
A Planarity Test via Construction Sequences

Jens M. Schmidt

Max Planck Institute for Informatics, Germany

Abstract. Linear-time algorithms for testing the planarity of a graph
are well known for over 35 years. However, these algorithms are quite in-
volved and recent publications still try to give simpler linear-time tests.
We give a conceptually simple reduction from planarity testing to the
problem of computing a certain construction of a 3-connected graph.
This implies a linear-time planarity test. Our approach is radically dif-
ferent from all previous linear-time planarity tests; as key concept, we
maintain a planar embedding that is 3-connected at each point in time.
The algorithm computes a planar embedding if the input graph is planar
and a Kuratowski-subdivision otherwise.

1 Introduction

Testing the planarity of a graph is a fundamental algorithmic problem that has
initiated significant contributions to data structures and the design of algorithms
in the past. Although optimal linear-time algorithms for this problem are known
for over 35 years [13,3], they are involved and recent publications still try to give
simpler linear-time algorithms [4,6,9,11,25].

We give a linear-time planarity test that is based on a conceptually very
simple reduction to the problem of computing a certain construction C of a 3-
connected graph G (we will give a precise definition of C in Section 3). The
existence of a similar construction has also been used by Kelmans [14] and
Thomassen [27] to give a short proof of Kuratowski’s Theorem. Although their
proof itself is constructive (in the sense that it gives a polynomial-time planarity
test) and received much attention in graph theory due to its simplicity, it has
not been utilized algorithmically. We give the first linear-time planarity test that
captures this proof scheme. Our hope is that this new approach will lead to sim-
ple planarity tests, just as the same concept led to simple proofs of Kuratowski’s
Theorem.

Currently, the fastest algorithm known for computing C achieves a linear
running time [24], but is quite involved. For that reason, our reduction does not
qualify to be regarded as a simple planarity test yet. However, every simplifi-
cation made for computing C will immediately result in a simpler linear-time
planarity test. In fact, much less is needed, as our reduction relies only on the
part of the construction C until a first non-planar graph occurs; thus, one may
assume planarity for computing the necessary part of C. In the case that a
quadratic running time is allowed, a very simple algorithm that computes C
(and, thus, planarity) is known [23].

Recent planarity tests like [4,6,9,11,25] maintain a planar embedding at each
step, where all steps either add paths/edges (path addition method) or vertices
(vertex addition method) to the embedding; for a thorough survey on planarity
tests, we refer to Patrignani [22]. In our algorithm, each step will essentially
add an edge, possibly after subdividing one or two edges in advance. Unlike
all previous linear-time planarity tests, we maintain a planar embedding that
is always 3-connected. This is a key concept for the following reason. The 3-
connectivity constraint fixes the planar embedding (up to flipping), which will
allow to test efficiently whether the addition of a next edge e preserves planarity.

A well-known connection between 3-connectivity and planarity is that both
can be characterized by conditions on segments (or components) of cycles [30].
In fact, the first linear-time tests on planarity and 3-connectivity [12,13] due to
Hopcroft and Tarjan use such conditions. A detailed exposition of the connection
was given later by Vo and Williamson [29,30,33], respectively, with an emphasis
on explaining the algorithms in [12,13]. Nevertheless, the precise interplay be-
tween 3-connectivity and planarity and its algorithmic consequences are still far
from understood; e. g., the known connection suggests to ask whether there is a
general approach that combines linear-time 3-connectivity and planarity tests.
Our reduction makes a first step towards such a general approach. The combin-
ing element is C; on the one hand, C proves a graph to be 3-connected, on the
other hand, C provides a unique embedding as long as the constructed graphs
are planar, which allows to check planarity efficiently.

A planarity test is certifying in the sense of [16] if its yes/no-output is aug-
mented with a planar embedding if the input graph is planar and a Kuratowski-
subdivision otherwise. The first two linear-time planarity tests of Hopcroft and
Tarjan [13] and Booth and Lueker [3] did not give a planar embedding for pla-
nar input graphs. Mehlhorn and Mutzel [18] and Chiba, Nishizeki, Abe and
Ozawa [7] extended these tests to compute a planar embedding in the same
asymptotic running time. The algorithm presented here is certifying.

