
Contractions, Removals and How to Certify 3-Connectivity in
Linear Time

Jens M. Schmidt
Max Planck Institute for Informatics

Abstract

One of the most noted construction methods of 3-vertex-connected graphs is due to Tutte
and based on the following fact: Any 3-vertex-connected graph G = (V,E) on more than 4
vertices contains a contractible edge, i. e., an edge whose contraction generates a 3-connected
graph. This implies the existence of a sequence of edge contractions from G to the complete
graph K4, such that every intermediate graph is 3-vertex-connected. A theorem of Barnette
and Grünbaum gives a similar sequence using removals on edges instead of contractions.

We show how to compute both sequences in optimal time, improving the previously best
known running times of O(|V |2) to O(|E|). This result has a number of consequences; an
important one is a new linear-time test of 3-connectivity that is certifying; finding such an
algorithm has been a major open problem in the design of certifying algorithms in the last
years. The test is conceptually different from well-known linear-time 3-connectivity tests and
uses a certificate that is easy to verify in time O(|E|). We show how to extend the results to an
optimal certifying test of 3-edge-connectivity.

1 Introduction
The class of 3-connected (i. e., 3-vertex-connected) graphs has been studied intensively for many
reasons in the past 50 years. Algorithmic applications include problems in graph drawing (see [42]
for a survey), problems related to planarity [6, 28] and online problems on planar graphs (see [14] for
a survey). From a complexity point of view, 3-connectivity is in particular important for problems
dealing with longest paths, because it lies, somewhat surprisingly, on the borderline of NP-hardness:
Finding a Hamiltonian cycle is NP-hard for 3-connected planar graphs [25] but becomes solvable in
linear running time [11] for higher connectivity, as 4-connected planar graphs are Hamiltonian [63].

From a top-level view, we design an efficient algorithm from an inductively defined construction
of a graph class. For a given graph class C, such constructions start with a set of base graphs and
apply iteratively operations from a finite set of operations such that precisely the members of C are
constructed. This does not only give a computational approach to test graphs for membership in
C, it can also be exploited to prove properties of C using just arguments on the base graphs and the
finitely many operations. Graph theory provides inductively defined constructions for many graph
classes, including planar graphs, triangulations, k-connected graphs for k ≤ 4, regular graphs and
various intersections of these classes [4, 5, 32]. Most of these constructions have not been exploited
computationally.

This research was partially supported by the Deutsche Forschungsgemeinschaft within the research training group
“Methods for Discrete Structures” (GRK 1408) and partly done while at FU Berlin.

1

For an inductively defined construction of C and a graph G ∈ C, we call a sequence of operations
that is applied to a specified base graph to construct G a construction sequence of G. We will also
identify a construction sequence with the sequence of graphs it constructs, provided that this
determines the construction sequence uniquely. Sometimes, it is more convenient to describe a
construction sequence by giving the inverse operations from G to a specified base graph; in such
cases, we refer to them as top-down variants of construction sequences, as opposed to bottom-up
variants.

One of the most noted constructions for 3-connected graphs was given by Tutte [64] and is based
on the following fact: Any 3-connected graph G on more than 4 vertices contains a contractible
edge, i. e., an edge whose contraction generates a 3-connected graph. Iteratively contracting such
an edge gives a top-down construction sequence from G to a K4-multigraph (i. e., a K4 with
possible additional parallel edges and self-loops), in which all intermediate graphs are 3-connected.
In general, also non-3-connected graphs can contain contractible edges, but adding an additional
condition establishes a full characterization: A graph G on more than 4 vertices is 3-connected if
and only if there is a construction sequence from G to a K4-multigraph that uses only contractions
on edges with both end vertices having at least 3 neighbors [17]; we will call this a sequence of
contractions. It is also possible to describe a sequence of contractions bottom-up by using the
inverse operations edge addition and vertex splitting; in fact, this is the original form as stated in
Tutte’s famous wheel theorem [64].

Barnette and Grünbaum [3] and Tutte (implicitly shown in Theorems 12.64 and 12.65 of [65])
give a different construction of 3-connected graphs that is based on the following argument: Any
3-connected graph G on more than 4 vertices contains a removable edge, i. e., an edge whose
deletion generates a subdivision of a 3-connected graph. Removing this edge leads, similar as in
the sequence of contractions, to a top-down construction sequence from G to K4. We will define
removals in Section 3 and show how to add an additional condition to fully characterize 3-connected
graphs. Again, the originally proposed construction is given bottom-up from K4 to G, using three
operations.

