A Simple Test on 2-Vertex- and
2-Edge-Connectivity

Jens M. Schmidt
Max Planck Institute for Informatics

Abstract

Testing a graph on 2-vertex- and 2-edge-connectivity are two funda-
mental algorithmic graph problems. For both problems, different linear-
time algorithms with simple implementations are known. Here, an even
simpler linear-time algorithm is presented that computes a structure from
which both the 2-vertex- and 2-edge-connectivity of a graph can be easily
“read off”. The algorithm computes all bridges and cut vertices of the
input graph in the same time.

1 Introduction

Testing a graph on 2-connectivity (i.e., 2-vertex-connectivity) and on 2-edge-
connectivity are fundamental algorithmic graph problems. Tarjan presented
the first linear-time algorithms for these problems, respectively [13, 14]. Since
then, many linear-time algorithms have been given (e.g., [2, 3, 5, 6, 7, 8, 15,
16, 17]) that compute structures which inherently characterize either the 2- or
2-edge-connectivity of a graph. Examples include open ear decompositions [10,
18], block-cut trees [9], bipolar orientations [2] and s-t-numberings [2] (all of
which can be used to determine 2-connectivity) and ear decompositions [10]
(the existence of which determines 2-edge-connectivity).

Most of the mentioned algorithms use a depth-first search-tree (DFS-tree)
and compute the so-called low-point values, which are defined in terms of a
DFS-tree (see [13] for a definition of low-points). This is a concept Tarjan
introduced in his first algorithms and that has been applied successfully to
many graph problems later on. However, low-points do not always provide the
most natural solution: Brandes [2] and Gabow [8] gave considerably simpler
algorithms for computing most of the above-mentioned structures (and testing
2-connectivity) by using simple path-generating rules instead of low-points; they
call these algorithms path-based.

The aim of this paper is a self-contained exposition of an even simpler linear-
time algorithm that tests both the 2- and 2-edge-connectivity of a graph. It is
suitable for teaching in introductory courses on algorithms. While Tarjan’s
two algorithms are currently the most popular ones used for teaching (see [8]
for a list of 11 text books in which they appear), in my teaching experience,
undergraduate students have difficulties with the details of using low-points.

The algorithm presented here uses a very natural path-based approach in-
stead of low-points; similar approaches have been presented by Ramachan-
dran [12] and Tsin [16] in the context of parallel and distributed algorithms,

respectively. The approach is related to ear decompositions; in fact, it computes
an (open) ear decomposition if the input graph has appropriate connectivity.

Notation. We use standard graph-theoretic terminology from [1]. Let 6(G)
be the minimum degree of a graph G. A cut vertex is a vertex in a connected
graph that disconnects the graph upon deletion. Similarly, a bridge is an edge
in a connected graph that disconnects the graph upon deletion. A graph is
2-connected if it is connected and contains at least 3 vertices, but no cut ver-
tex. A graph is 2-edge-connected if it is connected and contains at least 2
vertices, but no bridge. Note that for very small graphs, different definitions of
(edge)connectivity are used in literature; here, we chose the common definition
that ensures consistency with Menger’s Theorem [11]. It is easy to see that
every 2-connected graph is 2-edge-connected, as otherwise any bridge in this
graph on at least 3 vertices would have an end point that is a cut vertex.

2 Decomposition into Chains

We will decompose the input graph into a set of paths and cycles, each of which
will be called a chain. Some easy-to-check properties on these chains will then
characterize both the 2- and 2-edge-connectivity of the graph. Let G = (V, E) be
the input graph and assume for convenience that G is simple and that |V| > 3.
This is not a severe restriction, as self-loops do not influence 2- or 2-edge-
connectivity and can therefore be deleted in advance. Similarly, parallel edges
do not influence 2-connectivity, but they may influence 2-edge-connectivity, as a
bridge does not have parallel edges. However, the 2-edge-connectivity algorithm
given in this paper still works for graphs with parallel edges.

We first perform a depth-first search on G. This implicitly checks G on being
connected. If G is connected, we get a DFS-tree T' that is rooted on a vertex r;
otherwise, we stop, as G is neither 2- nor 2-edge-connected. The DFS assigns
a depth-first index (DFI) to every vertex. We assume that all tree edges (i.e.,
edges in T') are oriented towards r and all backedges (i.e., edges that are in G
but not in T') are oriented away from r. Thus, every backedge e lies in exactly
one directed cycle C(e).