2 Preliminaries

We use standard graph-theoretic terminology from [2]. Let G = (V,E) be a
simple finite graph with n := |V | and m := |E|. Multiedges do not matter for
planarity and can be removed in advance by performing two bucket sorts on the
endpoints of edges in E.

A vertex whose deletion increases the number of connected components is
called a cut vertex. A graph G is biconnected if it is connected and contains
no cut vertex. A biconnected component of a graph G is a maximal biconnected
subgraph of G. A pair of vertices whose deletion disconnects a biconnected graph
is called a separation pair. A biconnected graph is triconnected if it contains no
separation pair.

A (straight-line) planar embedding of a graph G = (V,E) is an injective
function π: V → R2 such that for any two distinct edges ab and cd the straight
line segments π(a)π(b) and π(c)π(d) are internally disjoint (i. e., they may only

2

intersect at their endpoints). Two embeddings Emb1 and Emb2 of the same
planar graph are (combinatorially) different if there is a vertex v such that the
cyclic order of edges around v in Emb1 and Emb2 is different.

A subdivision of a graph G (a G-subdivision) is a graph obtained by replacing
the edges of G with internally disjoint paths of length at least one. Triconnected
graphs and their subdivisions have the following property, which we will use
throughout this paper.

Lemma 1 (Whitney [32], Thm. 1.1 in [20]). Every subdivision of a tricon-
nected graph has a unique planar embedding (up to flipping).

The triconnected components of a graph G are obtained by the following
recursive process on every biconnected component H of G: As long as there is
a separation pair {x, y} in H, we split H into two subgraphs H1 and H2 that
partition E(H) and have only x and y in common, followed by adding the edge
e = xy to both H1 and H2. We refer to [10] for a precise definition of this
process. The edge e that was added to H1 (respectively, H2) is called the virtual
edge of H1 (H2) and can be seen as a replacement of the graph H2 (H1) in this
decomposition.

The graphs resulting from this process are either sets of three parallel edges
(triple-bonds), triangles or simple triconnected graphs. To obtain the tricon-
nected components of G, triple-bonds containing a common virtual edge are
successively merged to maximal sets of parallel edges (bonds); similarly, trian-
gles containing a common virtual edge are successively merged to maximal cycles
(polygons). Thus, a triconnected component of G is either a bond, a polygon, or
a simple triconnected graph. The triconnected components form a tree, which is
called SPQR-tree of G [10].

It is well-known that a graph G is planar if and only if all its biconnected
components are planar [13]. A similar result holds for the triconnected compo-
nents of G: If G is planar, all triconnected components of G are planar, as every
triconnected component is a minor of G. Conversely, if all triconnected compo-
nents of a graph G are planar, we can successively merge the planar embeddings
of two triconnected components containing the same virtual edge to a bigger
planar embedding [31, Lemma 6.2.6], and obtain a planar embedding for G in
linear time. This gives the following result.

Lemma 2 ([17]). A graph is planar if and only if all its triconnected compo-
nents are planar.

As bonds and cycles are planar, planarity has only to be checked for simple
triconnected graphs. The triconnected components can be computed in linear
time [10,12]. Although this is not a trivial task, reliable implementations are
publicly available [21] and future steps will benefit greatly from this.

3

3 Constructions of Triconnected Graphs

With the above arguments we can assume that the input graph G is simple and
triconnected. We will make use of a special construction of triconnected graphs
due to Barnette and Grünbaum [1].

Definition 1. Let G be a simple triconnected graph with n ≥ 4. We define the
following operations on G (all vertices and edges are assumed to be distinct; see
Figure 1).

