Contractions, Removals and How to Certify 3-Connectivity in Linear Time

Jens M. Schmidt
Max Planck Institute for Informatics

Abstract

One of the most noted construction methods of 3 -vertex-connected graphs is due to Tutte and based on the following fact: Any 3 -vertex-connected graph $G=(V, E)$ on more than 4 vertices contains a contractible edge, i.e., an edge whose contraction generates a 3 -connected graph. This implies the existence of a sequence of edge contractions from G to the complete graph K_{4}, such that every intermediate graph is 3 -vertex-connected. A theorem of Barnette and Grünbaum gives a similar sequence using removals on edges instead of contractions.

We show how to compute both sequences in optimal time, improving the previously best known running times of $O\left(|V|^{2}\right)$ to $O(|E|)$. This result has a number of consequences; an important one is a new linear-time test of 3 -connectivity that is certifying; finding such an algorithm has been a major open problem in the design of certifying algorithms in the last years. The test is conceptually different from well-known linear-time 3 -connectivity tests and uses a certificate that is easy to verify in time $O(|E|)$. We show how to extend the results to an optimal certifying test of 3 -edge-connectivity.

1 Introduction

The class of 3 -connected (i. e., 3 -vertex-connected) graphs has been studied intensively for many reasons in the past 50 years. Algorithmic applications include problems in graph drawing (see [42] for a survey), problems related to planarity [6,28] and online problems on planar graphs (see [14] for a survey). From a complexity point of view, 3 -connectivity is in particular important for problems dealing with longest paths, because it lies, somewhat surprisingly, on the borderline of NP-hardness: Finding a Hamiltonian cycle is NP-hard for 3-connected planar graphs [25] but becomes solvable in linear running time [11] for higher connectivity, as 4-connected planar graphs are Hamiltonian [63].

From a top-level view, we design an efficient algorithm from an inductively defined construction of a graph class. For a given graph class \mathcal{C}, such constructions start with a set of base graphs and apply iteratively operations from a finite set of operations such that precisely the members of \mathcal{C} are constructed. This does not only give a computational approach to test graphs for membership in \mathcal{C}, it can also be exploited to prove properties of \mathcal{C} using just arguments on the base graphs and the finitely many operations. Graph theory provides inductively defined constructions for many graph classes, including planar graphs, triangulations, k-connected graphs for $k \leq 4$, regular graphs and various intersections of these classes [$4,5,32$]. Most of these constructions have not been exploited computationally.

[^0]For an inductively defined construction of \mathcal{C} and a graph $G \in \mathcal{C}$, we call a sequence of operations that is applied to a specified base graph to construct G a construction sequence of G. We will also identify a construction sequence with the sequence of graphs it constructs, provided that this determines the construction sequence uniquely. Sometimes, it is more convenient to describe a construction sequence by giving the inverse operations from G to a specified base graph; in such cases, we refer to them as top-down variants of construction sequences, as opposed to bottom-up variants.

One of the most noted constructions for 3 -connected graphs was given by Tutte [64] and is based on the following fact: Any 3 -connected graph G on more than 4 vertices contains a contractible edge, i.e., an edge whose contraction generates a 3 -connected graph. Iteratively contracting such an edge gives a top-down construction sequence from G to a K_{4}-multigraph (i.e., a K_{4} with possible additional parallel edges and self-loops), in which all intermediate graphs are 3-connected. In general, also non-3-connected graphs can contain contractible edges, but adding an additional condition establishes a full characterization: A graph G on more than 4 vertices is 3 -connected if and only if there is a construction sequence from G to a K_{4}-multigraph that uses only contractions on edges with both end vertices having at least 3 neighbors [17]; we will call this a sequence of contractions. It is also possible to describe a sequence of contractions bottom-up by using the inverse operations edge addition and vertex splitting; in fact, this is the original form as stated in Tutte's famous wheel theorem [64].

Barnette and Grünbaum [3] and Tutte (implicitly shown in Theorems 12.64 and 12.65 of [65]) give a different construction of 3-connected graphs that is based on the following argument: Any 3-connected graph G on more than 4 vertices contains a removable edge, i.e., an edge whose deletion generates a subdivision of a 3 -connected graph. Removing this edge leads, similar as in the sequence of contractions, to a top-down construction sequence from G to K_{4}. We will define removals in Section 3 and show how to add an additional condition to fully characterize 3 -connected graphs. Again, the originally proposed construction is given bottom-up from K_{4} to G, using three operations.

Although both existence theorems on contractible and removable edges are used frequently in graph theory [57, 58, 65], the first non-trivial computational result to create the corresponding construction sequences was published more than 45 years afterwards: In 2006, Albroscheit [1] gave an algorithm that computes a construction sequence for 3-connected graphs in $O\left(|V|^{2}\right)$. However, in this algorithm, contractions and removals are allowed to intermix.

In 2010, two algorithms of the same running time $O\left(|V|^{2}\right)$ were given [40, 47] that both compute a sequence of contractions. The latter algorithm computes alternatively a construction sequence that uses only removals in $O\left(|V|^{2}\right)$. One of the building blocks of this algorithm is a straight-forward transformation from an arbitrary sequence of removals to a sequence of contractions in time $O(|E|)$. This shows that the sequence of Barnette and Grünbaum is algorithmically at least as powerful as the sequence of contractions. All mentioned algorithms do not rely on the 3 -connectivity test of Hopcroft and Tarjan [30], which runs in linear time but is rather involved. No algorithm that computes any of these sequences in subquadratic time is known; in particular, there is no obvious way of improving the $O\left(|V|^{2}\right)$ algorithms to linear time.

The main contribution of this paper is an algorithm that computes the construction sequence of Barnette and Grünbaum bottom-up in time and space $O(|E|)$. The key idea is based on a careful classification and grouping of certain paths in a simple decomposition of the graph; the groups of paths can be decomposed later into the desired operations for Barnette and Grünbaum's
construction. The result has a number of consequences and applications.
Top-down and bottom-up variants of both constructions. One can immediately obtain the sequence of removals from Barnette and Grünbaum's bottom-up construction sequence by replacing every operation with its inverse removal operation. Applying the transformation of [47] will imply optimal time and space algorithms for the sequence of contractions, its bottom-up variant and related sequences as well.

Certifying 3-connectivity in linear time. Blum and Kannan [7] initiated the concept of programs that check their work. Mehlhorn and Näher [33, 38, 39] (see [36] for an extensive survey) introduced the concept of certifying algorithms, i. e., algorithms that produce with each output a certificate that the particular output has not been compromised by a bug. Such a certificate can be any data that allows to check the correctness of the particular output (uniformly using a verifying algorithm), having only access to the input.

Developing certifying algorithms is a major goal for problems where the fastest solutions known are complicated, as implementations of these solutions tend to be error-prone. Having a certifying algorithm for such a problem allows to verify the output of every particular instance, regardless of how complicated the computation of this output is. For this reason, certifying algorithms are these days used in software libraries like LEDA [38] for reliability purposes.

A prominent example for a problem for which the fastest solutions known are complicated is testing a graph for 3-connectivity. Although sophisticated linear-time recognition algorithms are known for over 35 years [21, 30, 46, 67, 68], none of them describe an easy-to-verify certificate or show how a construction sequence can be computed.

The currently fastest algorithms that certify 3 -connectivity need $O\left(|V|^{2}\right)$ time and use construction sequences as certificates [1, 40, 47]. Recently, based on the results in [18], a linear time certifying algorithm for 3-connectivity has been given for the subclass of Hamiltonian graphs, when a Hamiltonian cycle is given as part of the input [17]. In general, finding a certifying algorithm for 3 -connectivity in subquadratic time is an open problem [36, Chapter 5.4, p. 26] [17].

We solve this problem by giving a linear-time certifying algorithm for 3 -connectivity that uses Barnette and Grünbaum's construction sequence as certificate. This implies a new linear-time test for 3 -connectivity that neither assumes the graph to be 2 -connected nor needs to compute lowpoints (see [30] for a definition of low-points); instead, it uses the structure of 3 -connected graphs implicitly by applying simple path-generating rules. This is conceptually different from all previous linear-time 3 -connectivity tests. The algorithm has already been implemented and made publicly available [44]; interestingly, it outperforms the test in [30] on no-instances.

In addition, we give a simple decomposition of graphs that is closely related to ear decompositions [34, 69] and which allows to unify existing tests on 2 -connectivity $[9,16,19,20,22,53,55]$ with tests on 2-edge-connectivity [54, 59, 62].

Certifying 3-edge-connectivity in linear time. There is no test for 3-edge-connectivity that is certifying and runs in linear time, although many non-certifying linear-time algorithms for this problem are known [23, 43, 52, 60, 61]. The first (non-certifying) one due to Galil and Italiano [23] uses the fact that testing a graph G on k-edge-connectivity can be reduced to testing k-vertexconnectivity on a slightly modified graph. Based on this reduction, we give a linear-time test on 3 -edge-connectivity that is certifying.

Applications. Being able to certify 3 -connectivity efficiently has a number of applications. E.g., many graph algorithms $[13,14,6,28,42]$ that use the $S P Q R$-tree data structure [27] can be made certifying. Due to the Theorem of Steinitz [51], algorithms on polytopes (in a graph representation) can be augmented with a quick and easy check that their input represents indeed a polytope. Applications in communication networks include certificates for their reliability (depending on 2or 3-connectivity) and the property to allow for a perfectly secure message transmission [15].

We first develop results about construction sequences in Section 3. In Section 4, we discuss certificates for k-connectivity and k-edge-connectivity, $0 \leq k \leq 3$, and show how these can be certified by conceptually simple checkers. Section 4 also introduces a decomposition of the input graph, which partitions its edge set into cycles and paths, both of which are called chains. On a high level view, chains provide the structure that we need to compute the next operation of the construction sequence efficiently. Section 5 shows how to compute a construction sequence of a 3 -connected graph in linear time. Section 5.7.2 describes how to find a cut vertex or separation pair when the input graph is not 3 -connected.

2 Preliminaries

We consider finite undirected graphs G with $n:=|V(G)|$ vertices and $m:=|E(G)|$ edges and use standard graph-theoretic terminology from [8], unless stated otherwise. A set of vertices (respectively, of edges) that leaves a disconnected graph upon deletion is called a vertex cut (respectively, an edge cut). Vertex cuts of size one and two are called cut vertices and separation pairs, respectively; edge cuts of size one in connected graphs are called bridges. For $k \geq 1$, let a graph G be k-connected if $n>k$ and there is no vertex cut X in G with $|X|<k$. The connectivity of a graph G is the largest integer k such that G is k-connected. Note that k-connectivity neither depends on parallel edges nor on self-loops. For $k \geq 1$, let a graph G be k-edge-connected if $n>1$ and there is no edge cut X in G with $|X|<k$.

Let $v \rightarrow_{G} w$ denote a path P from vertex v to vertex w in G and let $s(P)=v$ and $t(P)=w$ be the source and target vertex of P, respectively (as G is undirected, the direction of P is given by $s(P)$ and $t(P)$). Every vertex in $P \backslash\{s(P), t(P)\}$ is called an inner vertex of P. For a vertex v in G, let $N(v)=\{w \mid v w \in E\}$ denote its set of neighbors and $\operatorname{deg}(v)$ its degree (counting multiedges). Let $\delta(G)$ be the minimum degree in G.

Let T be an undirected tree rooted at vertex r. For two vertices x and y in T, let x be an ancestor of y and y be a descendant of x if $x \in V\left(r \rightarrow_{T} y\right)$. If additionally $x \neq y, x$ is a proper ancestor and y is a proper descendant. For a vertex x in T, let $T(x)$ be the subtree of T that contains exactly the descendants of x. A $D F S$-forest F of a graph G is an acyclic graph that is computed by performing a depth-first search (DFS), see [53]. The edges in $E(G) \backslash E(F)$ are called backedges. Every connected component T in F is a rooted tree, which is called DFS-tree of G.

Let K_{2}^{m} be the graph on 2 vertices that contains exactly m parallel edges and no self-loops. A decomposition of G is a set of subgraphs of G whose edge-sets partition $E(G)$.

3 Construction Sequences

Let an edge e in a graph be contractible if contracting e results in a 3 -connected graph. A subdivision of a graph G is a graph generated from G by replacing each edge of G by a path of length at least
one. Conversely, we want a notation to get back to the graph without subdivided edges. Let smoothing a vertex $v \in V(G)$ be the operation on G that, if $\operatorname{deg}(v)=2$ and $|N(v)|=2$ (both not counting self-loops), deletes v followed by adding an edge between its neighbors.

Removing an edge $e=x y$ (with $x \neq y$) in a graph deletes e followed by smoothing x and y. An edge of G that is not a self-loop is called removable, if removing it generates a 3 -connected graph. Iteratively removing removable edges in a 3 -connected graph G leads to a sequence of removals from G to K_{4}, the existence of which characterizes 3 -connected graphs when adding an additional condition similar as for the sequence of contractions. We describe the equivalent bottom-up construction due to Barnette and Grünbaum.

Definition 1. The following operations are defined on 3-connected graphs and called $B G$-operations (see Figure 1).
(a) Add an edge $x y$ with $x \neq y$ (possibly a parallel edge).
(b) Subdivide an edge $a b, a \neq b$, by a vertex x and add the edge $x y$ for a vertex $y \notin\{a, b\}$.
(c) Subdivide two non-parallel edges by vertices x and y, respectively, and add the edge $x y$.

Figure 1: The three BG-operations.
A classical result of Barnette and Grünbaum [3] and Tutte [65] states that BG-operations characterize the 3 -connected graphs: A graph G is 3 -connected if and only if G can be constructed from K_{4} using BG-operations. Therefore, if G is 3 -connected, every intermediate graph obtained by performing the previous construction must be 3 -connected as well.

Corollary 2 (Barnette and Grünbaum [3], Theorems IV. 14 - IV. 18 in Tutte [66]). Applying a BG-operation to a 3 -connected graph G generates a 3-connected graph.

A BG-operation can always be inversed by removing a removable edge. Figure 2 shows that the converse is not true. We show under which conditions the inverse operation of removing a removable edge is a BG-operation.

Lemma 3. The inverse operation of removing a removable edge $e=x y$ in a graph G is a $B G$ operation if and only if either $|V(G)|=4$ or $|N(x)| \geq 3,|N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$ (in $G)$.

Proof. Let G^{\prime} be the 3 -connected graph generated from G by removing e and let O be the inverse operation of this removal. Assume first that O is a BG-operation and assume further that $|V(G)|>$ 4. With Corollary 2, G is 3-connected, which implies $|N(x)| \geq 3$ and $|N(y)| \geq 3$ in G. It remains to show that $|N(x) \cup| N(y) \mid \geq 5$. Assume the contrary. Then $|N(x)|=|N(y)|=3$, as $|N(x)| \geq 4$ or $|N(y)| \geq 4$ would imply $|N(x) \cup| N(y) \mid \geq 5$, as x and y are adjacent. For the same reason,

Figure 2: The edge $x y$ is removable, since removing $x y$ results in a K_{4}-multigraph, which is 3 connected. However, the inverse operation of removing $x y$ is not a BG-operation, because it induces the separation pair $\{a, b\}$.
$|N(x) \cap N(y)|=2$. Since $|V(G)|>4$, some vertex in $N(x) \cap N(y)$ must be adjacent to a vertex that is neither adjacent to x nor y. Then $N(x) \cap N(y)$ is a separation pair, which contradicts the 3 -connectivity of G. This proves $|N(x) \cup| N(y) \mid \geq 5$ in G.

Assume that O is not a BG-operation. It suffices to show that $|V(G)| \neq 4$ and $|N(x)|<3$, $|N(y)|<3$ or $|N(x) \cup N(y)|<5$. We distinguish cases by the number of end vertices of e that are deleted in the process of removing e. This number must be either 0,1 or 2 . It cannot be 0 , as in that case the removal just deletes e, implying that O just adds an edge, which would be a BG-operation. Therefore, G contains more vertices than the 3 -connected graph G^{\prime}. Since the smallest 3-connected graph is $K_{4},|V(G)| \neq 4$.

If exactly one vertex, say x, is deleted by the removal, let a and b be the two neighbors of x in G that are different from y. Then $y \in\{a, b\}$ holds to assure that O is not a BG-operation and $|N(x)|<3$ in G. If both vertices x and y are deleted by the removal, let f_{1} and f_{2} be the edges in which x and y are smoothed, respectively. Then f_{1} and f_{2} have to be identical or parallel in order to assure that O is not a BG-operation, which implies that $|N(x) \cup N(y)|<5$.

If G is simple, the condition $|V(G)|=4$ in Lemma 3 is not needed.
Lemma 3 implies that a graph G is 3-connected if and only if a sequence of removals on removable edges $e=x y$ with $|N(x)| \geq 3,|N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$ to a K_{4}-multigraph exists. The following alternative view on this sequence allows to represent intermediate graphs as subgraphs of G. Let a vertex v in a subdivision S of either K_{2}^{3} or of a 3-connected graph be real if $\operatorname{deg}(v) \geq 3$. Let $V_{\text {real }}(S)$ be the set of all real vertices in S. Let the links of S be the paths in S that have real end vertices but contain no other real vertices. The links of S are in one-to-one correspondence to the edges of the subdivided graph and therefore partition $E(S)$. Let two links be parallel if they share the same end vertices.

Definition 4. Let S be a subgraph of a graph G such that S is a subdivision of either K_{2}^{3} or of a 3 -connected graph. A $B G$-path for S is a path $P=x \rightarrow_{G} y, x \neq y$, with the properties (see Figure 3):

1. $V(P) \cap V(S)=\{x, y\}$.
2. Every link of S that contains both x and y contains them as end vertices.
3. If x and y are inner vertices of distinct links L_{x} and L_{y} of S, respectively, and $\left|V_{\text {real }}(S)\right| \geq 4$, then L_{x} and L_{y} are not parallel.

(a) P is a BG-path for the K_{4}-subdivision S.

(b) P is not a BG-path for S, since there is a link that contains x and y such that y is not an end vertex of that link (see Property 4.2).

(c) P is not a BG-path for the $K_{4}{ }^{-}$ multigraph S, as x and y are inner vertices of two parallel links and $\left|V_{\text {real }}(S)\right| \geq 4$ (see Property 4.3).

Figure 3: BG-paths

Theorem 5 (implicitly in [3]). A graph G without self-loops is 3-connected if and only if $\delta(G) \geq 3$ and G can be constructed from a K_{4}-subdivision in G by adding $B G$-paths.

Theorem 5 implies that every 3 -connected graph contains a subdivision of K_{4}, a result first shown by J. Isbell [3]. Note that after the addition of a BG-path $P, s(P)$ and $t(P)$ are real. Let S_{4}, \ldots, S_{z} be a sequence of subgraphs in G that are generated by the construction, i. e., S_{4} is the K_{4}-subdivision in G and $S_{z}=G$. The BG-path construction has the advantage that every S_{l} is a subgraph of $S_{l+1} \subseteq G$. This admits not only a straight-forward representation of the construction in linear space by storing S_{4} and the added BG-paths, it provides also a way to compute a next BG-path efficiently by searching the neighborhood of the current subgraph in G.