Let every vertex be marked as unvisited. We now decompose G into chains
by applying the following procedure for each vertex v in ascending DFI-order:
For every backedge e that starts at v, we traverse C(e), beginning with v, and
stop at the first vertex that is marked as visited. During such a traversal, every
traversed vertex is marked as wisited. Thus, a traversal stops at the latest at v
and forms either a directed path or cycle, beginning with v; we call this path
or cycle a chain and identify it with the list of vertices and edges in the order
in which they were visited. The ith chain found by this procedure is referred to
as C;.

The chain C1, if exists, is a cycle, as every vertex is unvisited at the beginning
(note C; does not have to contain r). There are |E| — |[V| + 1 chains, as every
one of the |E| — |[V| 4+ 1 backedges creates exactly one chain. We call the set
C={C1,...,Cig|—|v|+1} a chain decomposition; see Figure 1 for an example.

Clearly, a chain decomposition can be computed in linear time. This almost
concludes the algorithmic part; we now state easy-to-check conditions on C'

5 B 5

) An input graph G. (b) A DFS-tree of G (de- (¢) A chain decomposition
picted with straight-lines) C = {Cy,...,C5} of G.
and the edge-orientation it The chains C2 and Cg are
imposes. There are |E| — paths; all other chains are
V] + 1 =5 backedges. cycles. The edge vgvs is

not contained in any chain
and therefore a bridge.
Since 6(G) > 2 and C'\ Cq
contains a cycle, G con-
tains a cut vertex (in fact,
vs and vg are cut vertices).

Figure 1: A graph G, its DFS-tree and a chain decomposition of G.

that characterize 2- and 2-edge-connectivity. All proofs will be given in the
next section.

Theorem 1. Let C' be a chain decomposition of a simple connected graph G.
Then G is 2-edge-connected if and only if the chains in C' partition E.

Theorem 2. Let C be a chain decomposition of a simple 2-edge-connected graph
G. Then G is 2-connected if and only if Cy is the only cycle in C'.

The properties in Theorems 1 and 2 can be efficiently tested: In order to
check whether C partitions E, we mark every edge that is traversed by the chain
decomposition. In order to check the property in Theorem 2, we check that Cy
is a cycle and that, for every i > 1, the end vertices of C; are distinct. For
pseudo-code, see Algorithm 1.

Algorithm 1 Check(graph G) > G is simple and connected with |V] > 3
1: Compute a DFS-tree T of G
2: Compute a chain decomposition C'; mark every visited edge
3: if G contains an unvisited edge then
4: output “NOT 2-EDGE-CONNECTED”
5: else if there is a cycle in C different from C; then
6: output “2-EDGE-CONNECTED BUT NOT 2-CONNECTED”
7: else
8: output “2-CONNECTED”

We state a variant of Theorem 2, which does not rely on edge-connectivity.
Its proof is very similar to the one of Theorem 2.

Theorem 3. Let C be a chain decomposition of a simple connected graph G.
Then G is 2-connected if and only if §(G) > 2 and C} is the only cycle in C.

3 Proofs

It remains to give the proofs of Theorems 1 and 2. For a tree 1" rooted at r
and a vertex x in T, let T'(z) be the subtree of T' that consists of x and all
descendants of x (independent of the edge orientations of 7'). We will need the
following well-known lemma (see, e.g., [4]).

Lemma 4. An edge is a bridge if and only if it is not contained in any cycle.
Theorem 1 is immediately implied by the following lemma.

Lemma 5. Let C be a chain decomposition of a simple connected graph G. An
edge e in G is a bridge if and only if e is not contained in any chain in C.

Proof. Let e be a bridge and assume to the contrary that e is contained in a
chain whose first edge (i.e., whose backedge) is b. According to Lemma 4, the
bridge e is not contained in any cycle of G. This contradicts the fact that e is
contained in the cycle C(b).

Now let e be an edge that is not contained in any chain in C. Let T be the
DFS-tree that was used for computing C' and let = be the end point of e that is
farthest away from the root r of T, in particular x # r. Then e is a tree-edge,
as otherwise e would be contained in a chain. For the same reason, there is no
backedge with exactly one end point in T'(z). Deleting e therefore disconnects
all vertices in T'(z) from r. Hence, e is a bridge. O

The following lemma implies Theorem 2, as every 2-edge-connected graph
has minimum degree 2.