(a) Add an edge xy between two non-adjacent vertices x and y.
(b) Subdivide an edge ab by a vertex x and add the edge xy for a vertex y /∈ {a, b}.
(c) Subdivide two non-parallel edges e and f by vertices x and y, respectively,

and add the edge xy (note that e and f may intersect in one vertex).
(d) Add a new vertex x and join it to exactly three old vertices a, b and c.

x

y

x

y

(a) x and y
non-adjacent

a b a b

y y

x

(b) y /∈ {a, b}

e
a

f
v

b

w

a

v

b

w

x

y

(c) e and f are not parallel edges

a

c

b x

a

c

b

(d) adding a claw with center x

Fig. 1. Operations on triconnected graphs

Operations 1a-c correspond to adding edges (the added edge is xy) while
Operation 1d corresponds to adding a claw (i. e., K1,3) with a designated center
vertex x. The attachments of an operation O on G are the vertices and edges
in G involved in the operation, i. e., the attachments of Operations 1a–d are
{x, y}, {ab, y}, {ab, vw} and {a, b, c}, respectively. Let suppressing a vertex x
with exactly two non-adjacent neighbors y and z be the operation of deleting x
and adding the edge yz.

Applying any of the Operations 1a–d to G generates a graph that is sim-
ple and triconnected again. A classical result of Barnette and Grünbaum [1]
and Tutte [28] characterizes the triconnected graphs in terms of the first three
operations.

Theorem 1 ([1,28]). A simple graph G with n ≥ 4 is triconnected if and only
if G can be constructed from K4 using only operations of Types 1a–c.

4

For testing planarity, we will use the following slightly modified construction.
It restricts operations of Type 1a to be at the end of the construction; in order to
achieve this, we allow to use additional operations of Type 1d. Having all Type 1a
operations at the end of the construction will allow for an easier efficient data
structure in the planarity test.

Theorem 2 ([23]). A simple graph G with n ≥ 4 is triconnected if and only if
G can be constructed from K4 using only operations of Types 1a–d such that all
operations of Type 1a are applied last.

A construction sequence C of G is a sequence of operations that constructs
G from K4 precisely as stated in Theorem 2. Note that any edge that was added
by an Operation 1a in C will not be subdivided by later operations.

A construction sequence has a space complexity that is linear in the size of G
by using a labeling scheme on vertices and edges that essentially assigns a new
label to one half of an edge e after e was subdivided by an operation [23]. The
labeling scheme allows additionally for a constant-time access to the edges and
vertices that are involved in an operation O, i. e., to the edge e that is added by
O and to the vertices and edges on which the endpoints of e lie.

Recently, it was shown that a construction C ′ of G as stated in Theorem 1 can
be computed in linear time [24]. The algorithm is certifying and hence a reliable
implementation has already been made publicly available [19]. A construction
sequence C can be obtained from C ′ by a simple linear-time transformation as
pointed out in [23].

4 The Planarity Test

We can assume that the input graph G is simple and triconnected. Observe that
if n ≤ 3, G is planar. Assume n ≥ 4. Let C be a construction sequence of G.

The planarity test starts with the (unique) planar embedding of K4 and
computes iteratively a planar embedding for the graph that is obtained from
the next operation O in C if possible. The following lemma characterizes under
which conditions an operation O in C preserves planarity.

Lemma 3. Let H be a planar embedding of a simple triconnected graph on at
least 4 vertices and let H ′ be the graph that is obtained from H by applying an
operation O of Type 1a–d. Then H ′ is planar if and only if the attachments of
O are part of one face f of H.

Proof. ⇐: Clearly, subdividing edges in the facial cycle of f preserves planarity
and so does the addition of an edge or a claw inside f .
⇒: Assume to the contrary that not all attachments of O are contained in

one face of H. Note that when O is of Type 1d it is possible that every two of
the three attachments are contained in a face of H, respectively. We will show a
contradiction to the unique embedding of H. Let Emb be the planar embedding
that is obtained from the planar embedding of H ′ by reversing Operation O,

5

i. e., by deleting the added edge in H ′ and suppressing all vertices of degree two
if O is of Type 1a–c, and by deleting the center vertex of the added claw in H ′ if
O is of Type 1d. Then Emb and H embed the same simple triconnected graph,
but are combinatorially different, as Emb has a face containing all attachments
of O, while H has no such face by assumption. This contradicts Lemma 1. ut

If all attachments ofO are in one face f , applyingO gives a planar embedding.
If all operations in C satisfy this condition, we obtain a planar embedding of G.
Otherwise, let H be the graph obtained from the first operation in C that does
not satisfy the condition of Lemma 3. Then H is non-planar and G must be
non-planar, as G contains a subdivision of H as a subgraph. We will show how
to extract this subdivision in linear time in the next section. Lemma 3 suggests
the following Algorithm 1.