The choice of the K_{4}-subdivision S_{4} is not crucial [47]: At the expense of having additional parallel links in subgraphs S_{l} (we will be able to handle these efficiently), there exists a construction sequence to a 3 -connected graph G using BG-paths from every prescribed K_{4}-subdivision in G. To certify 3 -connectivity, we will use a slightly modified variant of the BG-path construction that starts with a K_{2}^{3}-subdivision instead of a K_{4}-subdivision; let the sequence of generated subgraphs be in that case S_{3}, \ldots, S_{z}. We will provide linear-time transformations to all other construction sequences.

We summarize constructive characterizations of 3-connected graphs and group similar ones. From now on, we assume G to be simple, although all results extend to multigraphs. When convenient, a construction sequence of a special type A is referred to as sequence A, although there might be more than one sequence of that type.

Theorem 6. A simple graph G is 3-connected
\Leftrightarrow There is a sequence of $B G$-operations from K_{4} to G
(see [3], Theorems 12.64 and 12.65 in [65])
\Leftrightarrow There is a sequence of $B G$-operations from K_{4} to G such that every
intermediate graph is simple (see [3], Theorem 6.(6) in [48])
\Leftrightarrow There is a sequence of removals from G to K_{4} of removable edges $e=x y$ with
$|N(x)| \geq 3,|N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$ (see Lemma 3)
\Leftrightarrow There is a sequence of removals from G to K_{4} of edges $e=x y$ with
$|N(x)| \geq 3,|N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$

$$
\begin{align*}
\Leftrightarrow & \text { There is a sequence of contractions from } G \text { to a } K_{4} \text {-multigraph of contractible } \tag{5}\\
& \text { edges } e=x y \text { with }|N(x)| \geq 3 \text { and }|N(y)| \geq 3 \text { (see [47], chapter } 5 \text { in [64]) } \\
\Leftrightarrow & \text { There is a sequence of contractions from } G \text { to a } K_{4} \text {-multigraph of } \tag{6}\\
& \text { edges } e=x y \text { with }|N(x)| \geq 3 \text { and }|N(y)| \geq 3 \text { (see [17]) } \\
\Leftrightarrow & \delta(G) \geq 3 \text { and there is a sequence of } B G \text {-paths from a } K_{2}^{3} \text {-subdivision in } G \text { to } G \tag{7}\\
& \text { such that the first } B G \text {-path generates a } K_{4} \text {-subdivision } \\
\Leftrightarrow & \delta(G) \geq 3 \text { and there is a sequence of } B G \text {-paths from a } K_{4} \text {-subdivision in } G \text { to } G \text { [3, 47] } \tag{8}\\
\Leftrightarrow & \delta(G) \geq 3 \text { and there is a sequence of } B G \text {-paths from each } K_{4} \text {-subdivision in } G \text { to } G\left[4^{77]}\right. \tag{9}
\end{align*}
$$

Proof. Only the equivalences of (4) and (7) need to be shown. We first prove (7) \Leftrightarrow (8). Clearly, deleting the first BG-path in a sequence (7) gives a sequence (8). Conversely, the K_{4}-subdivision of a sequence (8) can be decomposed into a K_{2}^{3}-subdivision S_{3} and a path P that connects inner vertices of two parallel links of S_{3}. Since $\left|V_{\text {real }}\left(S_{3}\right)\right|<4, P$ is a BG-path for S_{3}.

For the equivalence of (4), clearly $(3) \Rightarrow(4)$. We prove $(4) \Rightarrow(1)$. Let a sequence (4) be given and let G_{i+1} be any graph in that sequence different from K_{4}. Let $x y$ be the edge in G_{i+1} that is removed in the sequence to generate the graph G_{i}. Assume first that G_{i} is 3-connected. Then $x y$ is removable and since $|N(x)| \geq 3,|N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$ hold in G_{i+1}, the inverse of removing $x y$ is a BG-operation on G_{i} due to Lemma 3. In particular, the 3-connectivity of G_{i} implies that G_{i+1} is 3 -connected with Corollary 2 . Since K_{4} is 3 -connected, the inverse of every removal in the sequence is a BG-operation, giving a sequence (1).

We list linear-time transformations between the sequences of Theorem 6 .
Lemma 7 ([47], Lemmas 7 and 13 in [48]). There are algorithms that transform every given sequence (1)-(4) and (8) to each of the sequences (1) and (3)-(8) in linear time. The transformations to sequence (1), (3), (4) and (8), respectively, preserve the number of operations.

Lemma 8. Every sequence (1) can be transformed to a sequence (2) in linear time such that the number of operations is preserved.
Proof. All vertices and edges in sequence (1) have unique identifiers. Whenever an edge is subdivided by a BG-operation, new identifiers are assigned to the new vertex and to the two parts of the former edge, respectively. Similarly, a new identifier is assigned to the newly created edge of every BG-operation, i.e., to the edge $x y$ in Definition 1. Once created, vertices do not change their identifiers. In [47], it is shown that this representation can be stored in linear space.

Let F be the list of all edges that are contained in this representation with different identifiers, ordered by their time of creation in the construction sequence. F contains the edges that are newly created by BG-operations, the edges that arise from subdividing old edges and the edges that are contained in the initial K_{4} (the latter ones are placed at the very beginning of F).

We first show how to group edges of F that have the same end vertices. Let $<$ be any total ordering on the vertices. We sort the edges of F in lexicographic order \prec on their end vertices, i.e., for two distinct edges $a b$ and $c d$ in F with $a<b$ and $c<d, a b \prec c d$ if either $a<c$ or $a=c$ and $b<d$. This sorting can be computed in linear time by performing two bucket sorts on the end vertices of edges in F, respectively.

Sorting F allows us to efficiently group edges that have the same end vertices. Let $F_{a, b}$ be the list of the edges in F with end vertices a and b; for every edge e in $F_{a, b}$, we store pointers to $F_{a, b}$
and to the edge $\operatorname{sub}(e)$ that subdivides e (if exists), respectively. Since bucket sort is stable, the edges in $F_{a, b}$ are still ordered by their time of creation in the construction sequence.

In order to make every intermediate graph simple, we swap edges in $F_{a, b}$ and move the operations that create some of these edges to another position in the construction sequence. Clearly, we only have to consider lists $F_{a, b}$ that contain at least two edges, as otherwise no parallel edge $a b$ occurs in the construction sequence. Thus, $\left|F_{a, b}\right| \geq 2$. There is at most one edge in $F_{a, b}$ that is not subdivided, since G is simple. Hence, $F_{a, b}$ contains at least one edge e for which $\operatorname{sub}(e)$ exists.

Let $e_{\text {min }}$ be the edge in $F_{a, b}=\left\{e_{1}, \ldots, e_{k}\right\}$ that is subdivided earliest in the construction sequence. This edge can be computed in time $O(k)$ by passing once through the list $F_{a, b}$. If $e_{\text {min }} \neq e_{1}$, we swap $e_{\text {min }}$ and e_{1} throughout the construction sequence. This modification preserves every operation to be a BG-operation, as the vertices a and b are never deleted (recall that adding an edge between two existing vertices is always a BG-operation) and since no edge in $F_{a, b}$ is subdivided before $e_{\min }$. In fact, all parallel edges $a b$ are pairwise interchangeable until $\operatorname{sub}\left(e_{\min }\right)$ is added. Clearly, the number of BG-operations has not changed.

Every remaining edge $e \in\left\{e_{2}, \ldots, e_{k}\right\}$ in $F_{a, b}$ is now the newly added edge of some BG-operation O_{e}, as a and b exist due to e_{1}. Note that e_{1} is not necessarily the newly added edge of some BGoperation; e.g., e_{1} may be part of the initial K_{4} instead. If there is an edge e in $F_{a, b}$ that is not subdivided, e must be distinct from e_{1} because of the previous modification. If such an edge e exists, we move it to the very end of the construction sequence. This preserves any operation to be a BG-operation, as a and b exist and no other edge interferes with e, as no edge subdivides e.

For every remaining edge $e \in F_{a, b}$, we move O_{e} to the position in the construction sequence immediately before $\operatorname{sub}(e)$ is added. Again, this preserves every operation in the construction sequence to be a BG-operation, as a and b exist and $\operatorname{sub}(e)$ is the only edge that interferes with e. Since every such e is now added after $e_{\text {min }}$ in the construction sequence and immediately subdivided after its addition, every intermediate graph is simple. Clearly, all modifications preserve the number of BG-operations.

A sequence (7) can be easily transformed to a sequence (8) by using the first BG-path to create a K_{4}-subdivision; the transformed sequence will have one operation less. Moreover, Lemmas 7 and 8 allow to further transform a sequence (8) efficiently to every sequence (1)-(6). In the rest of the paper we will therefore focus on computing only a sequence (7).

That is why a construction sequence will refer to a sequence (7) throughout the rest of the paper: We can transform this sequence to every other sequence of Theorem 6 in linear time. The following lemma provides an iterative algorithmic approach to build a sequence (7).

Lemma 9 (Corollary of [48]). Let G be a 3-connected graph and $H \subset G$ with H being a subdivision of either K_{2}^{3} or of a 3-connected graph. Then there is a $B G$-path for H in G. Moreover, every link L of H of length at least 2 has a parallel link (maybe L itself) that contains an inner vertex on which a BG-path for H starts.

Every sequence of contractions (i.e., every sequence (5) and (6)) contains exactly $n-4$ contractions, implying that the K_{4}-multigraph contains exactly $m-n-2$ parallel edges. The next lemma is a corresponding result for the number of operations in construction sequences.

Lemma 10. Every sequence (1)-(4) and (8) contains exactly $m-n-2$ operations, whereas every sequence (7) contains exactly $m-n-1$ operations.

Proof. It suffices to show the first claim for each sequence (1), as Lemmas 7 and 8 preserve the number of operations, respectively. The remaining claim follows directly from the fact that the transformation of a sequence (8) to a sequence (7) adds exactly one BG-path. Let a, b and c denote the number of BG-operations in a sequence (1) that create zero, one and two new vertices, respectively. Then $b+2 c=n-4$ and $a+2 b+3 c=m-6$ hold, since K_{4} consists of four vertices and six edges. Subtracting the first from the second equation gives $a+b+c=m-n-2$.

4 Chain Decompositions and Certificates

Suppose there is a vertex or edge cut X of size $k-1, k \geq 1$, in a graph G with $n>1$ (for vertex-connectivity, let $n>k$). Then X would be a straight-forward certificate for G being not k-connected respectively not k-edge-connected. However, certificates should be as easy to check as possible, while the running time for computing the certificate is less important. We therefore apply the paradigm of shifting as much as possible of the checker's work to the computation of the certificate.

Instead of using X as certificate, we color the vertices of one connected component of $G \backslash X$ red and the vertices of all other connected components of $G \backslash X$ green. A checker for G being not k-connected then just needs to check that at most $k-1$ vertices are uncolored, there is at least one red and one green vertex and that no edge joins a red vertex with a green one. For G being not k-edge-connected, it suffices to check that there is at least one red, one green and no uncolored vertex and that the end vertices of at most $k-1$ edges differ in color. Note that this certifies a graph to be disconnected for $k=1$. We will always use these certificates instead of using X itself. The certificates need space $O(n)$ and can be checked in time $O(m)$, as $n>m+1$ proves G to be disconnected.

For a certifying algorithm, it remains to show how the vertex and edge cuts X for these certificates are computed and which certificates is to be used for k-connectivity and k-edge-connectivity, $1 \leq k \leq 3$. Performing a depth-first search $[35,53,56]$ or any other suited graph traversal gives the connected components of G in linear time. A certificate for G being connected is given in [36], using an easy numbering scheme on the vertices.

Chain Decomposition. We use a very simple decomposition of graphs into cycles and paths, which links DFS-trees, ear decompositions [34] and open (i. e., no ear is a cycle) ear decompositions [34, 69] without needing to compute low-points in advance (see [31] for a definition of low-points). This decomposition does not only unify existing linear-time tests on 2 -connectivity $[9$, $10,16,19,20,22,53,55]$ and 2-edge-connectivity [54, 59, 62], it will also be the base structure that allows to compute a construction sequence of a 3 -connected graph efficiently. We define the decomposition algorithmically; a similar procedure for the computation of so-called low-points can be found in [46].

Let G be a simple but not necessarily connected graph and let T be a depth-first search forest of G. The DFS assigns a depth-first index (DFI) to every vertex. Recall that, for every backedge $e, s(e)$ and $t(e)$ are the two end vertices of e such that $s(e)$ is a proper ancestor of $t(e)$ in T.

We decompose G into a set $C=\left\{C_{1}, \ldots, C_{|C|}\right\}$ of cycles and paths, called chains, by applying the following procedure for each vertex v in ascending DFI-order: Let T^{\prime} be the tree in the DFSforest T that contains v and let r be the root of T^{\prime}. For every backedge $v w$ with $s(v w)=v$, we
traverse the path $w \rightarrow_{T^{\prime}} r$ until a vertex x is found that is either r or already contained in a chain. The traversed subgraph $v w \cup\left(w \rightarrow_{T^{\prime}} x\right)$ forms a new chain C_{i} with $s\left(C_{i}\right)=v$ and $t\left(C_{i}\right)=x$.

We call C a chain decomposition (although it does not necessarily partition $E(G)$ when G is not 2-edge-connected). Let $<$ be the strict total order on C in which the chains were found, i.e., $C_{1}<\cdots<C_{|C|}$, when forming the decomposition. Processing the vertices in ascending DFI-order is not crucial; any pre-order on $V(T)$ can be used instead (a strict total order \prec on $V(T)$ is a pre-order if, for every vertex $v \in V(T)$, all proper ancestors of v in T precede v in $\prec)$. Clearly, the decomposition into chains can be computed in time $O(n+m)$.

Lemma 11. Let C be a chain decomposition of a simple graph G. Then G is 2-connected if and only if $\delta(G) \geq 2$ and C_{1} is the only cycle in C.

Proof. Let G be 2-connected. Then G contains at least 3 vertices, the DFS-forest T is a tree and the root r of T has exactly one child, as otherwise r would be a cut vertex. Additionally, G cannot contain a vertex of degree one, as otherwise its neighbor would be a cut vertex. It follows that r is adjacent to a backedge, implying that C_{1} is a cycle. Assume to the contrary that another chain $C_{i} \neq C_{1}$ is a cycle. Let v be the vertex in C_{i} of minimal DFI and let w be the child of v in T that is also in C_{i}. Then no backedge adjacent to a vertex with smaller DFI than v can enter $T(w)$, as this backedge would have been processed before in the chain decomposition, contradicting C_{i}. Because $v \neq r, v$ is a cut vertex, which contradicts the assumption and the claim follows.

Now let every vertex in G have degree at least two and let C_{1} be the only cycle in C. This implies that G is connected, thus, T is a tree. Assume to the contrary that G is not 2 -connected and consider the decomposition of G into maximal 2-connected components (2-components), where single edges are regarded as 2 -connected graphs. It is well-known that representing each 2 -component by a vertex that is adjacent to every cut vertex contained in that 2 -component gives a tree [24, 29], called the block-cut-tree ($B C$-tree). Every cycle in G must be contained in a 2 -component, as a cycle is 2 -connected. Let X be the 2-component that contains C_{1}, let r be the root of T and let Y be a leaf of the BC-tree that is different from X. Then Y is not an edge, as otherwise it would contain a vertex with degree one. It follows that Y contains a cycle. Let a be the last cut vertex on a path from r to an arbitrary vertex in Y (it may happen that $a=r$). Then the chain decomposition must find a cycle in Y when processing a. This cycle is different from $C_{1} \subseteq X$, which contradicts the assumption.

Lemma 12. Let C be a chain decomposition of a simple graph G. Then G is 2-edge-connected if and only if G is connected and the chains in C partition $E(G)$.

Proof. Let G be 2-edge-connected. In particular, G is connected and the DFS-forest T is a tree. By construction, the edge-sets of chains in C are disjoint and every backedge is contained in a chain. We show that every edge $e=x y$ in T (say, x is an ancestor of y) is also contained in a chain of C. There must be a cycle in G that contains e, as otherwise e would be a bridge. It follows that there is a backedge that enters $T(y)$. The chain in C containing the first such backedge that is traversed in the chain decomposition contains e.

Let G be not 2-edge-connected. We show that G is not connected or that the chains in C do not partition $E(G)$. Assume w.l.o.g. that G is connected, thus, T is a tree. Then G contains a bridge $e=x y$ (say, x is an ancestor of y), which must be a DFS-tree edge, as every backedge is contained in a cycle. As no backedge enters $T(y)$, e cannot be contained in any chain of C.

4.1 Certificates for Low Connectivity

If G is connected, we can detect whether G is 2 -connected or 2 -edge-connected in linear time using Lemmas 11 and 12. If G is not 2-connected, we extract a cut vertex as follows: If a vertex with degree one exists, its neighbor is a cut vertex. Otherwise, a chain decomposition C contains a cycle $C_{i} \neq C_{1}$ according to Lemma 11. Then the vertex with minimal DFI in C_{i} is a cut vertex. If G is not 2-edge-connected, every edge that is not contained in a chain of C is a bridge.

For G being 2 -connected and 2-edge-connected, C will be an open ear decomposition and an ear decomposition, respectively. It is well-known that these decompositions characterize the 2 connectivity respective 2 -edge-connectivity of a graph $[34,69]$. We therefore use in both cases C as a certificate that can be verified by going along the definition of (open) ear decompositions in time $O(m)$. Note that C is not an arbitrary (open) ear decomposition; it depends on the DFS-tree.

For 3-connectivity, we will use a sequence (7) as certificate, as this is a proof for 3-connectivity due to Theorem 6. A simple checker for a sequence (8) with running time $O(m)$ is given in [47] that can be easily extended to check a sequence (7) by replacing the K_{4}-subdivision by a K_{2}^{3}-subdivision. Moreover, this certificate can be easily stored in space $O(|E|)[47]$.

3-Edge-Connectivity. For 3 -edge-connectivity, we use the reduction to 3 -connectivity due to Galil and Italiano [23]. The reduction modifies the simple input graph G in linear time to a graph with $n+m$ vertices and $4 m$ edges. First, a graph G^{\prime} is generated from G by subdividing each edge with one vertex; these vertices are called arc-vertices. For each non-arc-vertex w in G^{\prime} we do the following: Let $v_{1}, \ldots, v_{\operatorname{deg}(w)}$ be the arc-vertices neighboring w in an arbitrary order. Then the edges $\left(v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{\operatorname{deg}(w)} v_{1}\right)$ are added to G^{\prime} if not already existent. Note that the reduction blows up each vertex $v \in V(G)$ to a wheel graph with as many spokes as v has neighbors.

The graph G is 3 -edge-connected if and only if G^{\prime} is 3 -connected [23]. Moreover, every vertex cut of minimal size in G^{\prime} contains only arc-vertices (Lemma 2.2 in [23]). We apply the certifying 3 -connectivity test to G^{\prime} to obtain a certifying 3-edge-connectivity test in linear time and space. If G^{\prime} is not 3 -connected, the test for 3 -connectivity returns a vertex cut of minimal size in G^{\prime}, which corresponds to an edge cut X of size at most two in G. The certificate then consists just of the red-green coloring of the connected components of $G \backslash X$ as described above.