Lemma 6. Let C be a chain decomposition of a simple connected graph G with
0(G) > 2. A vertex v in G is a cut vertex if and only if v is incident to a bridge
or v is the first vertex of a cycle in C'\ Cj.

Proof. Let v be a cut vertex in G; we may assume that v is not incident to a
bridge. Let X and Y be connected components of G \ v. Then X and Y have
to contain at least two neighbors of v in G, respectively. Let X% and Y
denote the subgraphs of G that are induced by X Uwv and Y U v, respectively.
Both X and Y contain a cycle through v, as both X and Y are connected.
It follows that C exists; assume w.l.o.g. that C; ¢ X™Y. Then there is at
least one backedge in XtV that starts at v, since the DFS-tree is rooted in Y ™
and X1V contains a cycle through v. When the first such backedge is traversed
in the chain decomposition, every vertex in X is still unvisited. The traversal
therefore closes a cycle that starts at v and is different from Cy, as C; ¢ X+V.

If v is incident to a bridge, 6(G) > 2 implies that v is a cut vertex. Now let
v be the first vertex of a cycle C; # C1 in C. If v is the root r of the DFS-tree T'
that was used for computing C, both cycles C; and C; end at v. Thus, v has at
least two children in 7" and v must be a cut vertex. Otherwise v # r; let wv be
the last edge in C;. Then no backedge starts at a vertex with smaller DFI than
v and ends at a vertex in T(w), as otherwise vw would not be contained in C;.
Thus, deleting v separates r from all vertices in T(w) and v is a cut vertex. [

4 Extensions

We state how some additional structures can be computed from a chain de-
composition. Note that Lemmas 5 and 6 can be used to compute all bridges
and all cut vertices of G in linear time. Having these, the 2-connected compo-
nents (i. e., the maximal 2-connected subgraphs) of G and the 2-edge-connected
components (i. e., the maximal 2-edge-connected subgraphs) of G can be easily
obtained: it suffices to cut the DFS-tree T' along all cut-vertices or, respectively,
all bridges. The former also gives the so-called block-cut tree [9] of G, which
is a tree representing the dependency of the 2-connected components and cut
vertices of G. Similarly, cutting all bridges in 7" gives a tree that represents the
dependency of the 2-edge-connected components and bridges of G.

Additionally, the set of chains C' computed by our algorithm is an ear de-
composition if G is 2-edge-connected and an open ear decomposition if G is
2-connected. Note that C' is not an arbitrary (open) ear decomposition, as it de-
pends on the DFS-tree. The existence of these ear decompositions characterize
the 2-(edge-)connectivity of a graph [10, 18]; Brandes [2] gives a simple linear-
time transformation that computes a bipolar orientation and an s-t-numbering
from such an open ear decomposition.

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[2] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium
of Algorithms (ESA’02), pages 247256, 2002.

J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks. Algo-
rithmica, 15(6):521-549, 1996.

[4] R. Diestel. Graph Theory. Springer, fourth edition, 2010.

=

[5] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19-33,
1983.

[6] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci.,
2(3):339-344, 1976.

[7] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS
2(1976):339-344). Theor. Comput. Sci., 4(1):123, 1977.

[8] H. N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Inf. Process. Lett., 74(3-4):107-114, 2000.

[9] F.Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen,
13:103-107, 1966.

[10] L. Lovdsz. Computing ears and branchings in parallel. In Proceedings of the
26th Annual Symposium on Foundations of Computer Science (FOCS’85), pages
464-467, 1985.

[11] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96-115, 1927.

[12] V. Ramachandran. Parallel open ear decomposition with applications to graph
biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, pages
275-340, 1993.

[13] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

[14] R. E. Tarjan. A note on finding the bridges of a graph. Inf. Process. Lett.,
2(6):160-161, 1974.

[15] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85-94,
1986.

[16] Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively.
Inf. Process. Lett., 91:147-153, 2004.

[17] Y. H. Tsin and F. Y. Chin. A general program scheme for finding bridges. Inf.
Process. Lett., 17(5):269-272, 1983.

[18] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34(1):339-362, 1932.

	Introduction
	Decomposition into Chains
	Proofs
	Extensions