Algorithm 1 PlanarityTest(G) . G simple and triconnected with n ≥ 4

1: compute a construction sequence C = O1, . . . , Ok of G
2: initialize the (unique) planar embedding H of K4

3: for i = 1 to k do
4: if all attachments of Oi are in one face f of H then . planar
5: apply Oi to H by adding the edge or claw inside f
6: else . non-planar
7: compute a Kuratowski-subdivision

It remains to discuss how the condition in Lemma 3 can be checked efficiently
for every operation in C.

A plane st-graph is an embedding of a planar directed acyclic graph with
exactly one source s and exactly one sink t such that s and t are contained in the
external face of the embedding. It is well-known that every biconnected planar
graph can be oriented and drawn as plane st-graph (see, e. g., [5, Lemmas 1+2]).
In every step of Algorithm 1, the planar embedding H is triconnected and thus
biconnected. To check the condition in Lemma 3 efficiently, we will maintain H
as plane st-graph and use a data structure that is able to answer queries whether
edges and vertices are contained in the same face of H in amortized constant
time.

We modify a data structure due to Djidjev [8, Lemma 3.1], which runs on a
standard word-RAM. The original data structure maintains a plane st-graph H
in which the incoming and the outgoing edges for any vertex x appear consecu-
tively around x; hence, the boundary of each face f in H consists of two oriented
paths from a common start vertex (the source of f) to a common end vertex (the
sink of f); see [26]. Note that every vertex is source or sink of at least one face,
as H has minimum degree 3. Additionally, every vertex x /∈ {s, t} is contained
in exactly two faces for which x is neither source nor sink; we call these faces
the left and the right face of x, respectively (see Figure 2). The data structure
maintains pointers to the source and sink for each face in H and a pointer from

6

x
left face

of x

right face

of x

(a) left and right face of a vertex

source(f)

f

sink(f)

(b) source and sink vertex of a face

Fig. 2. Plane st-graphs

each vertex x /∈ {s, t} to its left and right face. The following two queries for
triconnected graphs H are supported by performing simple tests along the above
pointer structure.

(1) Given a vertex a and an edge b of H, output a face of H that contains a and
b or report that there is none.

(2) Given two vertices a and b of H such that a is a source or sink of at most 11
faces, output a face of H that contains a and b or report that there is none.

Each of these queries takes worst-case time O(1). Note that the only query
for which we cannot expect a constant running time using the above pointer
structure would be a query where a and b are source or sink vertices of an
unbounded number of faces. That is why query (2) assumes only a constant
number of such faces. We augment the data structure by the following query
type and show that each such query can be computed in worst-case time O(1).

(3) Given three vertices a, b and c of H, output a face of H that contains a, b
and c or report that there is none.

We can compute the set F of all left and right faces of the vertices a, b and c
in constant time; note that F contains at most 6 faces. If there is a face f in H
containing a, b and c, at least one vertex in {a, b, c} is neither source nor sink of
f , which implies that f must be in F . For a query (3), it therefore suffices to test
each face f ∈ F for containing a, b and c, respectively. A vertex v is contained
in f if and only if v is either source or sink of f , which can be checked in time
O(1), or one of the remaining vertices in f , which can be checked in time O(1)
by testing whether f is the left or right face of v.

The data structure additionally supports each of the following modifications
to H in amortized time O(1) and maintains a plane st-graph after every modi-
fication.