Otherwise, G^{\prime} is 3 -connected and we get a sequence (7) for G^{\prime}. The certificate consists of this sequence, G^{\prime} and the injective mapping ϕ from each vertex in G^{\prime} to its corresponding vertex or edge in G to certify the construction of G^{\prime}. For a checker, it suffices to test that G^{\prime} is 3-connected using the given sequence, every vertex in G has a unique preimage in $V\left(G^{\prime}\right)$ under ϕ, every non-arc-vertex v in G^{\prime} is the hub of a wheel graph with $\operatorname{deg}(v)+1$ vertices that are all arc-vertices except for v, every two wheels in G^{\prime} share at most one arc-vertex and every arc-vertex u in G^{\prime} is incident to exactly two non-arc-vertices v and w such that $\phi(u)=\phi(v) \phi(w)$ and $\phi(u) \in E(G)$. Note that this checker may fail in detecting additional edges (but not additional vertices) in G and that this does not harm the 3 -edge-connectivity of G. In both cases, the certificate needs linear space and can be checked in time $O(m)$.

5 A Certifying Algorithm in Linear Time

For convenience, we will assume that the input graph G is simple throughout this chapter. However, if needed, all results can be extended to non-simple graphs G by applying them to the underlying
simple graph of G; the underlying simple graph of G can be computed in time $O(n+m)$ by using two bucket sorts on $E(G)$.

We do not impose any other restrictions on G; in particular, we neither assume G to be 2 connected nor connected. The certifying algorithm that we will describe, actually tests a graph on having connectivity k for $k=0,1,2$ and $k \geq 3$ and gives a certificate for each case. Its running time is $O(n+m)$. In the case that G is 3 -connected, we will use a sequence (7) as certificate and show how to compute it in linear time. According to Lemmas 7 and 8, this implies that every sequence (1)-(8) of a 3 -connected graph can be computed in time $O(n+m)$.

5.1 Using the Chain Decomposition

If $n \leq 1, G$ has connectivity 0 and the number of vertices certifies that fact. Otherwise, we perform a DFS on G in time $O(n+m)$ and obtain a DFS-forest T. In particular, the DFS detects the connected components of G. If there is more than one connected component, we use the red-green coloring of Section 4 on the connected components as certificate that G is disconnected and, thus, has connectivity 0 , as $n>1$. For upcoming tests, we will assume that every vertex cut is certified by a red-green coloring.

In the remaining case, G is connected and T is a tree. If $n=2, G$ has connectivity 1 . Otherwise, we compute a chain decomposition C on T in time $O(m)$ and obtain the chains $C_{1}<\cdots<C_{|C|}$. Additionally, we compute the minimum degree $\delta(G)$ of G during the computation of the chain decomposition and store a vertex x that attains this degree. Moreover, by comparing the end vertices of each chain on identity, the number y of cycles in C is computed.

If $\operatorname{deg}(x)=1, G$ is not 2 -connected and the neighbor of x must be a cut vertex, which implies that G has connectivity 1. Let $\operatorname{deg}(x)>1$. If $y>1$, the vertex with minimal DFI in a cycle $C_{i} \neq C_{1}$ is a cut vertex and can be computed directly from C in linear time; thus, G has connectivity 1. Otherwise, $y=1$ and it follows that the root of T can have only one child. We conclude with $\delta(G) \geq 2$ that the only cycle in C is C_{1}. According to Lemma 11, G is 2-connected and C is an open ear decomposition, which is a certificate for the 2-connectivity of G.

If $n=3, G$ has connectivity 2 . The same holds, if $\operatorname{deg}(x)=2$, as then the two neighbors of x form a separation pair. In the remaining case, G satisfies the following Property A.

Property A: $n \geq 4, \delta(G) \geq 3$ and G is 2-connected
From now on, we will assume Property A, as we dealt with all other cases. We summarize some implications.

Lemma 13. The chains in C partition $E(G)$ and the last chain is C_{m-n+1}. The root r of T has exactly one child.

Proof. According to Property A, G is 2-connected. As every 2-connected graph is 2-edge-connected, Lemma 12 implies that the chains in C partition $E(G)$. Since G is in particular connected, $|C|=$ $m-n+1$, as $|C|$ is the number of backedges in G by construction. If r had more than one child, the DFS-tree would imply that r is a cut vertex, contradicting the 2 -connectivity of G.

5.2 Computing a K_{2}^{3}-Subdivision

Assume for a moment that G is 3 -connected. According to Lemma 9, it suffices to add iteratively BG-paths to an arbitrarily prescribed K_{2}^{3}-subdivision S_{3} in G to get a construction sequence (7)
from S_{3} to $S_{z}=G$. Note that we cannot make wrong decisions when choosing a BG-path, except for the first BG-path that has to generate a K_{4}-subdivision. The reason for this is that Lemma 9 can always be applied on the new generated subgraph and therefore ensures a completion of the sequence. With Lemma $10, S_{z}=S_{m-n+2}=G$. Unfortunately, we do not know whether G is 3 -connected. However, we can already compute a K_{2}^{3}-subdivision.

Let r be the root of T. Because of Property A, $\operatorname{deg}(r) \geq 3$ in G. Since r has exactly one child in T, at least two chains exist and the chains C_{1} and C_{2} must both start at r. According to Lemma 11, C_{1} is a cycle and all other chains are paths. By construction of the chains, $C_{1} \cup C_{2}$ is a K_{2}^{3}-subdivision and we set $S_{3}=C_{1} \cup C_{2}$.

Recall that for a path $P=v \rightarrow_{G} w$, we defined $s(P)=v$ and $t(P)=w$. To keep notation simple, we abuse notation and split the cycle C_{1} into the two different paths from r to $t\left(C_{2}\right)$, i. e., we set $C_{0}=t\left(C_{2}\right) \rightarrow_{T} r$ and redefine $C_{1}=r \rightarrow_{C_{1} \backslash E\left(C_{0}\right)} t\left(C_{2}\right)$. Note that $s\left(C_{0}\right)=t\left(C_{2}\right)$ and $s\left(C_{1}\right)=r$. From now on, we will represent the chain decomposition as this list $C=C_{0}, \ldots, C_{m-n+1}$ of paths. Sometimes, we will regard C as a set. By construction, the following holds.

Proposition 14. Let C_{i} be a chain in $C \backslash\left\{C_{0}\right\}$. Then $s\left(C_{i}\right)$ is a proper ancestor of $t\left(C_{i}\right)$. Additionally, C_{i} contains exactly one backedge, namely its first edge.

According to Lemma 12 , every edge in G is contained in exactly one chain. We define parents and children of chains.

Definition 15. Let the parent of a chain $C_{i} \neq C_{0}$ be the chain C_{k} that contains the edge from $t\left(C_{i}\right)$ to the parent of $t\left(C_{i}\right)$ in T. Conversely, let C_{i} be a child of the chain C_{k}.

The children of C_{0} are exactly the chains C_{i} with $t\left(C_{i}\right) \in V\left(C_{0}\right)$. The children of a chain $C_{k} \neq C_{0}$ are exactly the chains C_{i} for which $t\left(C_{i}\right)$ is an inner vertex of C_{k}. The following two lemmas reveal much of the structure of chains and are often used in subsequent theorems.

Lemma 16. Let $C_{k} \neq C_{0}$ be a chain with child C_{i}. Then $C_{k}<C_{i}, s\left(C_{i}\right)$ is a descendant of $s\left(C_{k}\right)$ in T and $t\left(C_{i}\right)$ is a proper descendant of $t\left(C_{k}\right)$ in T.

Proof. By the definition of the parent relation, $t\left(C_{i}\right)$ must be an inner vertex of C_{k} and the last claim follows. As the traversal of C_{i} stopped at C_{k} in the chain decomposition, $C_{k}<C_{i}$ must hold. Therefore, $s\left(C_{i}\right)$ cannot be a proper ancestor of $s\left(C_{k}\right)$ in T. As T is a DFS-tree, $s\left(C_{i}\right)$ must be a descendant of $s\left(C_{k}\right)$ in T.

We show that chains admit a tree structure.
Lemma 17. The parent relation on C defines a tree U with $V(U)=C$ and root C_{0}.
Proof. Let $D_{0} \neq C_{0}$ be a chain in C and let D_{1}, \ldots, D_{k} be the sequence of chains containing the edges of $t\left(D_{0}\right) \rightarrow_{T} r$ in that order, omitting double occurrences. By definition of the parent relation, each $D_{i}, 0 \leq i<k$, has parent D_{i+1}. It follows with $D_{k}=C_{0}$ that U is connected. Moreover, U is acyclic, as parent chains are always smaller in $<$ than their children due to the chain decomposition.

For convenience, U will always denote the tree that is defined by the parent relation on C.
It remains to show how we can efficiently compute either a next BG-path for the current subgraph S_{l}, starting with $l=3$, or a cut vertex or separation pair. For this purpose, we classify
the chains into different types in Section 5.3. We will eventually consider the chains $C_{i} \in C$ in the total order $<$ and focus on the chains that have a non-empty intersection with C_{i} in every step. Certain types of these chains will be BG-paths and therefore lead to the next subgraph in the construction sequence. The remaining ones will be grouped into bigger structures, called caterpillars, that can be decomposed into BG-paths later if the input graph is 3 -connected (see Section 5.4).

To make the computation efficient, Section 5.5 restricts the desired construction sequence, which we try to compute, to a more special sequence. It is not clear that this restricted construction sequence for 3 -connected input graphs exists; its existence is shown in Section 5.6. Section 5.7 deals with the computation of the restricted construction sequence in linear time by a reduction to interval overlaps.

5.3 Classification of Chains

We assign one of the Types 1, 2a, 2b, 3a and 3b to each chain $C_{i} \in C \backslash\left\{C_{0}\right\}$ in ascending order of $<$. Some of these types will be BG-paths under certain conditions. The types are determined by Algorithm 1 and dependent on the parent C_{k} of C_{i} : E. g., C_{i} is of Type 1 if $\left(t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)\right) \subseteq C_{k}$ and of Type 2 if it is not of Type 1 and $s\left(C_{i}\right)=s\left(C_{k}\right)$. All chains are unmarked at the beginning of Algorithm 1. Note that chains that are backedges, in particular chains of Type 2a, cannot have children. We illustrate the different types in Figures 4, 5 and 12(b).

```
Algorithm 1 classify \(\left(C_{i} \in C \backslash\left\{C_{0}\right\}\right.\), DFS-tree \(\left.T\right) \quad \triangleright\) classifies chains into types 1,2a,2b,3a,3b
    Let \(C_{k}\) be the parent of \(C_{i}\) in \(U \quad \triangleright C_{k}<C_{i}\)
    if \(t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)\) is contained in \(C_{k}\) then \(\quad \triangleright\) Type 1
        assign Type 1 to \(C_{i}\)
    else if \(s\left(C_{i}\right)=s\left(C_{k}\right)\) then \(\quad \triangleright\) Type 2: \(C_{k} \neq C_{0}, t\left(C_{i}\right)\) is inner vertex of \(C_{k}\)
        if \(C_{i}\) is a backedge then
            assign Type 2a to \(C_{i} \quad \triangleright\) Type 2a
        else
            assign Type 2b to \(C_{i}\); mark \(C_{i} \quad \triangleright\) Type 2b
    else \(\triangleright\) Type 3: \(s\left(C_{i}\right) \neq s\left(C_{k}\right), C_{k} \neq C_{0}, t\left(C_{i}\right)\) is inner vertex of \(C_{k}\)
        if \(C_{k}\) is not marked then
                assign Type 3a to \(C_{i} \quad \triangleright\) Type 3a
        else \(\quad \triangleright C_{k}\) is marked
            assign Type 3 b to \(C_{i}\); create a list \(L_{i}=\left\{C_{i}\right\} ; C_{j}:=C_{k} \quad \triangleright\) Type 3b
            while \(C_{j}\) is marked do \(\triangleright L_{i}\) is called a caterpillar
                    unmark \(C_{j}\); append \(C_{j}\) to \(L_{i} ; C_{j}:=\operatorname{parent}\left(C_{j}\right)\)
```

We first prove a basic property of chains of Types 2 and 3 and then show that the classification of chains can be carried out in linear time.

Lemma 18. Let $C_{i} \neq C_{0}$ be a chain of Type 2 or 3 and let C_{k} be the parent of C_{i}. Then $C_{k} \neq C_{0}$ and $t\left(C_{i}\right)$ is an inner vertex of C_{k}.

Proof. Assume to the contrary that $C_{k}=C_{0}$. Because $t\left(C_{i}\right)$ is contained in $C_{0}, s\left(C_{i}\right)$ must be in C_{0} as well. But then C_{i} would be of Type 1 , since $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right) \subseteq C_{0}$. Therefore, $C_{k} \neq C_{0}$ holds

Figure 4: Different types of chains. The underlying DFS-tree is always depicted with straight edges, while backedges are bent; in addition, higher vertices are visited first in the DFS. Light solid (blue) chains are of Type 1, (red) dashed ones of Type 2 and black solid ones of Type 3.
and C_{k} must start with a backedge. Then the definition of the parent relation implies that $t\left(C_{i}\right)$ is an inner vertex of C_{k}.

Lemma 19. Classifying each chain with Algorithm 1 takes running time $O(m)$.
Proof. In order to obtain a fast classification, we store the following information for each chain C_{i} : A pointer to its parent C_{k} (for $C_{i} \neq C_{0}$), pointers to $s\left(C_{i}\right)$ and $t\left(C_{i}\right)$ and the information whether C_{i} is a backedge. In addition, we store on each inner vertex of C_{i} a pointer to C_{i}. That allows us to check vertices on being contained as inner vertices or end vertices in arbitrary chains in $O(1)$. If $C_{k}=C_{0}, C_{i}$ is of Type 1, as in that case $t\left(C_{i}\right)$ and $s\left(C_{i}\right)$ are contained in C_{0} (see also Lemma 18). If $C_{k} \neq C_{0}, C_{i}$ is of Type 1 if $s\left(C_{i}\right)$ is contained in $C_{k} \backslash s\left(C_{k}\right)$, which can be checked in constant time. The conditions for Type 2a and 2b need constant time as well. Every chain is marked at most once, therefore unmarked as most once in Line 15 of Algorithm 1, which gives a total running time of $O(m)$.

Note that the classification with Algorithm 1 can be easily integrated into the chain decomposition. From now on, we assume that we have classified all chains.

We remark that the chains of Types 1 and 3 are identical to the paths that the path-finding procedure in the algorithm of Hopcroft and Tarjan [30] computes by using low-points, although the order is different. However, this does not hold for the chains of Types 2a and 2 b .

We next define a necessary property for G to be 3-connected. Recall that $T(x)$ is the subtree of T that contains all descendants of x.

Property B: For every chain $C_{i} \in C \backslash\left\{C_{0}\right\}$ that is not a backedge and for its last inner vertex x, G contains a backedge e that enters $T(x)$ such that $s(e)$ is an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$.

We say that a chain C_{i} has Property B if C_{i} does not violate Property B. In particular, C_{0} and every chain that is a backedge has Property B.

Lemma 20. If a chain C_{i} violates Property $B,\left\{s\left(C_{i}\right), t\left(C_{i}\right)\right\}$ is a separation pair in G.
Proof. The chain C_{i} can neither be C_{0} nor a backedge. Let x be the last inner vertex of C_{i}. We first show that G contains a vertex y that is neither in $\left\{s\left(C_{i}\right), t\left(C_{i}\right)\right\}$ nor in $T(x)$. Assume otherwise. Then $s\left(C_{i}\right)$ must be the root of T, C_{0} is the tree edge $s\left(C_{i}\right) t\left(C_{i}\right)$ in T and C_{i} is either C_{1} or C_{2}, say C_{1}. As C_{2} cannot contain inner vertices, C_{2} must be the backedge $s\left(C_{i}\right) t\left(C_{i}\right)$, which contradicts the simpleness of G.

We show that every backedge that enters $T(x)$ must start at a vertex in $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$. Clearly, such a backedge e starts at a proper ancestor of x due to the DFS -structure, i.e., it starts at an ancestor of $t\left(C_{i}\right)$. Moreover, e does not start at a proper ancestor of $s\left(C_{i}\right)$, as otherwise the chain containing e would have been traversed by the chain decomposition procedure before C_{i} and contain x. As Property B does not hold for C_{i}, we conclude that all backedges that enter $T(x)$ start either at $s\left(C_{i}\right)$ or $t\left(C_{i}\right)$. This causes $\left\{s\left(C_{i}\right), t\left(C_{i}\right)\right\}$ to be a separation pair in G, because its deletion separates the vertices y and x.

Thus, Property B is necessary for G being 3 -connected. The reader that is mainly interested in the computation of a construction sequence for a given 3-connected graph can therefore safely take Property B for granted. For the case that G is not known to be 3 -connected, we show how to check Property B in linear time as part of the chain decomposition.

Lemma 21. Property B can be checked in time $O(n+m)$ as part of the chain decomposition.
Proof. We mark every chain that has Property B with a special marker during the chain decomposition. This gives a test on Property B in $O(n+m)$ time. Clearly, C_{0} has Property B and we mark it in advance. Every chain that is a backedge has also Property B and we mark those chains as well (note that these are leaves in U, as they have no child). Whenever a chain $D_{0} \neq C_{0}$ is found in the chain decomposition that is not of Type 2 (in fact, it suffices to deal with Type 3 chains), we traverse the path $P=D_{0} \rightarrow_{U} C_{0}$ until a chain $C_{j} \neq D_{0}$ is reached that is already marked or contains $s\left(D_{0}\right)$. We mark every chain in $V(P) \backslash\left\{D_{0}, C_{j}\right\}$. The total running time for this procedure is $O(n+m)$, as no chain is marked twice.

It remains to show correctness. Let C_{i} be a chain that has Property B and assume to the contrary that C_{i} was not marked by the procedure. Then $C_{i} \neq C_{0}$ and C_{i} is not a backedge. Let x be the last inner vertex of C_{i}. Let e be the backedge that enters $T(x)$ with $s(e)$ being an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$ such that e was traversed first by the chain decomposition. Let D_{0} be the chain that contains e and let $D_{0}, \ldots, D_{k}, C_{i}$ be the vertices on the path $D_{0} \rightarrow_{U} C_{i}$. As e is the first traversed backedge entering $T(x)$ such that $s(e)$ is an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$, Lemma 16 implies $s\left(D_{1}\right)=s\left(D_{2}\right)=\cdots=s\left(D_{k}\right)=s\left(C_{i}\right)$. In particular, D_{0} cannot be of Type 2. It follows that D_{0} was traversed by our procedure and that $s\left(D_{0}\right)$ is not contained in any of the chains $D_{1}, \ldots, D_{k}, C_{i}$. As C_{i} is not marked by assumption, no chain in D_{0}, \ldots, D_{k} can be marked at this point in time in the chain decomposition. Thus, the procedure marks all chains $D_{1}, \ldots, D_{k}, C_{i}$, which gives a contradiction.