Although both existence theorems on contractible and removable edges are used frequently in
graph theory [57, 58, 65], the first non-trivial computational result to create the corresponding
construction sequences was published more than 45 years afterwards: In 2006, Albroscheit [1] gave
an algorithm that computes a construction sequence for 3-connected graphs in O(|V |2). However,
in this algorithm, contractions and removals are allowed to intermix.

In 2010, two algorithms of the same running time O(|V |2) were given [40, 47] that both compute
a sequence of contractions. The latter algorithm computes alternatively a construction sequence
that uses only removals in O(|V |2). One of the building blocks of this algorithm is a straight-forward
transformation from an arbitrary sequence of removals to a sequence of contractions in time O(|E|).
This shows that the sequence of Barnette and Grünbaum is algorithmically at least as powerful
as the sequence of contractions. All mentioned algorithms do not rely on the 3-connectivity test
of Hopcroft and Tarjan [30], which runs in linear time but is rather involved. No algorithm that
computes any of these sequences in subquadratic time is known; in particular, there is no obvious
way of improving the O(|V |2) algorithms to linear time.

The main contribution of this paper is an algorithm that computes the construction sequence
of Barnette and Grünbaum bottom-up in time and space O(|E|). The key idea is based on a
careful classification and grouping of certain paths in a simple decomposition of the graph; the
groups of paths can be decomposed later into the desired operations for Barnette and Grünbaum’s

2

construction. The result has a number of consequences and applications.

Top-down and bottom-up variants of both constructions. One can immediately obtain the
sequence of removals from Barnette and Grünbaum’s bottom-up construction sequence by replacing
every operation with its inverse removal operation. Applying the transformation of [47] will imply
optimal time and space algorithms for the sequence of contractions, its bottom-up variant and
related sequences as well.

Certifying 3-connectivity in linear time. Blum and Kannan [7] initiated the concept of
programs that check their work. Mehlhorn and Näher [33, 38, 39] (see [36] for an extensive survey)
introduced the concept of certifying algorithms, i. e., algorithms that produce with each output a
certificate that the particular output has not been compromised by a bug. Such a certificate can be
any data that allows to check the correctness of the particular output (uniformly using a verifying
algorithm), having only access to the input.

Developing certifying algorithms is a major goal for problems where the fastest solutions known
are complicated, as implementations of these solutions tend to be error-prone. Having a certifying
algorithm for such a problem allows to verify the output of every particular instance, regardless of
how complicated the computation of this output is. For this reason, certifying algorithms are these
days used in software libraries like LEDA [38] for reliability purposes.

A prominent example for a problem for which the fastest solutions known are complicated is
testing a graph for 3-connectivity. Although sophisticated linear-time recognition algorithms are
known for over 35 years [21, 30, 46, 67, 68], none of them describe an easy-to-verify certificate or
show how a construction sequence can be computed.

The currently fastest algorithms that certify 3-connectivity need O(|V |2) time and use con-
struction sequences as certificates [1, 40, 47]. Recently, based on the results in [18], a linear time
certifying algorithm for 3-connectivity has been given for the subclass of Hamiltonian graphs, when
a Hamiltonian cycle is given as part of the input [17]. In general, finding a certifying algorithm for
3-connectivity in subquadratic time is an open problem [36, Chapter 5.4, p. 26] [17].

We solve this problem by giving a linear-time certifying algorithm for 3-connectivity that uses
Barnette and Grünbaum’s construction sequence as certificate. This implies a new linear-time test
for 3-connectivity that neither assumes the graph to be 2-connected nor needs to compute low-
points (see [30] for a definition of low-points); instead, it uses the structure of 3-connected graphs
implicitly by applying simple path-generating rules. This is conceptually different from all previous
linear-time 3-connectivity tests. The algorithm has already been implemented and made publicly
available [44]; interestingly, it outperforms the test in [30] on no-instances.

In addition, we give a simple decomposition of graphs that is closely related to ear decomposi-
tions [34, 69] and which allows to unify existing tests on 2-connectivity [9, 16, 19, 20, 22, 53, 55]
with tests on 2-edge-connectivity [54, 59, 62].