(4) Subdivide an edge.
(5) Given two non-adjacent vertices a and b and a face f of H that contains a

and b, add the edge ab inside f .

7

Clearly, K4 can be embedded as a plane st-graph and we initialize H with this
embedding. Every operation O of Type 1a–d can be converted into at most three
of the modifications (4) and (5). E. g., we can add a claw having its attachments
{a, b, c} in a common face by consecutively inserting the edge ab, subdividing ab
with a new vertex x and adding the edge xc. For operations O of Type 1b–d,
the condition in Lemma 3 can be checked in constant time by one query (1) or
one query (3).

It only remains to show how we can check the condition in Lemma 3 if O is
of Type 1a. According to Theorem 2, all operations in C that follow O will be of
Type 1a, which implies that H is a spanning subgraph of G. In other words, each
of the remaining operations in C adds only an edge that will not be subdivided
afterwards. Hence, the order in which these remaining edges E′ are added does
not matter.

We use a trick similar as in [8, Lemma 3.2] and add the remaining edges E′

in an order such that each added edge has an endpoint that is the sink or source
of at most 11 faces. If we know this order, we can use query (2) to ensure that
every step can be computed in constant time.

In order to compute this order, we maintain an auxiliary graph HA whose
vertex set consists of all vertices in V (H) that are incident to an edge in E′.
There is an edge between two vertices a and b in HA if a and b are source and sink
vertices of the same face. Note that HA may have parallel edges. We construct
HA in linear time when the first operation of Type 1a in C is encountered; after
every modification (5), HA can be updated in time O(1), as each face f stores
a pointer to its source and sink.

As HA is planar and has at most two parallel edges between every two
vertices (as H is simple and triconnected), it contains at most 6|V (HA)| − 12
edges. Hence, there is at least one vertex of degree at most 11 in HA. We note
that the degree bound 6 proposed in [8, Lemma 3.2] should also be 11, as the
auxiliary graph used there is not necessarily simple.

Before the first operation of Type 1a in C is applied to H, we construct a
list Small of all vertices in HA having degree at most 11 in linear time; again,
this list is easy to maintain under modifications (5) in time O(1). Now we just
choose successively a vertex v ∈ Small and an edge e = vw in E′ and perform
modification (5) with v and w if v and w have been reported to be in the same
face. This allows to check the condition in Lemma 3 for each of the remaining
edges in E′ in constant time using query (2). We conclude the following theorem.

Theorem 3. The planarity test Algorithm 1 can be implemented in linear time.

5 Extensions

A Kuratowski-subdivision is a subdivision of either a K3,3 or of a K5 and proves
every graph that contains it to be non-planar. We show how a Kuratowski-
subdivision can be computed if an operation O is encountered that has not
all attachment vertices on one face in H. The computation follows in parts the

8

arguments given in the short proof of Kuratowski’s Theorem in [27]. The fact that
the Kuratowski-subdivision is computed in a triconnected component does not
matter; it is straight-forward to get a corresponding Kuratowski-subdivision in
the input graph by reversing the splits that were done to obtain the triconnected
components.

We first recall planarity-related terminology.

Definition 2. For a cycle C in a graph G, let a C-component be either an edge
e /∈ C with both endpoints in C or a connected component of G \ V (C) together
with all edges that join the component to C and all endpoints of these edges. The
vertices of attachment of a C-component H are the vertices in H ∩ C.

Two C-components H1 and H2 avoid each other if C contains two vertices
u and v such that H1 has all vertices of attachment on one path in C from u to
v and H2 has all vertices of attachment on the other path in C from u to v.

Two C-components overlap if they do not avoid each other. Let two C-
components H1 and H2 be C-equivalent if H1∩C = H2∩C and this set contains
exactly three vertices. Let H1 and H2 be skew if C contains four distinct vertices
x1, x2, x3 and x4 in cyclic order such that x1 and x3 are in H1 and x2 and x4
are in H2. We will need the following basic fact about C-components.

Lemma 4 ([27]). Two C-components overlap if and only if they are either skew
or C-equivalent.