Conversely, let C_{i} be a chain that does not have Property B. Then $C_{i} \neq C_{0}$ and C_{i} is not a backedge. Let x be the last inner vertex of C_{i}. Assume to the contrary that C_{i} was marked by the procedure and let e be the backedge that initiated the traversal that marked C_{i}. We denote the chain that contains e with D_{0}. With Lemma 16 and $C_{i}<D_{0}, s(e)$ must be a descendant of $s\left(C_{i}\right)$. As D_{0} is by assumption not of Type 2 and $s(e)$ is not an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right), s(e)$ must be a descendant of $t\left(C_{i}\right)$. But this contradicts that the traversal of e in the procedure marks C_{i}, as C_{i} contains $s(e)$.

We check Property B by applying the algorithm of Lemma 21. If Property B is violated by a chain C_{i}, G has connectivity 2 due to Lemma 20 and the algorithm efficiently computes the separation pair $\left\{s\left(C_{i}\right), t\left(C_{i}\right)\right\}$. Otherwise, Property B is true; from now on, we will assume Property B.

We conclude this section with two direct consequences of Property B. Let a chain $C_{i} \neq C_{0}$ enter a subtree T^{\prime} of a tree if the backedge in C_{i} enters T^{\prime}. A chain in a subset of C is minimal if it is minimal with respect to $<$.

Lemma 22. The chain C_{0} contains an inner vertex.
Proof. At least one of the chains C_{1} and C_{2}, say C_{1}, is not a backedge, as G is simple and both chains have the same end vertices as C_{0}. Since C_{1} has Property B, there is an inner vertex in $C_{0}=t\left(C_{1}\right) \rightarrow_{T} s\left(C_{1}\right)$.

Lemma 23. Let $C_{i} \neq C_{0}$ be a chain that is not a backedge and let x be the last inner vertex in C_{i}. Then there is a chain C_{j} of Type 3 that enters $T(x)$ with $s\left(C_{j}\right)$ being an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$.

Proof. According to Property B, there is a non-empty set X of backedges that enter $T(x)$ and start at an inner vertex of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$. Due to Lemma 13, every backedge in X is contained in exactly one chain. Let C_{j} be the minimal chain that contains a backedge in X. By definition of the types of the chains, C_{j} must be of Type 3 .

5.4 Caterpillars

Whenever a chain C_{i} of Type 3 b is found in Algorithm 1 , the path $C_{i} \rightarrow_{U} C_{0}$ is traversed until a chain C_{j} is found whose parent is not marked. The chains in $C_{i} \rightarrow_{U} C_{j}$ are stored in a list L_{i} and unmarked (see Line 15 of Algorithm 1 and Figure 4(e)). This way, every chain C_{i} of Type 3 b is associated with a list L_{i}; we call each L_{i} a caterpillar (sometimes, we will regard L_{i} as a set instead of a list). Caterpillars group chains in order to handle them more easily. We give basic properties of caterpillars.

Lemma 24. Every caterpillar L_{i} consists of exactly one chain of Type 3b, namely the chain C_{i}, and one or more chains of Type $2 b$.

Proof. Clearly, $C_{i} \in L_{i}$ (see Line 13 in Algorithm 1). The claim follows directly from the fact that only chains of Type 2 b are marked and the definition of Type 3 b .

Lemma 25. The set of chains $C \backslash\left\{C_{0}\right\}$ is partitioned into the chains of Types 1, 2a and 3a and the chains being contained in caterpillars. Moreover, no chain is contained in two caterpillars.

Proof. With Lemma 24, it remains to show that every chain C_{i} of Type 2 b is contained in exactly one caterpillar. At the time C_{i} was classified as Type $2 \mathrm{~b}, C_{i}$ was marked. Any chain of Type 2 b can only be added to a caterpillar if it is marked. If such a marked chain is added to a caterpillar, it immediately becomes unmarked for the rest of Algorithm 1 (see Line 15 of Algorithm 1). We conclude that C_{i} can be in at most one caterpillar; to show that C_{i} is contained in exactly one caterpillar, we prove that Algorithm 1 unmarks C_{i}.

Let C_{k} be the parent of C_{i}. Because C_{i} is of Type $2 \mathrm{~b}, C_{i} \neq C_{0}$ and C_{i} is not a backedge. Let x be the last inner vertex of C_{i}. According to Lemma 23, there is a chain of Type 3 that enters $T(x)$ and starts at an inner vertex in $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$. Let C_{j} be the minimal such chain. Immediately before C_{j} is found in the chain decomposition, every chain that ends at a vertex in $T(x)$ must start at $s\left(C_{i}\right)$ with Lemma 16 and is therefore of Type 2a or 2 b . Since chains of Type 2 a are backedges and cannot have children, the parent of C_{j} must be of Type 2 b and is therefore marked. Moreover, every chain corresponding to a vertex in $V\left(C_{j} \rightarrow_{U} C_{i}\right) \backslash\left\{C_{j}\right\}$ is of Type 2 b and marked. Thus, C_{j} is of Type 3 b and Algorithm 1 unmarks C_{i} (see Line 15 of Algorithm 1).

The above arguments show also that the chain of Type 3b in a caterpillar cannot start at an arbitrary vertex. We get the following result.

Lemma 26. Let L_{i} be a caterpillar and D_{k} be the minimal chain in L_{i}. Then $s\left(C_{i}\right)$ is an inner vertex of $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$.

Proof. Let x be the last inner vertex of D_{k}. According to the construction of caterpillars, C_{i} is the minimal chain that ends on a vertex in $T(x)$ and is neither of Type 1 nor Type 2. With Lemma 23, $s\left(C_{i}\right)$ is an inner vertex in $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$.

Definition 27. Let the parent of a caterpillar L_{i} be the parent of the minimal chain in L_{i}.

For computing the next BG-paths, we will often consider caterpillars as whole or chains that are not contained in caterpillars.

Definition 28. A cluster is either a caterpillar or a chain of Type 1, 2a or 3a.
With Lemma 25 , every chain $C_{i} \neq C_{0}$ is contained in exactly one cluster. The cluster of a chain is the cluster that contains the chain. The clusters of a set X of chains are the clusters of chains in X, omitting double occurrences. We extend the strict total order $<$ on chains to clusters.

Definition 29. For two clusters A and B, let $A<B$ if there is a chain C_{a} in A and a chain C_{b} in B with $C_{a}<C_{b}$.

Note that the relation $<$ on clusters is still a strict total order, as caterpillars correspond to vertex-disjoint paths P in U with the property that one end vertex of P is a proper ancestor of the other end vertex in U. Recall that we defined a pre-order only for the vertices of a forest, e. g., $<$ is a pre-order on $V(U)$. For completeness, we extend pre-orders to clusters. Note that the ancestors of cluster are well-defined by the given parent-relations for chains and caterpillars.

Definition 30. Let a strict total order \prec on a set of clusters F be a pre-order if, for every cluster $A \in F$, all proper ancestors of A in F precede A in \prec.

5.5 Restrictions

We impose restrictions on the construction sequence that will simplify the computation. Recall that S_{3}, \ldots, S_{m-n+2} is the sequence of generated subgraphs of G in the construction sequence when G is 3 -connected.

Definition 31. Let $S_{l}, 3 \leq l \leq m-n+2$, be upwards-closed if, for each vertex v in S_{l}, the edge from v to its parent in T is contained in S_{l}. Let S_{l} be modular if S_{l} is the union of chains.

Thus, if a modular and upwards-closed subgraph S_{l} contains a chain C_{i}, S_{l} must contain also the parent of C_{i}. Clearly, S_{3} is upwards-closed and modular. We would be done if we could restrict every S_{l} to be upwards-closed and modular, as then every chain would be a BG-path. However, this is not possible, as the following example shows. Consider $S_{3}=\left\{C_{0}, C_{1}, C_{2}\right\}$ in the graph of Figure 5. As every BG-path for S_{3} has end vertices x and y, S_{4} cannot be modular.

Figure 5: C_{1} and C_{2} are of Type $1, C_{3}$ is of Type $2 \mathrm{~b}, C_{4}$ of Type $2 \mathrm{a}, C_{5}$ of Type 3 b and C_{6} of Type 3a. No BG-path for the subgraph S_{3} (depicted with thick blue edges) preserves modularity.

Therefore, we impose the following weaker restriction $\left(R_{1}\right)$: We add only clusters that can be decomposed into subsequent BG-paths and whose additions generate upwards-closed and modular
subgraphs. We additionally demand that each cluster is decomposed into as many BG-paths as it contains chains. Thus, if the cluster is not a caterpillar, just a chain of Type 1, 2a or 3a is added that is a BG-path. Note that intermediate BG-paths of clusters that are caterpillars may violate upwards-closedness and modularity.

(a) allowed

(b) forbidden

Figure 6: The effect of Restriction $\left(R_{2}\right)$ on adding the BG-path C_{i} to the fat subgraph. If (R_{2}) would not forbid to add C_{i} in Figure (b), adding chain C_{j} next could violate Property 4.3.

For the generated subgraph S_{l+t}, we impose also the restriction $\left(R_{2}\right)$ that no link in S_{l+t} that consists only of tree edges has a parallel link. This restriction will cause certain BG-path candidates (e.g., certain chains) to automatically satisfy Property 4.3 of the BG-path definition 4 due to the DFS-structure (see Figure 6). It implies also that the BG-path that is applied on S_{3} generates a K_{4}-subdivision and not a K_{2}^{4}-subdivision. This is necessary for a sequence (7) by definition. Note that $\left(R_{2}\right)$ does not hold for S_{3}, as C_{0} has the parallel links C_{1} and C_{2}. It must however hold for all following subgraphs. We summarize the restrictions.

Restrictions: Let $S_{l} \subset G$ be the current upwards-closed and modular subgraph. We will only add a cluster that
$\left(R_{1}\right)$ - can be decomposed into as many subsequent BG-paths as it contains chains and that - creates an upwards-closed and modular subgraph S_{l+t} such that
$\left(R_{2}\right)$ - no link in S_{l+t} that consists only of tree edges has a parallel link in S_{l+t} (note that $S_{l+t} \neq S_{3}$).

In particular, Restriction $\left(R_{1}\right)$ forces the total number of operations in the construction sequence to be $\left|C \backslash\left\{C_{0}, C_{1}, C_{2}\right\}\right|=|C|-3$. According to Lemma $13,|C|-3=m-n-1$, which is necessary for every sequence (7), as shown in Lemma 10.

From now on, we will only deal with construction sequences that are restricted by $\left(R_{1}\right)$ and $\left(R_{2}\right)$. Whenever we are searching for new BG-paths, the current subgraph S_{l} is upwards-closed, modular and consists of exactly l chains. We denote S_{l} by S_{l}^{R} in such cases to emphasize these properties. It is not clear whether such a restricted construction sequence exists; we will prove its existence in Section 5.6.

Let a cluster that satisfies $\left(R_{1}\right)$ and $\left(R_{2}\right)$ on S_{l}^{R} be addable. We first show that Restriction $\left(R_{2}\right)$ implies Property 4.3.
Lemma 32. Every path P for S_{l}^{R} with Properties 4.1 and 4.2 is a $B G$-path. If P is additionally a chain of Type $2 a$ or $3 a, P$ is addable.

Figure 7: The chain C_{i} of Type 3 is addable to the fat subgraph.
Proof. For the first claim, assume to the contrary that P violates Property 4.3. Then $\left|V_{\text {real }}\left(S_{l}^{R}\right)\right| \geq 4$ must hold and $S_{l}^{R} \neq S_{3}^{R}$ follows. Let Q and Z be the parallel links of S_{l}^{R} that contain the end vertices of P as inner vertices, respectively. Both links, Q and Z, must contain a backedge, as otherwise one of them would contain only tree edges and $\left(R_{2}\right)$ would be violated, since $S_{l}^{R} \neq S_{3}^{R}$.

Let $C_{i} \neq C_{0}$ be the chain in S_{l}^{R} that contains Q and let $C_{j} \neq C_{0}$ be the chain in S_{l}^{R} that contains Z. According to Proposition 14, C_{i} and C_{j} contain each exactly one backedge (the first edge). This implies that $s\left(C_{i}\right)$ is an end vertex of $Q, s\left(C_{j}\right)$ is an end vertex of Z and $s\left(C_{i}\right)=s\left(C_{j}\right)$. Let v be the vertex in $Q \cap Z$ that is different from $s\left(C_{i}\right)$. By construction of the chain decomposition, the inner vertices of Q and Z are contained in disjoint subtrees of T. Since T is a DFS-tree, P must contain an inner vertex that is an ancestor of v. As S_{l}^{R} is upwards-closed, this vertex is already contained in S_{l}^{R}, which contradicts P to have Property 4.1.

For the second claim, let P be a chain of Type 2a or 3a. Since P is a chain, S_{l+1}^{R} is upwardsclosed and modular and $\left(R_{1}\right)$ is satisfied. By definition of Types 2 and $3, t(P) \rightarrow_{T} s(P)$ is not contained in a chain in S_{l}^{R} and therefore has an inner vertex that is the end vertex of a chain in S_{l}^{R}. As this vertex is real, adding P preserves $\left(R_{2}\right)$ if $S_{l}^{R} \neq S_{3}^{R}$. In the remaining case $S_{l}^{R}=S_{3}^{R}$, P must be of Type 3a, as otherwise P would contradict Property 4.2. Then adding P must induce an inner real vertex in C_{0}, which satisfies $\left(R_{2}\right)$ for S_{4}^{R}.

We show under which conditions chains of Types 1, 2a and 3a are addable to S_{l}^{R} if not already contained in S_{l}^{R}.
Lemma 33. Let $C_{i} \neq C_{0}$ be a chain such that the parent C_{k} of C_{i} but not C_{i} itself is contained in S_{l}^{R}. If C_{i} is either of Type 1 with an inner real vertex in $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$, of Type 2a with a real vertex in $\left(t\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{i}\right)\right) \backslash s\left(C_{i}\right)$ or of Type $3 a, C_{i}$ is addable.
Proof. Since S_{l}^{R} is upwards-closed, modular and contains C_{k}, C_{i} satisfies Property 4.1 in all cases. Let C_{i} be of Type 1. Then the inner real vertex in $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$ prevents any link that contains both, $s\left(C_{i}\right)$ and $t\left(C_{i}\right)$, from having $s\left(C_{i}\right)$ or $t\left(C_{i}\right)$ as an inner vertex. This causes C_{i} to have Property 4.2. Lemma 32 implies that C_{i} is a BG-path for S_{l}^{R}. As adding C_{i} preserves S_{l+1}^{R} to be upwards-closed and modular, $\left(R_{1}\right)$ is satisfied. Due to the inner real vertex in $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right), S_{l}^{R}$ must be different from S_{3}^{R} and $\left(R_{2}\right)$ holds in S_{l+1}^{R}. It follows that C_{i} is addable.

Let C_{i} be of Type 2a. The vertex $s\left(C_{i}\right)$ is real, as it is the end vertex of a chain in S_{l}^{R}. If additionally $t\left(C_{i}\right)$ is real, every link in S_{l}^{R} that contains $s\left(C_{i}\right)$ and $t\left(C_{i}\right)$ must contain $s\left(C_{i}\right)$ and
$t\left(C_{i}\right)$ as end vertices. Otherwise, $t\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{i}\right)$ contains an inner real vertex by assumption and $t\left(C_{i}\right)$ must be an inner vertex of a link in S_{l}^{R} that does not contain $s\left(C_{i}\right)$, as $t\left(C_{k}\right)$ is real. Both cases ensure that C_{i} has Property 4.2. By Lemma 32, C_{i} is addable.

Let C_{i} be of Type 3a. Then $s\left(C_{i}\right) \neq s\left(C_{k}\right)$ holds by definition and $C_{k} \neq C_{0}$, as otherwise C_{i} would be of Type 1. Additionally, $C_{k}<C_{i}$, since C_{k} is the parent of C_{i}. According to Lemma 16, $s\left(C_{i}\right)$ must be an inner vertex of the path $t\left(C_{k}\right) \rightarrow_{T} s\left(C_{k}\right)$ (see Figure 7). Therefore, every chain C_{j} that contains both, $s\left(C_{i}\right)$ and $t\left(C_{i}\right)$, satisfies $C_{i} \cap C_{j}=\left\{s\left(C_{i}\right), t\left(C_{i}\right)\right\}=\left\{s\left(C_{j}\right), t\left(C_{j}\right)\right\}$. This causes C_{i} to have Property 4.2. By Lemma 32, C_{i} is addable.

According to Lemma 33, the condition for adding a chain $C_{i} \nsubseteq S_{l}^{R}$ of Type 3a is very simple: It suffices that its parent is contained in S_{l}^{R}. This gives a valuable algorithmic approach: Whenever a chain in S_{l}^{R} has children of Type 3 a in U that are not already in S_{l}^{R}, these children are addable. We next give similar conditions for the remaining Types 2 b and 3b. According to Lemma 25, these chains are exactly the ones that are contained in caterpillars.

Definition 34. Let a caterpillar L_{i} with parent C_{k} be bad for S_{l}^{R} if $s\left(C_{i}\right)$ is contained in C_{k} and $s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$ contains no inner real vertex (see Figure 8(a)). Otherwise, L_{i} is called a good caterpillar (see Figures 8(b) and (c)).

Figure 8: Kinds of caterpillars.
Let L_{i} be a bad caterpillar with parent C_{k} and let y be the last vertex of the minimal chain in L_{i}. According to Lemma 26, $s\left(C_{i}\right) \in V\left(t\left(C_{k}\right) \rightarrow_{C_{k}} y\right) \backslash\{y\}$. We characterize good caterpillars.

Lemma 35. A caterpillar L_{i} with parent C_{k} is good if $s\left(C_{i}\right)$ is either an inner vertex of $t\left(C_{k}\right) \rightarrow_{T}$ $s\left(C_{k}\right)$ (see Figure 8(b)) or a vertex in C_{k} such that $s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$ contains an inner real vertex (see Figure 8(c)).

Proof. If $s\left(C_{i}\right) \notin V\left(C_{k}\right), s\left(C_{i}\right)$ must be an inner vertex of $t\left(C_{k}\right) \rightarrow_{T} s\left(C_{k}\right)$ with Lemma 26. Otherwise, $s\left(C_{i}\right) \in V\left(C_{k}\right)$ and the path $s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$ contains an inner real vertex, as otherwise L_{i} would be bad.

We show that good caterpillars are addable under minor assumptions.
Lemma 36. Let L_{i} be a caterpillar such that the parent C_{k} of L_{i} but no chain in L_{i} is contained in S_{l}^{R}. If L_{i} is good, L_{i} is addable.

Proof. Let L_{i} be good and let $t>1$ be the number of chains in L_{i}. Clearly, the graph generated by adding all chains in L_{i} to S_{l}^{R} is upwards-closed and modular, as L_{i} consists of consecutive ancestors of C_{i} in U. It remains to show that L_{i} can be decomposed into t successive BG-paths for S_{l}^{R} that generate the subgraphs $S_{l+1}, S_{l+2}, \ldots, S_{l+t}$ such that S_{l+t} satisfies $\left(R_{2}\right)$. Let y be the last vertex of the minimal chain in L_{i}, thus $y \in V\left(C_{k}\right)$.

