a, b), the set D1 ∪D2 does not induce any unmatched vertex. If
the diagonal ab lies in both D1 and D2, each face induced by D1 ∪D2 satisfies ∆(f) = 0 and
we can find a 2-connected cubic plane graph on P due to Lemma 11.

Suppose now that the diagonal ab does not lie in D1 ∩D2. If it lies neither in D1 nor in D2
then ∆(f) = 0 holds for each face induced by the set D1∪D2, with the possible exception of the
face containing the segment ab. If the diagonal ab lies exactly in one of the sets D1 and D2, then
∆(f) = 0 holds for each face induced by the set D1∪D2, with the possible exception of one face
adjacent to the diagonal ab. Due to Lemma 3, removing consequently h−3i

2 − (d(a, b) + d(b, a))
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diagonals at the boundary of the unique face not satisfying ∆(f) = 0 results in a set of diagonals
inducing only faces satisfying ∆(f) = 0. Then, due to Lemma 11, there is a 2-connected cubic
plane graph on P .

Thus, if there is no pair (a, b) ∈ T satisfying 2(d(a, b) + d(b, a)) ≥ h − 3i then there is
no 2-connected cubic plane graph on P . Otherwise, if we find a pair (a, b) ∈ T satisfying
2(d(a, b) +d(b, a)) ≥ h−3i, then we use the following recursive procedure which finds diagonals
of two sets witnessing the values of d(a, b) and d(b, a), respectively.

Procedure Split(x,y);
If d(x, y) = d(x+, y−) + 1 and ∆(x, y) + 2d(x+, y−) = 0, we add the diagonal xy to D and run
Split(x+, y−). Otherwise, if d(x, y) > 0, we find a c ∈ H(x, y) \ {y−} such that

d(x, y) = d(x, c) + d(c+, y)

and then run (for one such c) procedures Split(x, c) and Split(c+, y).
End of Procedure Split.

Procedure Split follows the way in which the numbers d(a, b) were computed. Therefore,
if we first set D := ∅ and then run procedures Split(a, b) and Split(b, a), we obtain a set D
of diagonals such that each face induced by D satisfies ∆(f) ≥ 0. This can be done in time
O(n2). We then apply Operation 1 as long as ∆(f) > 0 for some of the induced faces. We
obtain a set D′ of diagonals such that ∆(f) = 0 holds for each induced face. Then we find
pairwise non-intersecting 3-stars in each face covering all inner points in the face according to
Lemma 11. These stars in all faces together with the diagonals of D′ and with the edges of
ch(P ) form a 2-connected cubic plane graph on P . The whole algorithm runs in time O(n3).

Algorithm for Finding any Cubic Graph

If 2-connectivity is not required, our algorithmic approach is similar but more involved than the
above algorithm for finding a 2-connected cubic plane graph. The general structure however
remains the same: we still maximize the size of a set D of diagonals in R(a, b) for every
pair a, b ∈ H by dynamic programming, where D is the diagonal set of a “near” diagonal
configuration C, i.e. of a structure that is a diagonal configuration except possibly for the
unique face f intersecting the complement of R(a, b).

According to Corollary 15, we can expect a connected cubic graph that contains no un-
matched vertex and no edge joining two points in I and whose induced faces f ′ satisfy ∆(f ′) = 0.
However, the constraints on C that are necessary to compute such a graph (or a graph suffi-
ciently close to it) have to be considerably more relaxed than the very specific ones used in
Definition 20 of the previous algorithm, as here the structure of C is more general: e.g. diago-
nals may share vertices, matched vertices may exist and we have to specify how many half-edges
on a and b leave R(a, b).

To cope with these constraints, we will define C − ab as some special diagonal configuration
on P ∩R(a, b) (note that ab is technically not a diagonal of this point set; ab will be fixed later),
with the only exception that a and b may have degree less than three in this configuration,
namely degree 3− s and 3− t for s, t ∈ {0, 1, 2, 3}. Hence, s and t reflect exactly the number of
half-edges on a and b that leave R(a, b).

The maximizing function of the dynamic program is then extended with the two parameters
s, t ∈ {0, 1, 2, 3} and the additional parameter j ∈ {0, 1}, which is 1 if the diagonal ab is
contained in C and 0 otherwise. In summary, we maximize the following function.

Definition 23. Let z(a, b, s, t, j) be the maximum size of a set D of pairwise non-crossing
diagonals of P such that all these diagonals lie in R(a, b) and the following conditions are
satisfied:
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(i) D contains the diagonal ab if and only if j = 1.

(ii) D − ab is the diagonal set of a diagonal configuration C on P ∩ R(a, b), with the only
exception that the degrees of a and b in this configuration are 3− s and 3− t (instead of
3, as in Definition 1).

(iii) Every face f ′ that is induced by D satisfies ∆(f ′) = 0, with the possible exception of the
unique face f intersecting the complement of R(a, b).