Now we are prepared to compute a Kuratowski-subdivision.

Lemma 5. Let H be a planar embedding of a simple triconnected graph on at
least 4 vertices and let O be an operation of Type 1a–d on H whose attachments
are not all contained in one face of H. Then the graph H ′ that is obtained from
H by applying O contains a subdivision of K5 or K3,3, and this subdivision can
be computed in linear time.

Proof. First assume that O adds a claw and every two of the three attachments
{a, b, c} of O are contained in a face of H, respectively; we call these three faces
f1, f2 and f3. Let J be a closed Jordan curve in f1 ∪ f2 ∪ f3 that intersects H
exactly at a, b and c. Since a, b and c are not all contained in a face of H, there are
vertices vin and vout strictly inside and strictly outside J , respectively. Since H
is 3-connected, we can compute from vin and vout three internally vertex-disjoint
paths to {a, b, c}, respectively, by performing one depth first search. Adding the
claw of O to these paths gives a K3,3-subdivision in H ′.

The only remaining case is that O has at least two attachments a and b
that are not contained in one face of H; note that a and b may be edges. As
H \ a is 2-connected, it contains a cycle C that is the boundary of the face
which contains a in its interior. By assumption, b /∈ C. Let Ha and Hb be the
C-components of H containing a and b, respectively. By definition of C, Ha is
the only C-component in the interior of C.

We show that Ha and Hb overlap. Assume the contrary. Then Hb has two
vertices of attachment u and v such that Ha has all vertices of attachment on

9

one path Pa ⊂ C from u to v and Hb has all vertices of attachment on the other
path Pb ⊂ C from u to v. If a is a vertex, a and b are in different components of
H \{u, v}, since H is a planar embedding. This contradicts H to be triconnected.
Otherwise, a is an edge (which will be subdivided by O) and Ha = a. Then, as
H is simple, Pa has length at least two, which implies that an inner vertex in
Pa is in a different component of H \ {u, v} than b. This contradicts H to be
triconnected. Thus, Ha and Hb overlap.

According to Lemma 4, Ha and Hb are either skew or C-equivalent. The
cycle C, Ha and Hb can be easily computed in linear time. Deciding whether
Ha and Hb are skew and computing the vertices x1, x2, x3 and x4 on C, whose
existence defines this property amounts to one traversal along C. If a is an edge,
subdivide a and let a′ be the new vertex of degree two; otherwise let a′ = a.
Define b′ accordingly. Due to Menger’s Theorem, there are either two or three
internally disjoint paths from a′ to C in Ha (and from b′ to C in Hb), depending
on whether Ha (Hb) is an edge. These paths can be computed by a depth-first
search that starts with the desired vertex.

If Ha and Hb are skew, we compute two of these paths in Ha that end at x1
and x3, respectively, and two in Hb that end at x2 and x4, respectively. Taking
the union of these four paths, C and T forms a K3,3-subdivision, where T is
either the added edge of O or the path of length two from a to b if O adds a
claw. If Ha and Hb are C-equivalent, the union of the three paths in Ha and Hb,
respectively, C and T gives a K5-subdivision. ut

We remark that our algorithm can be easily extended to output always a
K3,3-subdivision in linear time when the input graph G is 3-connected, non-
planar and G 6= K5. This is based on the following variant of Kuratowski’s
Theorem for triconnected graphs.

Lemma 6 ([15]). A simple triconnected graph G 6= K5 is planar if and only if
G does not contain a K3,3-subdivision.

Note that we get a K5-subdivision K only in the case that O adds a claw.
The desired K3,3-subdivision can then be obtained from K by rerouting one of
the paths of K that ends at a to the center vertex of the claw.

Open Questions. The most immediate question is whether there is a simple
linear-time algorithm that computes the construction sequence C of a tricon-
nected graph. This would immediately imply a simple linear-time planarity test.
As argued before, one may even assume planarity to find such a sequence. Fur-
ther, it seems possible that such an algorithm, or the existing one in [24], can be
extended to compute the triconnected components of the input graph, similarly
as in the triconnectivity test of Hopcroft and Tarjan [12]. This would subsume
the computation of C and the preprocessing of the graph into triconnected com-
ponents. The proposed new algorithmic approach to planarity testing might
also allow to recognize other subclasses of planar graphs efficiently (e.g., planar
graphs that contain no subdivision of K5 − e or of W4).