We assume at first that $s\left(C_{i}\right)$ is an inner vertex of $t\left(C_{k}\right) \rightarrow_{t} s\left(C_{k}\right)$ (see Figure 8(b)). Then the path $P=C_{i} \cup\left(t\left(C_{i}\right) \rightarrow_{T} y\right)$ fulfills Properties 4.1 and 4.2 and is a BG-path for S_{l}^{R} with Lemma 32. Note that adding P preserves S_{l+1} to be upwards-closed but not modular. Successively, for each chain C_{j} of the $t-1$ chains in $L_{i} \backslash\left\{C_{i}\right\}$ (in arbitrary order), we add the path $s\left(C_{j}\right) \rightarrow_{C_{j}} v$ with v being the first vertex in C_{j} that is in P. All these paths are BG-paths, because y is real in S_{l+1}.

Now assume with Lemma 35 that $s\left(C_{i}\right)$ is contained in C_{k} with an inner real vertex a in $s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$ (see Figure $\left.8(\mathrm{c})\right)$. We first show that $t\left(C_{k}\right) \rightarrow_{T} s\left(C_{k}\right)$ contains an inner real vertex as well. Assume the contrary. Then C_{k} must be of Type 1 and contradicts (R_{2}), unless $S_{l}^{R}=S_{3}^{R}$. But S_{l}^{R} must be different from S_{3}^{R}, since a exists, and it follows that $t\left(C_{k}\right) \rightarrow_{T} s\left(C_{k}\right)$ contains an inner real vertex b.

Let D_{0} be the parent of C_{i}, which must be contained in L_{i}, as $t>1$. Then $\left(C_{i} \cup D_{0}\right) \backslash$ $\left(\left(t\left(C_{i}\right) \rightarrow_{T} y\right) \backslash t\left(C_{i}\right)\right)$ is a BG-path due to the real vertices a and b and we add it, although it neither preserves S_{l+1} to be upwards-closed nor modular. We next add $t\left(C_{i}\right) \rightarrow_{T} y$, which restores upwards-closedness. Successively, for each chain C_{j} of the $t-2$ remaining chains in $L_{i} \backslash\left\{C_{i}, D_{0}\right\}$ (in arbitrary order), we add the path $s\left(C_{j}\right) \rightarrow_{C_{j}} v$ with v being the first vertex in C_{j} that is contained in $V\left(t\left(C_{i}\right) \rightarrow_{T} y\right)$. With the same line of argument as before and Lemma 32, all these paths are BG-paths.

We show that S_{l+t} satisfies $\left(R_{2}\right)$. Let Q be a link in S_{l+t} that consists only of tree edges and that is not a link in S_{l}^{R}, i. e., Q is generated when adding L_{i}. If Q is contained in L_{i}, Q has no parallel link in S_{l+t} by construction. Otherwise, Q must be contained in a link in S_{l}^{R} that was subdivided by at least one of the real vertices $s\left(C_{i}\right)$ and y when adding L_{i}. In this case, Q has no parallel link in S_{l+t}, as $t\left(C_{i}\right)$ is real in S_{l+t} for both decompositions of L_{i}.

Otherwise, let Q be a link in S_{l+t} that consists only of tree edges and is a link in S_{l}^{R} as well. Then $S_{l}^{R} \neq S_{3}^{R}$ holds, as otherwise $Q=C_{0}$ and adding L_{i} would induce an inner real vertex in Q, contradicting the choice of Q. It follows with $\left(R_{2}\right)$ that Q has no parallel link in S_{l}^{R}. Then Q cannot have a parallel link in S_{l+t}, as every path between two of the three vertices $\left\{s\left(C_{i}\right), y, s\left(C_{k}\right)\right\}$ in the union of chains in L_{i} contains an inner real vertex in S_{l+t}. We conclude that S_{l+t} satisfies (R_{2}) and that L_{i} is addable.

Note that the decomposition of a good caterpillar L_{i} into subsequent BG-paths as shown in Lemma 36 can be computed in time linearly dependent on the edges in L_{i}.

5.6 Existence of the Restricted Sequence

We show that, even under the Restrictions $\left(R_{1}\right)$ and $\left(R_{2}\right)$, a construction sequence from S_{3}^{R} to G exists.

Definition 37. Let \sim be the equivalence relation on $E(G) \backslash E\left(S_{l}\right)$ such that
$-\forall e, f \in E(G) \backslash E\left(S_{l}\right): e \sim f$ if $e=f$ or there is a path in G that contains e and f but no vertex of S_{l} as inner vertex.

Let a subgraph H of a graph G be edge-induced by an edge set $E^{\prime} \subseteq E(G)$ if $E(H)=E^{\prime}$ and $V(H)$ is the union of the end vertices of all edges in E^{\prime}.

Definition 38. Let the segments of S_{l} be the subgraphs of G that are edge-induced by the equivalence classes of \sim. For a segment H of S_{l}, let $V(H) \cap V\left(S_{l}\right)$ be the attachment vertices of H.

It is important to note that every segment of S_{l}^{R} is the union of all vertices in a subtree of U (we say of all chains in this subtree), as S_{l}^{R} is modular and upwards-closed. For a chain C_{i} that is not contained in S_{l}, let the segment of C_{i} be the segment of S_{l} that contains C_{i}. Sometimes, we will identify a segment with the set of the chains it contains.

The concept of segments is not new. Starting with the work of Auslander and Parter [2], segments were used to design many efficient algorithms for problems related to planarity [26, 12, $31,41,37,49,68,71]$ and 3 -connectivity $[30,67,68]$. It is folklore that a segment of a cycle in a 3 -connected graph is either an edge or has at least three attachment vertices. Due to Lemma 23, we can deduce this result (in our notation) also for G, although G is not known to be 3-connected.
Lemma 39. Every segment H of S_{l}^{R} that is not a backedge has at least three attachment vertices.
Proof. Let C_{i} be the minimal chain in H. Since $t\left(C_{i}\right) \in S_{l}^{R}$ and S_{l}^{R} is upwards-closed, both vertices $s\left(C_{i}\right)$ and $t\left(C_{i}\right)$ are attachment vertices of H. The chain C_{i} is not a backedge, as otherwise H would be a backedge. According to Lemma 23, H contains a chain that starts at an inner vertex x of $t\left(C_{i}\right) \rightarrow_{T} s\left(C_{i}\right)$. As S_{l}^{R} is upwards-closed, x is a third attachment vertex of H.

A chain whose parent is in S_{l}^{R} but which is not contained in S_{l}^{R} itself is of interest, as it is a possible candidate for a BG-path.

Lemma 40. Every segment H of S_{l}^{R} contains exactly one chain that is a child of a chain in S_{l}^{R}, namely the chain that is minimal in H.

Proof. Recall that upwards-closedness and modularity of S_{l}^{R} implies that there is a subtree U^{\prime} of U such that H is the union of the chains in U^{\prime}. Clearly, only the root D_{k} of U^{\prime} (i.e., the minimal chain in H) can be a child of a chain in S_{l}^{R}. The chain D_{k} is a child of a chain in S_{l}^{R}, as $t\left(D_{k}\right) \in S_{l}^{R}$, S_{l}^{R} is upwards-closed and S_{l}^{R} contains at least the root C_{0} of U.

We show in which cases chains of Type 3 that start in S_{l}^{R} but are not contained in S_{l}^{R} are addable.

Lemma 41. Let D_{0} be a chain of Type 3 such that $s\left(D_{0}\right) \in V\left(S_{l}^{R}\right), D_{0} \nsubseteq S_{l}^{R}$ and D_{0} is minimal among the chains of Type 3 in its segment H. Let $D_{k}<\cdots<D_{0}$ be all ancestors of D_{0} that are contained in H. Then the clusters of D_{k}, \ldots, D_{0} are successively addable to S_{l}^{R}, unless one of the following exceptions holds.

Figure 9: The three exceptions of Lemma 41. The black vertices in Exceptions 41.1 and 41.3 may also be non-real.

1. D_{0} is of Type 3a, $k=1, D_{k}$ is of Type $1, s\left(D_{0}\right)$ is an inner vertex of $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ and there is no inner real vertex in $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ (see Figure 9(a)),
2. D_{0} is of Type $3 b$ and $\left\{D_{0}, \ldots, D_{k}\right\}$ is a bad caterpillar (see Figure $9(b)$),
3. D_{0} is of Type 3b, $\left\{D_{0}, \ldots, D_{k-1}\right\}$ is a caterpillar, D_{k} is of Type $1, s\left(D_{0}\right)$ is an inner vertex of $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ and there is no inner real vertex in $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ (see Figure 9(c)).

Proof. Due to the choice of D_{0}, there is no chain of Type 3 in $\left\{D_{1}, \ldots, D_{k}\right\}$. The chain D_{k} is minimal in H. Additionally, $\left\{D_{1}, \ldots, D_{k}\right\}$ does not contain a chain of Type 2 a, as chains of that type cannot have children.

Let D_{0} be of Type 3a. If $k=0, t\left(D_{0}\right)$ is contained in S_{l}^{R} and D_{0} is addable with Lemma 33, implying the claim. Otherwise, $k \geq 1$. Assume that D_{1} is of Type 2 b and let $C_{j} \neq D_{0}$ be the chain of Type 3 b in the caterpillar containing D_{1}. Then C_{j} is contained in H, as S_{l}^{R} is upwards-closed and modular. Moreover, $C_{j}<D_{0}$ holds, as otherwise D_{0} would have been of Type 3 b in the chain decomposition. This contradicts the minimality of D_{0} and it only remains that D_{1} is of Type 1 .

The vertex $s\left(D_{1}\right)$ is a proper ancestor of $s\left(D_{0}\right)$, since $D_{1}<D_{0}$ and D_{0} is not of Type 2. Since D_{0} is not of Type $1, s\left(D_{0}\right)$ must be a proper ancestor of $t\left(D_{1}\right)$. It follows that $s\left(D_{0}\right)$ is an inner vertex of $t\left(D_{1}\right) \rightarrow_{T} s\left(D_{1}\right)$. If $k \geq 2, D_{2}$ must contain $t\left(D_{1}\right) \rightarrow_{T} s\left(D_{1}\right)$, because D_{1} is of Type 1 and a child of D_{2}. Hence, the edge e joining $s\left(D_{0}\right)$ with the parent of $s\left(D_{0}\right)$ in T is contained in D_{2} (see Figure $9(\mathrm{a})$). But since S_{l}^{R} is upwards-closed and $s\left(D_{0}\right) \in V\left(S_{l}^{R}\right)$, e must be contained in S_{l}^{R}, contradicting that $k \geq 2$. Thus, $k=1$ and the parent of D_{1} in U is contained in S_{l}^{R}. If $t\left(D_{1}\right) \rightarrow_{T} s\left(D_{1}\right)$ contains an inner real vertex, D_{1} and D_{0} are subsequently addable with Lemma 33 . Otherwise, Exception 41.1 holds.

Let D_{0} be of Type 3 b and let L_{i} be the caterpillar that contains D_{0}. Due to $\left(R_{1}\right)$, every chain in L_{i} is contained in H and, by definition of caterpillars, D_{1} is of Type 2 b and in L_{i}. Let D_{t},
$1 \leq t \leq k$, be the minimal chain in L_{i}. If $t=k$ and L_{i} is good, the parent of L_{i} is contained in S_{l}^{R} and L_{i} is addable with Lemma 36. If $t=k$ and L_{i} is bad, Exception 41.2 holds (see Figure 9(b)).

The only remaining case is $t<k$. Assume that D_{t+1} is of Type 2 b and let C_{j} be the chain of Type 3 b in the caterpillar containing D_{t+1}. Then, C_{j} is contained in H and $C_{j}<D_{0}$ holds. This contradicts the minimality of D_{0} and we conclude that D_{t+1} is of Type 1 (see Figure 9(c)).

As $D_{t+1}<D_{0}$ and D_{0} is not of Type $2, s\left(D_{t+1}\right)$ is a proper ancestor of $s\left(D_{0}\right)$. Since D_{t+1} has a child, D_{t+1} is not a backedge. Applying Lemma 23 to the chain D_{t+1} implies together with the minimality of D_{0} that $s\left(D_{0}\right)$ is an inner vertex of $t\left(D_{t+1}\right) \rightarrow_{T} s\left(D_{t+1}\right)$. The parent of D_{t+1} is in S_{l}^{R}, as it contains $t\left(D_{t+1}\right) \rightarrow_{T} s\left(D_{t+1}\right)$ and $s\left(D_{0}\right) \rightarrow_{T} s\left(D_{t+1}\right)$ is contained in S_{l}^{R}. This implies $k=t+1$. If there is no inner real vertex in $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$, Exception 41.3 holds. Otherwise, Lemma 33 implies that D_{k} is addable. After adding D_{k}, L_{i} is good due to Lemma 35 and addable with Lemma 36.

We extend Lemma 41 to all chains of Type 3 that start at a vertex in S_{l}^{R}. Let a caterpillar L_{i} start at the vertex $s\left(C_{i}\right)$.

Lemma 42. Let the preconditions of Lemma 41 hold and let D_{0} be not contained in one of the Exceptions 41.1-41.3. Let Y be the set of ancestors of all chains in H that are of Type 3 and start in S_{l}^{R}. Then the clusters of Y are successively addable in any pre-order that adds clusters that start at $t\left(D_{k}\right)$ last, e.g., in ascending order of $<$.

Proof. We show how the clusters of Y are successively addable by iteratively applying Lemma 41. Note that Y is the vertex set of a subtree U_{Y} of U that is rooted on D_{k} (D_{k} is defined by the preconditions of Lemma 41). By definition of Y, the leaves of U_{Y} are chains of Type 3 that start at a vertex in S_{l}^{R}.

Let any pre-order σ on the clusters of Y be given that adds clusters that start at $t\left(D_{k}\right) \in V\left(S_{l}^{R}\right)$ last. We go along σ. After adding an arbitrary number of clusters in the order of σ, let J be the next cluster to add. Let J_{s} be the minimal chain in J and let S_{t}^{R} be the current subgraph of G. At this point, J_{s} is the root of a subtree U^{\prime} of U_{Y} and, as σ is a pre-order, the minimal chain in its segment H^{\prime} of S_{t}^{R}. Let J_{0} be the minimal chain of Type 3 in $V\left(U^{\prime}\right)$ that starts at a vertex in S_{l}^{R}. Then J_{0} is also the minimal such chain in H^{\prime}. Let $J_{s}<\cdots<J_{0}$ be all ancestors of J_{0} in U^{\prime}.

We apply Lemma 41 to J_{0} in H^{\prime} and show that J_{0} cannot be contained in one of the Exceptions 41.1-41.3. This implies that the clusters of J_{s}, \ldots, J_{0} are addable in pre-order. The claim follows from merely adding J and iterating the argument for the next cluster in σ.

It remains to show that J_{0} is not contained in one of the Exceptions 41.1-41.3. By assumption, this holds for $J_{0}=D_{0}$; in that case, the cluster of D_{k} is added. As σ is a pre-order, the cluster of D_{k} is the first cluster in H that is added. We can therefore assume for the following arguments that D_{k} is in S_{t}^{R}.

First, assume to the contrary that J_{0} is contained in Exception 41.1 or 41.3 (see Figure 10(a)). Since S_{l}^{R} is upwards-closed, $s\left(J_{0}\right) \in V\left(S_{l}^{R}\right)$ implies that $s\left(J_{s}\right) \in V\left(S_{l}^{R}\right)$. Because of Lemma 40, D_{k} is the only chain in H that ends on a vertex in S_{l}^{R}. Since J_{s} is a proper descendant of D_{k} and of Type 1, it follows from $s\left(J_{s}\right) \in V\left(S_{l}^{R}\right)$ that $s\left(J_{s}\right)=t\left(D_{k}\right)$. As $J_{0}>J_{s}$ and $s\left(J_{0}\right) \in V\left(S_{l}^{R}\right)$, $s\left(J_{0}\right)=s\left(J_{s}\right)=t\left(D_{k}\right)$ holds due to Lemma 16. This contradicts J_{0} to be in Exception 41.1 or 41.3, because $s\left(J_{0}\right)$ is not an inner vertex of $t\left(J_{s}\right) \rightarrow_{T} s\left(J_{s}\right)$.

Now assume to the contrary that J_{0} is contained in Exception 41.2 (see Figure $10(\mathrm{~b})$). Then J_{0} is of Type 3 b and part of a bad caterpillar L_{j} in S_{t}^{R}, whose parent D is not contained in H^{\prime}. We show that $D=D_{k}$. Because L_{j} contains only chains in $H^{\prime} \subset H$ and D_{k} is the minimal chain in

Figure 10: In S_{t}^{R}, J_{0} is not contained in one of the Exceptions 41.1-41.3.
H that is already contained in S_{t}^{R}, D must be a descendant of D_{k}. Since L_{j} is bad in $S_{t}^{R}, s\left(J_{0}\right)$ is contained in $D \backslash s(D)$. By definition of $J_{0}, s\left(J_{0}\right) \in V\left(S_{l}^{R}\right)$. Because of Lemma 40, D_{k} is the only chain in H that ends on a vertex in S_{l}^{R}. Moreover, no inner vertex of a chain in H is contained in S_{l}^{R}, as H does not contain C_{0} and S_{l}^{R} is upwards-closed. It follows that $D=D_{k}$ and $s\left(J_{0}\right)=t\left(D_{k}\right)$.

We show that L_{j} cannot be bad in S_{t}^{R}. The chain D_{k} is not a backedge, as it has the child J_{s}. Let x be the next to last vertex of D_{k}. Applying Lemma 23 on D_{k} implies that a chain C_{y} of Type 3 enters $T(x)$ with $s\left(C_{y}\right)$ being an inner vertex of $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$. The chain C_{y} is contained in H, but not in H^{\prime}, as that would contradict the choice of J_{0}. As the pre-order σ adds clusters that do start at $t\left(D_{k}\right)$ last, the clusters of C_{y} and of all proper ancestors of C_{y} in H must have been added before. Thus, D_{k} must contain at least one inner real vertex in S_{t}^{R}, which contradicts L_{j} to be bad.

Definition 43. For S_{l}^{R} and a chain C_{i} in S_{l}^{R}, let $\operatorname{Children}_{12}\left(C_{i}\right)$ be the set of children of C_{i} of Types 1 and 2 that are not contained in S_{l}^{R} and let Type ${ }_{3}\left(C_{i}\right)$ be the set of chains of Type 3 that start at a vertex in C_{i} and are not contained in S_{l}^{R}.

The definition of Children $_{12}\left(C_{i}\right)$ and $\operatorname{Type}_{3}\left(C_{i}\right)$ for a chain C_{i} in S_{l}^{R} is crucial, as the clusters of these sets are essentially the ones for which we will prove that they can are addable under a certain condition. We defined Children $_{12}\left(C_{i}\right)$ to contain only children of Type 1 and 2. On a high-level view, it will not be necessary to consider children of C_{i} of Type 3 , as these children (and their clusters) are already contained in S_{l}, as they have been added when the clusters of $\operatorname{Type}_{3}\left(C_{j}\right)$ for an ancestor C_{j} of C_{i} were considered.

We start by showing that, under a certain condition, the clusters of the following subset of Type $_{3}\left(C_{i}\right)$ are addable.