If no such set D exists, z(a, b, s, t, j) is undefined. At the beginning of our dynamic pro-
gram, there are only the following two defined values for z(a, a+, s, t, j) with a ∈ H. If aa+ is
contained in D, then j = 1 and both a and b have both exactly two remaining half-edges, i.e.,
z(a, a+, 2, 2, 1) := 1. If aa+ is not contained in D, z(a, a+, 3, 3, 0) := 0. All the other values
z(a, a+, s, t, j) are undefined.

When computing the values z(a, b, s, t, j), we make use of the following analogue of Obser-
vation 21:

Observation 24. Let (a, b) ∈ T and let D be the set of diagonals as defined in Definition 23.
Let f be the unique face induced by D that contains the segment ab and some point to the right
of the segment ab. Then f contains a point c ∈ H(a, b). Consequently, every diagonal of D−ab
lies entirely in exactly one of the closed halfspaces R(a, c) and R(c, b).

We now consider the general case of computing a value z(a, b, s, t, j) for |H(a, b)| > 0 (this
value may turn out to be undefined). Due to Observation 24,

z(a, b, s, t, j) = max{j + z(a, c, s′, t′, j′) + z(c, b, s′′, t′′, j′′)},

where the maximum is taken over all c ∈ H(a, b), all s′, s′′, t′, t′′ ∈ {0, 1, 2, 3} and all j′, j′′ ∈
{0, 1}, for which the following five conditions are satisfied:

(1) z(a, c, s′, t′, j′) and z(c, b, s′′, t′′, j′′) are defined (consistency)

(2) s+ j ≤ s′ (degree condition at a),

(3) t+ j ≤ t′′ (degree condition at b),

(4) s′′ + t′ ≥ 3 (degree condition at c),

(5) if j = 1, then 3i = h− 2d+ (2− s) + (2− t), where
d := z(a, c, s′, t′, j′) + z(c, b, s′′, t′′, j′′) (condition for ∆(f) = 0)

Condition (1) ensures that only defined values are propagated in the dynamic programming
approach. Condition (2) (and, analogously, Condition (3)) ensure that the s + j (t + j) half-
edges on a (on b) that either leave R(a, b) or belong to the diagonal ab are a subset of the s′
(t′′) half-edges on a (on b) leaving R(a, c) (R(c, b)). Note that the inequality cannot be replaced
by equality, since we have to allow possible half-edges on a that are fully contained in R(a, b)
but not fully contained in R(a, c) (analogously for half-edges on b).

Similarly, there may be half-edges on c that are neither fully contained in R(a, c) nor R(c, b);
each of these contributes +1 to both numbers s′′ and t′. Thus, we have to allow that s′′+ t′ > 3;
however, since c has exactly three incident half-edges and since s′′+t′ covers each of these edges,
s′′ + t′ cannot be lower than 3, which gives Condition (3).

So far our computation of z is consistent with the Conditions (i) and (ii) of its Definition 23.
For consistency with Condition (iii), consider the unique face f that is induced by D and
contains the segment ab and some point to the right of ab. If j = 1, adding the diagonal ab
“closes” f such that f does not intersect the complement of R(a, b) anymore; then we have to
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ensure that ∆(f) = 0. Note that this automatically ensures consistency with Condition (iii)
for the case j = 0 by applying induction along the dynamic program.

Hence, assume that j = 1 and that all faces f ′ 6= f induced by D satisfy ∆(f ′) = 0.
Let i be the number of inner points in R(a, b), let h := |H(a, b)| and let d be the number
z(a, c, s′, t′, j′) +z(c, b, s′′, t′′, j′′) of diagonals in R(a, b) different from ab. Every diagonal that is
different from ab decreases the total number of half-edges that are incident to a vertex in H(a, b)
by two. Hence, in order to ensure ∆(f) = 0 we have to satisfy 3i = h−2d+(3−s−j)+(3−t−j)
(i.e., Condition (5)), where 3− s− j and 3− t− j are the numbers of half-edges in R(a, b) on
a and b that do not lie on the diagonal ab.

This completes the description of the dynamic program. In exactly the same way as in the
previous algorithm, we choose a pair (a, b) ∈ T that maximizes the total number of diagonals
to the left and to the right of the segment ab (using the precomputed values z) and reconstruct
a graph G (Procedure Split). As before, G satisfies ∆(f ′) = 0 for all induced faces f ′ except for
at most one face f that is incident to a or b and has ∆(f) > 0. We did not forbid unmatched
vertices so far, so G may contain some. However, after applying Operations 1 and 2 as long
as possible, we obtain a diagonal configuration having no unmatched vertex and satisfying
∆(f) = 0 for each induced face. Then we can complete the construction of the desired plane
cubic graph by applying Lemma 11. Again, the whole algorithm runs in time O(n3).

6 Final Remarks
The natural open problems left are to extend the structural results of this paper to 4-regular
and 5-regular plane graphs and to find polynomial-time algorithms for recognizing the point
sets that admit such graphs.
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