10

References

1. D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-
polytopes and on some properties of 3-connected graphs. In Many Facets of Graph
Theory, pages 27–40, 1969.

2. J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
3. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-Tree algorithms. J. Comput. Syst. Sci.,
13:335–379, 1976.

4. J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified O(n) planarity by
edge addition. Journal of Graph Algorithms an Applications, 8(3):241–273, 2004.

5. U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium
of Algorithms (ESA’02), pages 247–256, 2002.

6. U. Brandes. The left-right planarity test. Manuscript submitted for publication,
2009.

7. N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-Trees. J. Comput. Syst. Sci., 30(1):54–76, 1985.

8. H. N. Djidjev. A linear-time algorithm for finding a maximal planar subgraph.
SIAM J. Discrete Math., 20(2):444–462, 2006.

9. H. d. Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Trémaux Trees and planarity.
Int. J. Found. Comput. Sci., 17(5):1017–1030, 2006.

10. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
Proceedings of the 8th International Symposium on Graph Drawing (GD’00), pages
77–90, 2001.

11. B. Haeupler and R. E. Tarjan. Planarity algorithms via PQ-Trees (extended ab-
stract). Electronic Notes in Discrete Mathematics, 31:143–149, 2008.

12. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

13. J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
568, 1974.

14. A. K. Kelmans. A new planarity criterion for 3-connected graphs. Journal of
Graph Theory, 5:259–267, 1981.

15. A. Liebers. Planarizing graphs — A survey and annotated bibliography. J. Graph
Algorithms Appl., 5(1), 2001.

16. R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

17. S. McLane. A structural characterization of planar combinatorial graphs. Duke
Mathematical Journal, 3:466–472, 1937.

18. K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica, 16(2):233–242, 1996.

19. A. Neumann. Implementation of Schmidt’s algorithm for certifying triconnectivity
testing. Master’s thesis, Universität des Saarlandes and Graduate School of CS,
Germany, 2011.

20. T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms. North-Holland,
1988.

21. OGDF - The Open Graph Drawing Framework, 06/2013. http://www.ogdf.net.
22. M. Patrignani. Planarity testing and embedding. In R. Tamassia, editor, Handbook

of Graph Drawing and Visualization. CRC Press, to appear.
23. J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Pro-

ceedings of the 27th Symposium on Theoretical Aspects of Computer Science
(STACS’10), pages 633–644, 2010.

11

http://www.ogdf.net

24. J. M. Schmidt. Certifying 3-connectivity in linear time. In Proceedings of the 39th
International Colloquium on Automata, Languages and Programming (ICALP’12),
pages 786–797, 2012.

25. W. K. Shih and W. L. Hsu. A new planarity test. Theor. Comput. Sci., 223:179–
191, 1999.

26. R. Tamassia and I. G. Tollis. A unified approach to visibility representation of
planar graphs. Discrete & Computational Geometry, 1:321–341, 1986.

27. C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5(3):225–241,
1981.

28. W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15.
University of Toronto Press, 1966.

29. K.-P. Vo. Finding triconnected components of graphs. Linear and Multilinear
Algebra, 13:143–165, 1983.

30. K.-P. Vo. Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of
graphs. Linear and Multilinear Algebra, 13:119–141, 1983.

31. D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.
32. H. Whitney. Congruent graphs and the connectivity of graphs. American Journal

of Mathematics, 54(1):150–168, 1932.
33. S. G. Williamson. Embedding graphs in the plane — algorithmic aspects. In

Combinatorial Mathematics, Optimal Designs and Their Applications, volume 6 of
Annals of Discrete Mathematics, pages 349–384. Elsevier, 1980.

12

	A Planarity Test via Construction Sequences