Lemma 44. Let C_{i} be a chain in S_{l}^{R} such that $\operatorname{Type}_{3}\left(C_{j}\right)=\emptyset$ holds for every proper ancestor C_{j} of C_{i}. Let B be the subset of chains in $\operatorname{Type}_{3}\left(C_{i}\right)$ whose segments do not contain a chain in Children ${ }_{12}\left(C_{i}\right)$. Then the clusters of all ancestors of chains in B that are not in S_{l}^{R} are successively addable. The order of addition can be any pre-order that adds clusters in same segments of S_{l}^{R} consecutively and in which the start vertices of the clusters of B are consecutive in $t\left(C_{i}\right) \rightarrow_{C_{i}} s\left(C_{i}\right)$, e.g., in ascending order of $<$.

Proof. Let C_{y} be a chain in B such that $s\left(C_{y}\right)$ is an ancestor of $s\left(C_{z}\right)$ for every chain $C_{z} \in B$. Let H be the segment of C_{y}. We show that the clusters of all ancestors of chains in $B \cap H$ are addable. Then choosing C_{y} as before for the remaining subset of B and iterating the argument on C_{y} gives the claim.

Let D_{0} be the minimal chain of Type 3 in H. We show that $D_{0} \in B$. According to Lemma 16, $s\left(D_{0}\right)$ is an ancestor of $s\left(C_{y}\right)$. However, $s\left(D_{0}\right)$ cannot be contained in a proper ancestor C_{j} of C_{i}, as Type ${ }_{3}\left(C_{j}\right)=\emptyset$ holds by assumption. It follows that $s\left(D_{0}\right)$ starts at a vertex in C_{i} and, thus, $D_{0} \in B$.

We want to apply Lemma 42 on D_{0} to add the clusters of all ancestors of chains in $B \cap H$. Let D_{k} be the minimal chain in H. To apply Lemma 42, it suffices to show that D_{0} is not contained in one of the Exceptions 41.1-41.3. Note that this does not directly follow from the fact that $D_{k} \notin$ Children $_{12}\left(C_{i}\right)$, as D_{k} does not need to be a child of C_{i} for Exceptions 41.1-41.3.

First, assume to the contrary that D_{0} is contained in Exception 41.1 or 41.3. Then D_{k} is of Type 1. It suffices to show that C_{i} is the parent of D_{k}, as this would contradict the assumption that $H \cap$ Children $_{12}\left(C_{i}\right)=\emptyset$. Since D_{k} is of Type 1, the path $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ is contained in the parent of D_{k}. In both Exceptions, $s\left(D_{0}\right)$ is an inner vertex of $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ and, in addition, $s\left(D_{0}\right)$ is not real, as $t\left(D_{k}\right) \rightarrow_{T} s\left(D_{k}\right)$ does not contain inner real vertices. It follows with $s\left(D_{0}\right) \in V\left(C_{i}\right)$ that the parent of D_{k} is C_{i}.

Assume to the contrary that D_{0} is contained in Exception 41.2. Then D_{k} is of Type 2 b and the set $\left\{D_{0}, \ldots, D_{k}\right\}$ of ancestors of D_{0} in H is a bad caterpillar. Let D be the parent of D_{k}. We claim that $D=C_{i}$. This implies that D_{k} is contained in $\operatorname{Children}_{12}\left(C_{i}\right)$, which contradicts the assumption that $H \cap$ Children $_{12}\left(C_{i}\right)=\emptyset$.

We prove the remaining claim that $D=C_{i}$. Assume to the contrary that $D \neq C_{i}$. As $\left\{D_{0}, \ldots, D_{k}\right\}$ is a bad caterpillar and $s\left(D_{0}\right) \in V\left(C_{i}\right), s\left(D_{0}\right)$ is contained in the intersection of $D \backslash s(D)$ and C_{i}. We first show that $s\left(D_{0}\right)=t(D)$. If $C_{i}=C_{0}, D \backslash s(D)$ can intersect with C_{0} only at the vertex $t(D)$, which implies that $s\left(D_{0}\right)=t(D)$. Let $C_{i} \neq C_{0}$. Then $s\left(D_{0}\right)$ can neither be $s\left(C_{i}\right)$ nor $t\left(C_{i}\right)$, as these vertices are contained in proper ancestors C_{j} of C_{i}, contradicting the assumption that Type $\left(C_{j}\right)=\emptyset$. Thus, $s\left(D_{0}\right)$ is an inner vertex of C_{i}. Since D can contain the inner vertex $s\left(D_{0}\right)$ of C_{i} only as end vertex and because $s\left(D_{0}\right) \in V(D \backslash s(D)), s\left(D_{0}\right)=t(D)$ holds. For the same reason, C_{i} must be the parent of D.

We take this to a contradiction. As $\left\{D_{0}, \ldots, D_{k}\right\}$ is a bad caterpillar, D contains no inner real vertex by definition. Moreover, D cannot be a backedge, as it has the child D_{k}. Thus, there is a chain C_{z} of Type 3 that starts at an inner vertex in $t(D) \rightarrow_{T} s(D)$ due to Lemma 23. This chain C_{z} is not contained in S_{l}^{R}, as otherwise D would contain an inner real vertex. If $s\left(C_{z}\right)$ is contained in C_{i}, C_{z} contradicts the choice of C_{y}, as C_{z} would be in B and $s\left(C_{z}\right)$ would be a proper ancestor of $s\left(C_{y}\right)$. Otherwise, $s\left(C_{z}\right)$ is contained in a proper ancestor C_{j} of C_{i} and contradicts the assumption Type $_{3}\left(C_{j}\right)=\emptyset$.

For each of the Exceptions 41.1-41.3 in Lemma 41, the parent of D_{k} contains a path that
obstructs D_{0} and its ancestors from being added, as it contains no inner real vertex. We refer to this path as follows.

Definition 45. Let a chain C_{i} that is of Type 1 or 2a and has parent C_{k} be dependent on the path $t\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{i}\right)$. Let a caterpillar L_{i} with parent C_{k} and $s\left(C_{i}\right) \in V\left(C_{k}\right)$ (and every chain contained in it) be dependent on the path $s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$. The dependent path of a chain that is of Type 3a or contained in a caterpillar L_{i} with $s\left(C_{i}\right) \notin V\left(C_{k}\right)$ is defined to be empty.

The idea behind the dependent path P of certain clusters D is that P carries information that is needed to decide whether D is addable. E.g., if the parent of D is contained in S_{l}^{R} and P is empty, we can add D, as pointed out by Lemmas 33 and 36 . In the case when the parent of D is contained in S_{l}^{R} but P is not empty, whether D can be added essentially depends on the existence of inner real vertices in P. We show next that non-empty dependent paths of the minimal chains in segments H of S_{l}^{R} separate H from S_{l}^{R}.

Lemma 46. Let H be a segment of S_{l}^{R} and let D be the minimal chain of H. If D is neither of Type 3 a nor contained in a caterpillar L_{i} with $s\left(C_{i}\right) \notin V\left(C_{k}\right)$, the dependent path P of D contains all attachment vertices of H.

Proof. Assume first that D is a chain of Type 1. Then $P=t(D) \rightarrow_{T} s(D)$. If D is a backedge, the claim follows directly. Otherwise, let x be the last inner vertex of D. As T is a DFS-tree and due to Lemma 16, every backedge that enters $T(x)$ starts in P, which gives the claim.

Let C_{k} be the parent of D. Assume that D is a chain of Type 2a. Since D is a backedge, $s(D)$ and $t(D)$ are the only attachment vertices of H. The claim follows, as the dependent path $P \subset C_{k}$ of D contains $s(D)$ and $t(D)$.

Due to $\left(R_{1}\right)$ and since C_{k} is contained in S_{l}^{R}, D cannot be of Type 3 b . Assume that D is a chain of the remaining Type 2 b . According to $\left(R_{1}\right), D$ is contained in a caterpillar L_{i}, every chain of which is contained in H. By assumption, $s\left(C_{i}\right) \in V\left(C_{k}\right)$. The chain D is not a backedge, as it has a child; let x be the last inner vertex of D. By the construction of caterpillars, C_{i} is the minimal chain of Type 3 that enters $T(x)$. It follows with Lemma 16 that every backedge that enters $T(x)$ starts either at $s\left(C_{k}\right)$ or at a descendant of $s\left(C_{i}\right)$ in C_{k}. Thus, all attachment vertices are contained in $P=s\left(C_{i}\right) \rightarrow_{C_{k}} s\left(C_{k}\right)$.

The following theorem leads to an existence proof of the restricted construction sequence if G is 3 -connected.

Theorem 47. Assume that the input graph G is 3-connected. Let C_{i} be a chain in S_{l}^{R} such that Children $_{12}\left(C_{j}\right)=\operatorname{Type}_{3}\left(C_{j}\right)=\emptyset$ holds for every proper ancestor C_{j} of C_{i}. Then there is an order σ in which the clusters of all ancestors of the chains in $\operatorname{Children}_{12}\left(C_{i}\right) \cup \operatorname{Type}_{3}\left(C_{i}\right)$ that are not contained in S_{l}^{R} are successively addable.

Proof. By applying Lemma 44 in advance, we can assume that the segment of every chain in Type $_{3}\left(C_{i}\right)$ contains a chain in Children $_{12}\left(C_{i}\right)$. Let H be such a segment of a chain in Type ${ }_{3}\left(C_{i}\right)$ and let D_{k} be the minimal chain in H. According to Lemma $40, D_{k}$ is the only chain in H that is in Children $_{12}\left(C_{i}\right)$.

If Children $_{12}\left(C_{i}\right)=\emptyset, \operatorname{Type}_{3}\left(C_{i}\right)=\emptyset$ and the claim follows. We will show that $\operatorname{Children}_{12}\left(C_{i}\right) \neq$ \emptyset causes Children $_{12}\left(C_{i}\right)$ to contain a chain D whose cluster is addable. Assume for a moment that this already has been shown and let H^{\prime} be the segment of D. Adding the cluster of D to the current
subgraph deletes D from the set Children $_{12}\left(C_{i}\right)$. Therefore, H^{\prime} does not contain a minimal chain in Children $_{12}\left(C_{i}\right)$ anymore and we can add the clusters of all ancestors of the chains in Type ${ }_{3}\left(C_{i}\right) \cap H^{\prime}$ that are contained in H^{\prime} by applying Lemma 44. Iterating this argument gives the claim.

Assume to the contrary that Children $_{12}\left(C_{i}\right) \neq \emptyset$ and that the cluster of every chain in Children $_{12}\left(C_{i}\right)$ is not addable. We first subsume properties of every chain $D \in$ Children $_{12}\left(C_{i}\right)$; let H be the segment of D. By definition, D is of Type 1 or $2 ; D$ is also the minimal chain in its segment H with Lemma 40. Let D be of Type 1. Then the dependent path P of D does not contain an inner real vertex, as otherwise D is addable with Lemma 33. According to Lemma 23, D must be either a backedge or H contains a chain of Type 3 that starts in C_{i}, implying that H contains a chain in Type $_{3}\left(C_{i}\right)$. In the latter case, we can apply Lemma 42 and it follows that D must be contained in Exception 41.1 or 41.3 (as the chain D_{k}).

Let D be of Type 2. Then $C_{i} \neq C_{0}$. If D is of Type 2a, neither $t(D)$ nor an inner vertex in the dependent path P of D can be real, since otherwise D is addable due to Lemma 33. If D is of Type $2 \mathrm{~b}, D$ is the minimal chain of a caterpillar with parent C_{i}. As we assumed that the cluster of D is not addable, this caterpillar must be bad with Lemma 36 and there is no inner real vertex in the dependent path P of D. Because $H \cap \operatorname{Type}_{3}\left(C_{i}\right) \neq \emptyset$, it follows with Lemma 42 that D is contained in Exception 41.2 (as the chain D_{k}). We list the possible cases for each D.

1. D is of Type 1 without an inner real vertex in P and either a backedge or the chain D_{k} in Exception 41.1 or 41.3
2. $C_{i} \neq C_{0}$ and D is of Type 2a without a real vertex in $P \backslash s(D)$
3. $C_{i} \neq C_{0}, D$ is of Type 2 b without an inner real vertex in P and D is the chain D_{k} in Exception 41.2

In each of these cases, P is contained in C_{i}. If D is a backedge (possible in Cases 1. and 2.), P is of length at least two, as G is simple. If D is no backedge (possible in Cases 1. and 3.), P is also of length at least two due to Lemma 39. In every case, P does not contain an inner real vertex. Hence, the dependent path P for some chosen chain D is contained in a link L of S_{l}^{R}. Thus, $P \subseteq L \subseteq C_{i}$ and L is of length at least two. According to Lemma 9 and the 3-connectivity of G, a parallel link of L (maybe L itself) contains an inner vertex v on which a BG-path starts. Note that this BG-path does neither have to be a chain nor preserve $\left(R_{1}\right)$ or $\left(R_{2}\right)$. Also, v is not necessarily contained in P.

We show next that L itself contains v as an inner vertex due to our imposed restrictions on the construction sequence. This will imply a contradiction later. Assume first that all edges of L are DFS-tree edges. If $S_{l}^{R}=S_{3}^{R}, L=C_{0}$ must hold. Because G is simple, at least one chain of C_{1} and C_{2} is not a backedge, say C_{1}. Let x be the last inner vertex of C_{1}. The claim follows by applying Lemma 23 on C_{1}, as the chain of Type 3 that enters $T(x)$ can be extended to a BG-path ending at an inner vertex of C_{1}. If $S_{l}^{R} \neq S_{3}^{R}$, the claim follows from L having no different parallel link due to Restriction $\left(R_{2}\right)$ in S_{l}^{R}.

Now assume that L contains a backedge. Since L is contained in $C_{i}, s\left(C_{i}\right)$ must be an end vertex of L. Let w be the other end vertex of L. As C_{i} has a child, C_{i} is no backedge. Applying Lemma 23 on C_{i} gives a chain of Type 3 that starts at a proper ancestor C_{j} of C_{i} and enters $T(x)$ for x being the last inner vertex of C_{i}. As $T y p e_{3}\left(C_{j}\right)=\emptyset$ holds by assumption and S_{l}^{R} is upwards-closed, C_{i} contains an inner real vertex. Therefore, w is different from $t\left(C_{i}\right)$. If there is a parallel link $L^{\prime} \neq L$ of L in S_{l}^{R}, let C_{k} be the chain that contains L^{\prime}. Then $s\left(C_{i}\right)=s\left(C_{k}\right), C_{k}=L^{\prime}$
and C_{k} is a child of C_{i}, implying that C_{k} is of Type 2 . The chain C_{k} is not of Type 2 b , as otherwise C_{k} would contain an inner real vertex due to the caterpillar $L_{k} \subset S_{l}^{R}$. Therefore, C_{k} is of Type 2 a and cannot contain an inner vertex, as it is a backedge. We conclude that v is an inner vertex of L on which a BG-path B starts.

Let H be the segment of S_{l}^{R} that contains B. Assume first that H contains a chain $D^{\prime} \in$ Children $_{12}\left(C_{i}\right)$ and let P^{\prime} be the dependent path of D^{\prime}. Then all attachment vertices of H must be contained in P^{\prime} by Lemma 46, this holds in particular for v. As v is non-real and H is not contained in S_{l}^{R}, B must contradict Property 4.2. It follows that H does not contain any child of C_{i} that is of Type 1 or 2 . Because Type $e_{3}\left(C_{j}\right)=\emptyset$ for all proper ancestors C_{j} of C_{i}, H cannot contain a child of C_{i} that is of Type 3. We conclude that H does not contain any child of C_{i}.

Assume that H contains a chain C_{a} of Type 1 with $s\left(C_{a}\right)=v$. Let C_{b} be the parent of C_{a}, as $C_{a} \neq C_{0}$. Note that C_{b} is not necessarily in H. Then $C_{b} \neq C_{i}$, as otherwise C_{a} would be a child of C_{i} in H. By definition of Type $1, C_{b}$ contains the tree edges $t\left(C_{a}\right) \rightarrow_{T} v$ and $t\left(C_{b}\right)=v$ follows, as v is contained in C_{i}. This implies that C_{b} is a child of C_{i}, giving a contradiction. Additionally, H cannot contain a chain C_{a} of Type 3 with $s\left(C_{a}\right)=v$, as otherwise C_{a} would be contained in Type ${ }_{3}\left(C_{i}\right)$, which implies that H contains a chain in $\operatorname{Children}_{12}\left(C_{i}\right)$. Let J be the chain that contains the first edge of B. By the previous arguments, J must be of Type 2 and $s(J)=v$.

We take this to a contradiction. Let C_{a} be the maximal (with respect to $<$) ancestor of J that is not of Type 2. Then $s\left(C_{a}\right)=v$ holds by definition of Type 2 and C_{a} must be contained in H, as $s\left(C_{a}\right)$ is non-real. This contradicts that H contains neither a chain of Type 1 nor a chain of Type 3 that starts at v. It follows that B cannot exist, implying the claim.

Assume for a moment that G is 3 -connected. In order to be able to apply Theorem 47, we show that every S_{l}^{R} contains a chain C_{i} that satisfies the preconditions of Theorem 47. This is clearly the case in S_{3}^{R}, as then C_{0} is such a chain. Applying Theorem 47 on C_{i} and adding the clusters in σ generates a subgraph S_{t}^{R}. The subgraph S_{t}^{R} must contain all children of C_{i} and therefore causes the precondition to hold for C_{i+1}. This ensures that iteratively applying Theorem 47 on $C_{0}, C_{1}, \ldots, C_{m-n+1}$ constructs G, which proves the existence of the restricted construction sequence.

Corollary 48. Let G be a 3 -connected graph with a chain decomposition $C=\left\{C_{0}, \ldots, C_{m-n+1}\right\}$. Then there is a construction sequence of G restricted by $\left(R_{1}\right)$ and $\left(R_{2}\right)$ that starts with $S_{3}^{R}=$ $\left\{C_{0} \cup C_{1} \cup C_{2}\right\}$.

5.7 The Algorithm

We already described the parts of the certifying algorithm that

- compute the DFS-tree T,
- compute whether G has connectivity 0,1 or at least 2,
- compute the chain decomposition C and the chain classification,
- check whether Properties A and B are satisfied and
- compute S_{3}^{R}.

All steps can be computed in time $O(n+m)$ (see Sections 5.1-5.3).
Although G is not known to be 3 -connected, the proof of Theorem 47 still provides an algorithmic method to search iteratively for BG-paths that build the restricted construction sequence, starting with S_{3}^{R} : We iterate over all chains $C_{i}, 0<i<m-n+1$ (we say that C_{i} is processed). For C_{i}, let B be the set of all ancestors of the chains in Children $_{12}\left(C_{i}\right) \cup \operatorname{Type}_{3}\left(C_{i}\right)$ that are not contained in the current subgraph. We try to find an order on the clusters of B in which they are all addable. This order does not necessarily exist, as G might not be 3 -connected. However, we will give an algorithm that either computes such an order or finds a separation pair. In the case that this order can be found for every C_{i}, we obtain a construction sequence of G, which certifies G to be 3-connected.

During the chain classification, we store on each chain a list of its children of Type 1 and 2 and on each vertex v a list of the chains of Type 3 that start at v. This allows us to compute the sets Children $_{12}\left(C_{i}\right)$ and Type $_{3}\left(C_{i}\right)$ efficiently for each C_{i} in time $O\left(\left|C_{i}\right|+\mid\right.$ Children $_{12}\left(C_{i}\right)|+|$ Type $\left._{3}\left(C_{i}\right) \mid\right)$ by traversing $\left(t\left(C_{i}\right) \rightarrow_{C_{i}} s\left(C_{i}\right)\right) \backslash s\left(C_{i}\right)$.

We describe the processing phase of C_{i}. First, the sets Children $_{12}\left(C_{i}\right)$ and Type ${ }_{3}\left(C_{i}\right)$ are computed. For convenience, we perform the following test in advance (this can however be handled differently in an implementation). For each $D \in \operatorname{Children}_{12}\left(C_{i}\right)$ that is of Type 2a and for which $t(D)$ is real, we add D due to Lemma 33.

Let S_{l}^{R} be the current subgraph. We partition the chains in Type $\left(C_{i}\right)$ into the segments of S_{l}^{R} by storing a pointer on each $C_{j} \in \operatorname{Type}_{3}\left(C_{i}\right)$ to the minimal chain D of the segment that contains C_{j}. The chain D is computed by traversing the path in T from $t\left(C_{j}\right)$ to the root of T until we encounter a vertex v with a parent that is already contained in S_{l}^{R}. Then v must be an inner vertex of D (each inner vertex has a pointer to its chain) and we mark each vertex of the traversed path with " D ". Further traversals in the same segment stop at the first vertex that is marked; hence, they will find the marker " D ". Since the clusters of all traversed chains will eventually be added in the same processing phase, the total running time of these traversals for all processed chains adds up to a total of $O(m)$.

Let X be the subset of the chains in Type ${ }_{3}\left(C_{i}\right)$ that are contained in segments in which the minimal chain is not a chain of Children $_{12}\left(C_{i}\right)$. With Lemma 40, each such segment does not contain any chain in Children $_{12}\left(C_{i}\right)$. To compute X, it suffices to check for each $C_{j} \in$ Type $_{3}\left(C_{i}\right)$ in constant time whether its pointer points to a chain in $\operatorname{Children}_{12}\left(C_{i}\right)$. In the affirmative case, C_{j} is not contained in X; otherwise, C_{j} is contained in X.

According to Lemma 44, the clusters of all ancestors of the chains in X that are not in S_{l}^{R} are successively addable. Moreover, these clusters are successively addable in the order in which they were traversed when partitioning the chains of $T_{y p e}^{3}\left(C_{i}\right)$ into segments (i. e., in ascending order of $<)$. We add them in this order. However, as these clusters form a subtree U^{\prime} of U for each segment H with $H \cap X \neq \emptyset$, any other pre-order on $V\left(U^{\prime}\right)$ in conformance with Lemma 44 can be computed in time linearly dependent on $\left|V\left(U^{\prime}\right)\right|$. Whenever a cluster containing a chain in Type $3_{3}\left(C_{i}\right)$ is added, we delete it from $\operatorname{Type}_{3}\left(C_{i}\right)$.

Let S_{t}^{R} be the generated graph. The segment H of every remaining chain in Type $\left(C_{i}\right)$ must contain a chain D in $\operatorname{Children}_{12}\left(C_{i}\right)$. The chain D is the minimal chain in H due to Lemma 40. According to Theorem 47, the clusters of all ancestors of the chains in Children ${ }_{12}\left(C_{i}\right) \cup$ Type $_{3}\left(C_{i}\right)$ that are not in S_{t}^{R} are successively addable if G is 3 -connected. However, Theorem 47 does not specify in which order these clusters are successively addable, so we need to compute a valid order on them (if this order exists).

Let H be the segment of a chain D in $\operatorname{Children}_{12}\left(C_{i}\right)$. The cluster of D cannot be a caterpillar L_{j} with $s\left(C_{j}\right) \notin V\left(C_{i}\right)$, as we maintain the invariant that $\operatorname{Children}_{12}\left(C_{k}\right)=\operatorname{Type}_{3}\left(C_{k}\right)=\emptyset$ for every proper ancestor C_{k} of C_{i}. Thus, D is dependent on a non-empty path $P \subseteq C_{i}$ by Definition 45 . This path contains all attachment vertices of H with Lemma 46. We can compute the attachment vertices of H efficiently, as the previously described partition of Type $3_{3}\left(C_{i}\right)$ into segments provides the set $H \cap \operatorname{Type}_{3}\left(C_{i}\right)$. The attachment vertices of H are the union of the start vertices of the chains in $H \cap \operatorname{Type}_{3}\left(C_{i}\right)$ and the vertices $s(D)$ and $t(D)$. This gives also P, as P is the path of maximal length in C_{i} that has attachment vertices of H as end vertices.

For computing a possible order in which the remaining clusters are addable, we need the following lemma. It shows that the clusters of all ancestors of the chains in $H \cap\left(\right.$ Children $_{12}\left(C_{i}\right) \cup$ Type $\left._{3}\left(C_{i}\right)\right)$ that are not contained in S_{t}^{R} are addable if and only if P contains an inner real vertex.

Lemma 49. Let D be a remaining chain in $\operatorname{Children}_{12}\left(C_{i}\right)$ in S_{t}^{R}, let H be the segment of S_{t}^{R} that contains D and let P be the dependent path of D. If P contains an inner real vertex, the clusters of all ancestors of the chains in $H \cap\left(\operatorname{Children}_{12}\left(C_{i}\right) \cup \operatorname{Type}_{3}\left(C_{i}\right)\right)$ that are not in S_{t}^{R} are successively addable. Moreover, these clusters are addable in any pre-order that adds clusters that start at $t(D)$ last, e.g., in ascending order of $<$. Conversely, if P does not contain an inner real vertex, no cluster in H is addable.

Proof. Let P contain an inner real vertex. If $H \cap \operatorname{Type}_{3}\left(C_{i}\right) \neq \emptyset$, the claim follows directly from Lemma 42, as the dependent path of the minimal chain $\left(D_{k}\right)$ of each of the Exceptions 41.1-41.3 contains no inner real vertex. If $H \cap \operatorname{Type}_{3}\left(C_{i}\right)=\emptyset$, we only need to show that the cluster of D is addable. Moreover, D must be of Type 1 or 2a, as otherwise $H \cap \operatorname{Type}_{3}\left(C_{i}\right) \neq \emptyset$. According to Lemma 33, D is addable.

Otherwise, P does not contain an inner real vertex. Assume to the contrary that we can add a cluster in H. As Restriction (R_{1}) requires upwards-closedness after adding each cluster, the cluster of D must be added first. According to Lemma 46, all attachment vertices of H are contained in P. The end vertices of P must be real, as otherwise no path in H can satisfy Property 4.2. Since $D \in$ Children $_{12}\left(C_{i}\right), D$ cannot be of Type 3. If D is of Type $1, s(D)$ and $t(D)$ must be the end vertices of P, P consists only of tree edges and adding D would contradict Restriction (R_{2}).

Therefore, D is of Type 2. Then P must contain the backedge in C_{i} and it follows that $s(D)=s\left(C_{i}\right)$. If D is of Type 2a, the end vertices of D are the end vertices of P. Since both end vertices are real, D would have been added before with Lemma 33 .

We conclude that D is of Type 2 b . Then the cluster of D is a bad caterpillar L_{j}, as $s\left(C_{j}\right) \notin V\left(C_{i}\right)$ would contradict Type $\left(C_{k}\right)=\emptyset$ for a proper ancestor C_{k} of C_{i} and because P does not contain an inner real vertex. Let Q_{1} and Q_{2} be the first two BG-paths in L_{j} that are added as part of the addition of L_{j}. As Q_{1} must connect the two end vertices of P and since L_{j} contains exactly one edge e that is incident to $s\left(C_{j}\right), Q_{1}$ contains e. Thus, Q_{2} cannot contain the end vertex $s\left(C_{j}\right)$ of P and it follows that Q_{2} has at most one real end vertex. Since P and Q_{1} are parallel links of S_{t+1}, Q_{2} violates one of the Properties 4.1-4.3. This contradicts Restriction (R_{1}), as L_{j}, the cluster of D, can not be decomposed into BG-paths.

5.7.1 Reduction to Overlapping Intervals

Let Y be the set of segments that contain a remaining chain in Children $_{12}\left(C_{i}\right)$. Let the dependent path of a segment $H \in Y$ be the dependent path of its minimal chain, i.e., the maximal path in

(a) The chain C_{i} and the remaining chains in Type $_{3}\left(C_{i}\right) \cup$ Children $_{12}\left(C_{i}\right)$.

(b) For each of the two inner real vertices v_{6} and v_{7} in C_{i}, there is one interval in I_{0}.

Figure 11: Mapping segments to intervals. Different colors depict different segments.
C_{i} connecting two attachment vertices of H. Let an order σ on a subset of Y be proper if the dependent path of each segment in σ contains an inner real vertex or an inner vertex that is an attachment vertex of a previous segment in σ. Note that the addition of the clusters in previous segments H would cause the attachment vertices of H to be real.

Let B be all ancestors of chains in $\operatorname{Children}_{12}\left(C_{i}\right) \cup$ Type $_{3}\left(C_{i}\right)$ that are not in S_{l}^{R}. According to Lemma 49, finding an order in which the clusters of B are successively addable reduces to finding a proper order σ on Y. Having σ allows us to add the clusters of $B \cap H$ subsequently for each segment H in σ. We show how a proper order σ on Y can be efficiently computed by a reduction to overlaps of intervals.

A very clear and simple characterization of 3-connectivity in terms of a binary relation (called directly-linked) on the segments of cycles is given by Vo [67,68] and based on the work of Williamson [70]. The binary relation represents a graph whose connectivity determines the 3-connectivity of the input graph. To compute the proper order σ on Y (if it exists), we will use a similar concept: We reduce the computation of σ to the computation of a spanning tree of the graph G^{\prime} of a certain binary relation. In particular, σ exists if G^{\prime} is connected. The binary relation will correspond to overlaps on intervals. The structure imposed by previous computation steps allows us to compute these intervals efficiently.

We map each segment $H \in Y$ to a set $I(H)$ of intervals on the elements of $V\left(C_{i}\right)$: Let a_{1}, \ldots, a_{k} be the attachment vertices of H and let $I(H)=\bigcup_{1<j \leq k}\left\{\left[a_{1}, a_{j}\right]\right\} \cup \bigcup_{1<j<k}\left\{\left[a_{j}, a_{k}\right]\right\}$ (see Figure 11). Additionally, we augment $V\left(C_{i}\right)$ by an artificial first vertex v_{0} and map the real vertices b_{1}, \ldots, b_{k} of C_{i} to the set of intervals $I_{0}=\bigcup_{1<j<k}\left\{\left[v_{0}, b_{j}\right]\right\}$. This construction can be efficiently computed
and creates at most \mid Children $_{12}\left(C_{i}\right)|+2|$ Type $_{3}\left(C_{i}\right)\left|+\left|V_{\text {real }}\left(C_{i}\right)\right|-2\right.$ intervals for C_{i}, adding up to a total of $O(m)$ intervals for all chains.

Let two intervals $[a, b]$ and $[c, d]$ overlap if $a<c<b<d$ or $c<a<d<b$. We want to compute a proper order on Y by finding a sequence of overlapping intervals starting with an interval in I_{0}. Let the overlap graph of Y be the graph with vertex set $I_{0} \cup \bigcup_{H \in Y} I(H)$ and an edge between two vertices if and only if the corresponding intervals overlap. Let the merged overlap graph of Y be the graph that results from the overlap graph by merging the vertices corresponding to I_{0} and to $I(H)$ for every segment $H \in Y$, respectively, to one vertex.

Lemma 50. There is a proper order on the segments in Y if and only if the merged overlap graph G^{\prime} of Y is connected.

Proof. Let G^{\prime} be connected and $G^{\prime \prime}$ be a spanning connected subgraph of G^{\prime}. Then $V\left(G^{\prime}\right)=$ $V\left(G^{\prime \prime}\right)=Y \cup\left\{I_{0}\right\}$. Let $H_{0}, H_{1}, \ldots, H_{|Y|}$ be the order in which the vertices of $G^{\prime \prime}$ are visited first by an arbitrary DFS in $G^{\prime \prime}$ that starts on $I_{0}=H_{0}$. We show that $\sigma=H_{1}, \ldots, H_{|Y|}$ is a proper order on Y. Let $H_{i}, 1 \leq i \leq|Y|$, be a segment in σ. Then H_{i} is adjacent to a vertex $H_{j}, j<i$, in $G^{\prime \prime}$ by construction and an interval in $I\left(H_{i}\right)$ overlaps with an interval in $I\left(H_{j}\right)$. If $j=0$, the dependent path of H_{i} contains an inner real vertex. If $j>0$, the dependent path of H_{i} contains an inner vertex that is an attachment vertex of the previous segment H_{j} of σ.

Let $\sigma=H_{1}, \ldots, H_{|Y|}$ be a proper order on Y. We show that every $H_{i}, 1 \leq i \leq|Y|$, is adjacent to I_{0} or a vertex H_{j} with $j<i$ in G^{\prime}. This implies that G^{\prime} is connected. If the dependent path P_{i} of H_{i} contains an inner real vertex v, v must be the end point of an interval $\left[v_{0}, v\right]$ in I_{0}. Since P_{i} does not contain v_{0}, the interval $\left[s\left(P_{i}\right), t\left(P_{i}\right)\right]$ in $I\left(H_{i}\right)$ and $\left[v_{0}, v\right]$ overlap. Otherwise, P_{i} does not contain an inner real vertex. In that case, P_{i} contains an inner vertex that is an attachment vertex of a segment H_{j} with $1 \leq j<i$, as σ is proper.

Let v be an inner vertex of P_{i} that is an attachment vertex of the segment H_{j} with minimal j and let P_{j} be the dependent path of H_{j}. If $P_{j} \subseteq P_{i}$, no inner vertex of P_{j} can be real and it follows that P_{j} contains an inner vertex that is an attachment vertex of a segment H_{k} with $1 \leq k<j$, contradicting the choice of v. Thus, P_{j} is not contained in P_{i}. We conclude that $I\left(H_{j}\right)$ contains an interval $[v, u]$ or $[u, v]$ with u being an end vertex of P_{j} that is not in P_{i}. This implies that $[v, u]$ or [u, v] overlaps with the interval $P_{i} \in I\left(H_{i}\right)$.

If G is 3 -connected, a proper order σ on Y exists according to Theorem 47 and Lemma 49. The merged overlap graph G^{\prime} of Y is then connected with Lemma 50 . The following algorithm detects whether G^{\prime} is connected and computes σ in the affirmative case and the connected components of G^{\prime} otherwise.

Lemma 51. Let t be the total number of intervals that have been created for I_{0} and all segments in Y and let G^{\prime} be the merged overlap graph of Y. There is an algorithm with running time $O\left(t+\left|V\left(C_{i}\right)\right|\right)$ that computes a proper order σ on Y, if exists, and that computes the connected components of G^{\prime}, if no proper order on Y exists.

Proof. We may construct G^{\prime} explicitly and, if G^{\prime} is connected, extract σ from G^{\prime} as described in the proof of Lemma 50. Unfortunately, then G^{\prime} cannot be computed explicitly in time linearly dependent on t, as it can contain up to $\binom{t}{2} \in \Omega\left(t^{2}\right)$ edges. For a worst case example, consider t slightly shifted copies of the same interval.

We cope with this problem by computing a sparse merged overlap graph, i.e., a spanning subgraph G_{s} of G^{\prime} with at most $2 t$ edges but with exactly the same connected components as G^{\prime}.

A simple sweep-line algorithm due to Olariu and Zomaya [45] computes in time $O(t)$ a spanning subgraph G_{s}^{\prime} of the overlap graph of Y (but not of the merged overlap graph) such that G_{s}^{\prime} has at most $2 t$ edges and exactly the same connected components as the overlap graph of Y. The algorithm assumes the end points of intervals to be sorted. As we deal only with intervals that correspond to vertices on a chain C_{i} and an extra vertex v_{0}, we can apply bucket sort in advance to sort the end points. We remark that this will not be necessary in the application of this lemma, as predecessors and successors in this order can be maintained during a traversal of C_{i}. Note also that the work in [45] describes mainly a non-sequential variant of the algorithm; for a simple sequential variant, Lemmas 4.1 and 4.2 in [45] suffice.

Thus, G_{s}^{\prime} can be computed in time $O\left(t+\mid V\left(C_{i} \mid\right)\right.$. To obtain G_{s}, we just have to merge the sets I_{0} and $I(H)$ for each $H \in Y$ in G_{s}^{\prime} to one vertex, respectively. This takes a total running time of $O\left(t+\mid V\left(C_{i} \mid\right)\right.$. In G_{s}, we apply a DFS on the vertex I_{0} to decide whether G_{s} is connected. If G_{s} is connected, G_{s} is a spanning connected subgraph of G^{\prime}. Then, as described in the first lines of the proof of Lemma 50, the order in which the vertices are visited first in the DFS gives a proper order on Y. If G_{s} is not connected, the DFS computes the connected components of G_{s}, which are exactly the connected components of G^{\prime}.

For every chain $C_{i} \in C$, at most \mid Children $_{12}\left(C_{i}\right)|+2|$ Type $_{3}\left(C_{i}\right)\left|+\left|V_{\text {real }}\left(C_{i}\right)\right|-2\right.$ intervals are created. Thus, applying the algorithm of Lemma 51 for all chains in C adds up to a total time of $O(m)$.

We therefore gave a linear-time algorithm that either computes a construction sequence of G or returns a witness for the fact F that there is no proper order σ on Y, namely that more than one connected component of the merged overlap graph G^{\prime} exists. According to Theorem 47 and Lemma $50, F$ proves that G is not 3 -connected. However, to obtain an easy-to-verify certificate in that case, we will show how a separation pair can be extracted in the next section. If the input graph is assumed to be 3-connected, we get the following theorem.

Theorem 52. The sequences (1)-(8) for a simple 3-connected graph G can be computed in time $O(m)$.

We remark that the reduction to intervals does not have to be explicit in an implementation; instead, we can work directly on the graph.

5.7.2 Extracting a Separation Pair

We show how a separation pair can be extracted if not all clusters of Children $_{12}\left(C_{i}\right) \cup \operatorname{Type}_{3}\left(C_{i}\right)$ have been added after processing C_{i}. Then Children $_{12}\left(C_{i}\right)$ must still contain a chain D. Let H be the segment that contains D and let S_{l}^{R} be the current subgraph. Let W be the union of H and every segment that is mapped to the same connected component A of the merged overlap graph as H. The set W can be represented as the connected component A itself, which was already computed in the processing phase of C_{i} with the algorithm of Lemma 51.

The union of dependent paths of the segments in W is a path $P=x \rightarrow y$ that is contained in C_{i}, as there is a sequence of overlapping intervals for A. The path P cannot contain inner vertices that are real due to Lemma 49. It follows that every edge in $E(G) \backslash E(P)$ that is adjacent to an inner vertex in P must be contained in a segment H^{\prime} of $S_{l}^{R}\left(H^{\prime}\right.$ does not have to be contained in $W)$. As H^{\prime} is contained in W or the intervals of H^{\prime} do not overlap with any interval of a chain in W, all the attachment vertices of H^{\prime} must be in P. Additionally, P contains an inner vertex v,
since the two attachment vertices of segments that are backedges cannot connect two consecutive vertices in T, as G is simple, and because every other segment has at least three attachment vertices due to Lemma 39.

Therefore, deleting x and y separates v from $G \backslash V(P)$ and x and y form a separation pair, certifying that G is not 3 -connected. The vertices x and y can be computed in $O(n+m)$ by considering the attachment vertices of the segments in W. This gives the following result.
Theorem 53. There is a certifying algorithm that tests the 3-connectivity of a simple graph G in time $O(n+m)$, returns each of the sequences (1)-(8) if G is 3 -connected and returns a cut vertex or a separation pair otherwise.

Algorithm 2 gives an overview of the whole approach. An example of its application can be found in Figure 12. We get the following corollary from the discussion of certificates for 3-edgeconnectivity (see Section 4.1) and edge cuts (see Section 4).

```
Algorithm 2 Test3Connectivity(Graph \(G\) )
    Compute a DFS-tree \(T\) of \(G\), a chain decomposition \(C\) and classify the chains
    Check Properties A and B, Compute \(S_{3}^{R}:=C_{0} \cup C_{1} \cup C_{2} \quad \triangleright\) Sections 5.1-5.3
    for \(i:=0\) to \(m-n+1\) do \(\quad \triangleright\) process each \(C_{i}\)
        Compute the lists Children \(_{12}\left(C_{i}\right)\) and Type \(_{3}\left(C_{i}\right) \quad \triangleright\) page 33
        for each \(D \in\) Children \(_{12}\left(C_{i}\right)\) that is of Type 2a such that \(t(D)\) is real do
            Add \(D\); update Children \(_{12}\left(C_{i}\right) \quad \triangleright\) omissible, see Section 5.7.3
        Partition Type \(_{3}\left(C_{i}\right)\) into segments \(\triangleright\) page 33
        (every such segment is represented by the minimal chain it contains)
        for each segment \(H\) with \(H \cap \operatorname{Type}_{3}\left(C_{i}\right) \neq \emptyset\) and \(H \cap \operatorname{Children}_{12}\left(C_{i}\right)=\emptyset\) do
            Add the clusters of all ancestors of \(H \cap \operatorname{Type}_{3}\left(C_{i}\right)\) that are in \(H\) in the
            order of \(<\); update Type \(_{3}\left(C_{i}\right) \quad \triangleright\) Lemma 44
        Let \(Y\) be the set of segments that contain a chain in Children \(_{12}\left(C_{i}\right)\)
        for each \(H \in Y\) do
            Compute the attachment vertices and the dependent path of \(H \quad \triangleright\) page 34
            Map \(H\) to a set of intervals on \(C_{i}\)
                                \(\triangleright\) Section 5.7.1
        Using these intervals, compute either a proper order \(\sigma\) on \(Y\) or more than
        one connected component of the merged overlap graph \(G^{\prime}\) of \(Y \quad \triangleright\) Lemma 51
        if a proper order \(\sigma\) was computed then
            for each segment \(H \in Y\) in the order of \(\sigma\) do \(\quad \triangleright\) Add clusters; save construction seq.
            Add the clusters of all ancestors of \(H \cap\left(\operatorname{Type}_{3}\left(C_{i}\right) \cup\right.\) Children \(\left._{12}\left(C_{i}\right)\right)\)
            that are in \(H\) in the order of \(<\); update \(\operatorname{Type}_{3}\left(C_{i}\right) \quad \triangleright\) Lemma 49
        else \(\triangleright G^{\prime}\) is not 3-connected
            Compute a separation pair
                                    \(\triangleright\) Section 5.7.2
```

Corollary 54. There is a certifying algorithm that tests the 3 -edge-connectivity of a simple graph G in time $O(n+m)$.

5.7.3 Simplifications

We list some simplifications for Algorithm 2.

(a) A 3-connected input graph G with $n=17$ and $m=33$. Straight lines depict the edges of the DFS-tree T (the DFS visits left children first).

(d) The K_{4}-subdivision S_{4}^{R} that is generated by the addition of C_{7}. Its real vertices are depicted in black. Note that choosing C_{8} instead of C_{7} would have led to a K_{4} subdivision as well. The remaining chains C_{8} and C_{9} are added in that order.

(b) The decomposition of G into $m-$ $n+2$ chains. Light solid chains are of Type 1, red dashed ones of Type 2 and black solid ones of Type 3. The only chain of Type 2 a is C_{3}. The only chains of Type 3b are C_{14} and C_{16}, giving the caterpillars $L_{14}=$ $\left\{C_{14}, C_{6}, C_{4}\right\}$ and $L_{16}=\left\{C_{16}, C_{5}\right\}$, respectively.

(e) The subgraph S_{6}^{R}. As C_{1} is finished, we process C_{2} next. Due to Theorem 47, C_{3}, C_{10}, C_{12}, C_{13}, C_{15} and L_{14} are addable if G is 3 -connected. To obtain the right order on these clusters, we group them by segments and compute the following mapping.

(c) The K_{2}^{3}-subdivision $S_{3}^{R}=\left\{C_{0}, C_{1}, C_{2}\right\}$ in G (thick green edges). We start with processing C_{0}. Since Children ${ }_{12}\left(C_{0}\right)=\emptyset$, we can add all chains in Type $_{3}\left(C_{0}\right)=\left\{C_{7}, C_{8}, C_{9}\right\} \quad$ with Lemma 44 in ascending order of $<$. Thus, we add C_{7} first.
v_{0}

$\longmapsto \mathrm{I}_{0}$
(f) Mapping segments to intervals (I_{0} is induced by v_{5}). Let H be the segment of C_{14}. Any sequence of overlapping intervals, e.g., $I_{0}, I\left(C_{10}\right), I\left(C_{12}\right)$, $I\left(C_{13}\right), I\left(C_{3}\right), I(H)$, gives an order on segments. For each such segment H^{\prime}, we add the clusters of all ancestors of $H^{\prime} \cap\left(\right.$ Children $\left._{12}\left(C_{2}\right) \cup \operatorname{Type}_{3}\left(C_{2}\right)\right)$ in H^{\prime}.

(g) The subgraph S_{14}^{R} after adding the clusters C_{10}, C_{12}, C_{13}, C_{3}, L_{16} and C_{15} due to Lemma 49. The next nontrivial chain to process is C_{4} with Children $_{12}\left(C_{4}\right)=\left\{C_{5}\right\}$ and Type ${ }_{3}\left(C_{4}\right)=\left\{C_{16}\right\}$. Both chains are contained in the good caterpillar L_{16}, which is a segment of S_{14}^{R} itself. We create the interval $\left[v_{0}, v_{12}\right]$ for C_{4} due to its inner real vertex v_{12} and map L_{16} to the intervals [$\left.v_{11}, v_{1}\right],\left[v_{11}, v_{12}\right]$ and $\left[v_{12}, v_{1}\right]$ on C_{4}. As $\left[v_{0}, v_{12}\right]$ overlaps with $\left[v_{11}, v_{1}\right]$, we can add the caterpillar L_{16}, which is decomposed into the two BG-paths $v_{11} \rightarrow_{G \backslash E\left(S_{14}^{R}\right)} v_{1}$ and $v_{17} \rightarrow_{T}$ v_{12} with Lemma 36.

(h) The subgraph S_{16}^{R}. As there is nothing to do for C_{5}, we next process C_{6} with Children $_{12}\left(C_{6}\right)=\left\{C_{17}\right\}$ and $\operatorname{Type}_{3}\left(C_{6}\right)=\emptyset$. Due to the inner real vertex v_{13} of C_{6} (causing an interval of I_{0} to overlap with $\left.I\left(C_{17}\right)\right), C_{17}$ is addable.

(i) The subgraph S_{17}^{R}. The next non-trivial chain to process is C_{8} with Children $_{12}\left(C_{8}\right)=$ $\left\{C_{11}\right\}$ and Type $_{3}\left(C_{8}\right)=\emptyset$. Due to the inner real vertex v_{6} of C_{8} (causing an interval of I_{0} to overlap with $\left.I\left(C_{11}\right)\right), C_{11}$ is addable as the last BG-path of the construction sequence. This generates the subgraph S_{18}^{R}, which is identical to G.

Figure 12: An example of the algorithm.

- Treatment of chains of Type 2a:

Lines 5 and 6 in Algorithm 2 can be omitted. Let C_{i} be the currently processed chain and suppose there is a chain $D \in$ Children $_{12}\left(C_{i}\right)$ of Type 2 a with $t(D)$ being real. We show that D will be added if G is 3 -connected (if G is not 3-connected, the absence of D does not harm the algorithm to find a separation pair, as D is a backedge).
Let G be 3 -connected and let P be the dependent path of D. We can assume that P has no inner real vertex after processing C_{i}, as otherwise D would have been added as well by construction of the merged overlap graph. Clearly, C_{i} must contain an inner vertex, since D is a child of C_{i}; let v be the first inner vertex of C_{i}. Since G is simple, $t(D) \neq v$ holds, which implies that v is an inner vertex of P. Thus, v is non-real and it follows that G contains no chain of Type 3 that ends at v. Every chain that starts at v implies that v has a child in T. We conclude with $\operatorname{deg}(v) \geq 3$ in G that at least one child of C_{i} ends at v and is of Type 1 or 2 . Since this chain is contained in Children $_{12}\left(C_{i}\right)$ and G is 3-connected, v is real after processing C_{i}, contradicting the assumption.

- Integrating the preprocessing phase:

The processing phases of chains can be integrated into the chain decomposition. A chain C_{i} can already be processed when it is contained in the current subgraph and when all chains of Children $_{12}\left(C_{i}\right) \cup$ Type $_{3}\left(C_{i}\right)$ have been found. Therefore, the chain decomposition does not have to be finished for computing a proper ordering and for adding clusters. This gives a two-step approach of the whole algorithm: The first step just performs a DFS and the second step computes the construction sequence by processing iteratively $C_{0}, C_{1}, \ldots, C_{m-n+1}$.

6 Conclusions

We proposed several variants of construction sequences for the class of 3-connected graphs and developed efficient transformations between them. This led to a conceptually new approach to compute these construction sequences bottom-up, which runs in optimal linear time. Using construction sequences as certificates for 3 -connectivity allowed to create certifying algorithms for testing graphs on being 3 -connected and 3 -edge-connected in time $O(n+m)$.

An $S P Q R$-tree of a 2 -connected graph G is a tree that represents the 3 -connected components of G. Hopcroft and Tarjan [30] and Gutwenger and Mutzel [27] show that the $S P Q R$-tree of a 2 -connected graph can be computed in linear time. Clearly, we can certify the 3 -connected components (the so-called R-nodes) of this tree to be 3 -connected with the algorithm of Section 5 . In fact, this allows to certify the $S P Q R$-tree decomposition itself, which gives a linear-time certifying algorithm for computing $S P Q R$-trees. However, it would be interesting and of practical interest whether the algorithm itself can be extended to give an $S P Q R$-tree in linear time.

In contrast to the non-certifying algorithms in [30,67,68], the given algorithm does neither assume the graph to be 2-connected nor needs to compute low-points (as defined in [30]) in advance. As 3 -connectivity tests are used in practice and many implementation details are to consider, it would be interesting and reasonable to compare these algorithms experimentally.

Another open question is whether construction sequences provide a general new approach to test graphs efficiently on higher vertex connectivity. Up to now, no linear-time algorithm for testing graphs on 4 -connectivity is known. Interestingly, construction sequences for 4 -connected graphs exist [50].

References

[1] S. Albroscheit. Ein Algorithmus zur Konstruktion gegebener 3-zusammenhängender Graphen. Diploma thesis, Freie Universität Berlin, 2006.
[2] L. Auslander and S. V. Parter. On imbedding graphs in the plane. J. Math. and Mech., 10(3):517-523, 1961.
[3] D. W. Barnette and B. Grünbaum. On Steinitz's theorem concerning convex 3-polytopes and on some properties of 3 -connected planar graphs. In Many Facets of Graph Theory, pages 27-40, 1969.
[4] V. Batagelj. Inductive classes of graphs. In Proceedings of the 6th Yugoslav Seminar on Graph Theory, pages 43-56, Dubrovnik, 1986.
[5] V. Batagelj. An improved inductive definition of two restricted classes of triangulations of the plane. In Combinatorics and Graph Theory, Banach Center Publications, volume 25, pages 11-18. PWN Warsaw, 1989.
[6] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132-169, 1998.
[7] M. Blum and S. Kannan. Designing programs that check their work. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC'89), pages 86-97, New York, 1989.
[8] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
[9] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium of Algorithms (ESA'02), pages 247-256, 2002.
[10] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks. Algorithmica, 15(6):521-549, 1996.
[11] N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time solvable for 4connected planar graphs. J. Algorithms, 10(2):187-211, 1989.
[12] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Reconnaissance et construction de representations planaires topologiques. Rev. Francaise Recherche Operationelle, 8:33-47, 1964.
[13] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS'89), pages 436-441, 1989.
[14] G. Di Battista and R. Tamassia. On-line graph algorithms with $S P Q R$-trees. In Proceedings of the 1^{7} th International Colloquium on Automata, Languages and Programming (ICALP'90), pages 598-611, 1990.
[15] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. J. ACM, 40:17-47, 1993.
[16] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19-33, 1983.
[17] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. An O(n+m) certifying triconnnectivity algorithm for Hamiltonian graphs. Algorithmica, 62(3):754-766, 2012.
[18] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. Every DFS tree of a 3-connected graph contains a contractible edge. Journal of Graph Theory, 72(1):112-121, 2013.
[19] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci., 2(3):339-344, 1976.
[20] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS 2(1976):339-344). Theor. Comput. Sci., 4(1):123, 1977.
[21] D. S. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components by local replacement. SIAM J. Comput., 22(3):587-616, 1993.
[22] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Inf. Process. Lett., 74(3-4):107-114, 2000.
[23] Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT News, 22(1):57-61, 1991.
[24] T. Gallai. Elementare Relationen bezüglich der Glieder und trennenden Punkte von Graphen. Magyar Tud. Akad. Mat. Kutato Int. Kozl., 9:235-236, 1964.
[25] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput., 5(4):704-714, 1976.
[26] A. J. Goldstein. An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. Technical report, Contract No. NONR 1858-(21), Department of Mathematics, Princeton University, 1963.
[27] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In Proceedings of the 8th International Symposium on Graph Drawing (GD'00), pages 77-90, 2001.
[28] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'01), pages 246-255, 2001.
[29] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen, 13:103-107, 1966.
[30] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J. Comput., 2(3):135-158, 1973.
[31] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549-568, 1974.
[32] E. L. Johnson. A proof of the four-coloring of the edges of a regular three-degree graph. Technical report, O. R. C. 63-28 (R. R.) Min. Report, Univ. of California, Operations Research Center, 1963.
[33] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algorithms for recognizing interval graphs and permutation graphs. SIAM J. Comput., 36(2):326-353, 2006.
[34] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS'85), pages 464-467, 1985.
[35] E. Lucas. Récréations Mathématiques. Part 1. Gauthier-Villars et Fils, Paris. second edition (first edition in 1881), 1891.
[36] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer Science Review, 5(2):119-161, 2011.
[37] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. Algorithmica, 16(2):233-242, 1996.
[38] K. Mehlhorn and S. Näher. From algorithms to working programs: On the use of program checking in LEDA. In Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science (MFCS'98), pages 84-93, 1998.
[39] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking geometric programs or verification of geometric structures. Comput. Geom. Theory Appl., 12(1-2):85-103, 1999.
[40] K. Mehlhorn and P. Schweitzer. Progress on certifying algorithms. In Proceedings of the 4 th International Workshop on Frontiers in Algorithmics (FAW'10), pages 1-5, 2010.
[41] P. Mutzel. A fast $0(n)$ embedding algorithm, based on the Hopcroft-Tarjan planary test. Technical Report 107, Zentrum für Angewandte Informatik Köln, 1992.
[42] P. Mutzel. The SPQR-tree data structure in graph drawing. In Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP'03), pages 3446, 2003.
[43] H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-edge-connected components in a multigraph. Japan Journal of Industrial and Applied Mathematics, 9:163-180, 1992.
[44] A. Neumann. Implementation of Schmidt's algorithm for certifying triconnectivity testing. Master's thesis, Universität des Saarlandes and Graduate School of CS, Germany, 2011.
[45] S. Olariu and A. Y. Zomaya. A time- and cost-optimal algorithm for interlocking sets - With applications. IEEE Trans. Parallel Distrib. Syst., 7(10):1009-1025, 1996.
[46] V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, pages 275-340, 1993.
[47] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Proceedings of the 27th Symposium on Theoretical Aspects of Computer Science (STACS'10), pages 633-644, 2010.
[48] J. M. Schmidt. Construction sequences and certifying 3-connectivity. Algorithmica, 62:192208, 2012.
[49] R. W. Shirey. Implementation and analysis of efficient graph planarity testing algorithms. PhD thesis, University of Wisconsin, 1969.
[50] P. J. Slater. A classification of 4-connected graphs. Journal of Combinatorial Theory, Series B, 17(3):281-298, 1974.
[51] E. Steinitz. Polyeder und Raumeinteilungen. Encyclopädie der mathematischen Wissenschaften, 3 (Geometrie):1-139, 1922.
[52] S. Taoka, T. Watanabe, and K. Onaga. A linear time algorithm for computing all 3-edgeconnected components of a multigraph. IEICE Trans. Fundamentals E75, 3:410-424, 1992.
[53] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972.
[54] R. E. Tarjan. A note on finding the bridges of a graph. Inf. Process. Lett., 2(6):160-161, 1974.
[55] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85-94, 1986.
[56] G. Tarry. Le problème des labyrinthes. Nouvelles Annales de Mathématique, 14:187-190, 1895.
[57] C. Thomassen. Kuratowski's theorem. J. Graph Theory, 5(3):225-241, 1981.
[58] C. Thomassen. Reflections on graph theory. J. Graph Theory, 10(3):309-324, 2006.
[59] Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively. Inf. Process. Lett., 91:147-153, 2004.
[60] Y. H. Tsin. A simple 3-edge-connected component algorithm. Theor. Comp. Sys., 40(2):125142, 2007.
[61] Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J. of Discrete Algorithms, 7(1):130-146, 2009.
[62] Y. H. Tsin and F. Y. Chin. A general program scheme for finding bridges. Inf. Process. Lett., 17(5):269-272, 1983.
[63] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99-116, 1956.
[64] W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441-455, 1961.
[65] W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15. University of Toronto Press, 1966.
[66] W. T. Tutte. Graph Theory. Cambridge University Press, 1984.
[67] K.-P. Vo. Finding triconnected components of graphs. Linear and Multilinear Algebra, 13:143165, 1983.
[68] K.-P. Vo. Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of graphs. Linear and Multilinear Algebra, 13:119-141, 1983.
[69] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34(1):339-362, 1932.
[70] S. G. Williamson. Embedding graphs in the plane - algorithmic aspects. In Combinatorial Mathematics, Optimal Designs and Their Applications, volume 6 of Annals of Discrete Mathematics, pages 349-384. Elsevier, 1980.
[71] S. G. Williamson. Depth-first search and Kuratowski subgraphs. J. ACM, 31(4):681-693, 1984.

[^0]: This research was partially supported by the Deutsche Forschungsgemeinschaft within the research training group "Methods for Discrete Structures" (GRK 1408) and partly done while at FU Berlin.