Certifying 3-edge-connectivity in linear time. There is no test for 3-edge-connectivity that
is certifying and runs in linear time, although many non-certifying linear-time algorithms for this
problem are known [23, 43, 52, 60, 61]. The first (non-certifying) one due to Galil and Italiano [23]
uses the fact that testing a graph G on k-edge-connectivity can be reduced to testing k-vertex-
connectivity on a slightly modified graph. Based on this reduction, we give a linear-time test on
3-edge-connectivity that is certifying.

3

Applications. Being able to certify 3-connectivity efficiently has a number of applications. E. g.,
many graph algorithms [13, 14, 6, 28, 42] that use the SPQR-tree data structure [27] can be made
certifying. Due to the Theorem of Steinitz [51], algorithms on polytopes (in a graph representation)
can be augmented with a quick and easy check that their input represents indeed a polytope.
Applications in communication networks include certificates for their reliability (depending on 2-
or 3-connectivity) and the property to allow for a perfectly secure message transmission [15].

We first develop results about construction sequences in Section 3. In Section 4, we discuss
certificates for k-connectivity and k-edge-connectivity, 0 ≤ k ≤ 3, and show how these can be
certified by conceptually simple checkers. Section 4 also introduces a decomposition of the input
graph, which partitions its edge set into cycles and paths, both of which are called chains. On a
high level view, chains provide the structure that we need to compute the next operation of the
construction sequence efficiently. Section 5 shows how to compute a construction sequence of a
3-connected graph in linear time. Section 5.7.2 describes how to find a cut vertex or separation
pair when the input graph is not 3-connected.

2 Preliminaries
We consider finite undirected graphs G with n := |V (G)| vertices and m := |E(G)| edges and use
standard graph-theoretic terminology from [8], unless stated otherwise. A set of vertices (respec-
tively, of edges) that leaves a disconnected graph upon deletion is called a vertex cut (respectively,
an edge cut). Vertex cuts of size one and two are called cut vertices and separation pairs, respec-
tively; edge cuts of size one in connected graphs are called bridges. For k ≥ 1, let a graph G be
k-connected if n > k and there is no vertex cut X in G with |X| < k. The connectivity of a graph
G is the largest integer k such that G is k-connected. Note that k-connectivity neither depends on
parallel edges nor on self-loops. For k ≥ 1, let a graph G be k-edge-connected if n > 1 and there is
no edge cut X in G with |X| < k.

Let v →G w denote a path P from vertex v to vertex w in G and let s(P) = v and t(P) = w be
the source and target vertex of P , respectively (as G is undirected, the direction of P is given by
s(P) and t(P)). Every vertex in P \{s(P), t(P)} is called an inner vertex of P . For a vertex v in G,
let N(v) = {w | vw ∈ E} denote its set of neighbors and deg(v) its degree (counting multiedges).
Let δ(G) be the minimum degree in G.

Let T be an undirected tree rooted at vertex r. For two vertices x and y in T , let x be an
ancestor of y and y be a descendant of x if x ∈ V (r →T y). If additionally x 6= y, x is a proper
ancestor and y is a proper descendant. For a vertex x in T , let T (x) be the subtree of T that
contains exactly the descendants of x. A DFS-forest F of a graph G is an acyclic graph that is
computed by performing a depth-first search (DFS), see [53]. The edges in E(G) \E(F) are called
backedges. Every connected component T in F is a rooted tree, which is called DFS-tree of G.

Let Km
2 be the graph on 2 vertices that contains exactly m parallel edges and no self-loops. A

decomposition of G is a set of subgraphs of G whose edge-sets partition E(G).

3 Construction Sequences
Let an edge e in a graph be contractible if contracting e results in a 3-connected graph. A subdivision
of a graph G is a graph generated from G by replacing each edge of G by a path of length at least

4

one. Conversely, we want a notation to get back to the graph without subdivided edges. Let
smoothing a vertex v ∈ V (G) be the operation on G that, if deg(v) = 2 and |N(v)| = 2 (both not
counting self-loops), deletes v followed by adding an edge between its neighbors.

Removing an edge e = xy (with x 6= y) in a graph deletes e followed by smoothing x and y.
An edge of G that is not a self-loop is called removable, if removing it generates a 3-connected
graph. Iteratively removing removable edges in a 3-connected graph G leads to a sequence of
removals from G to K4, the existence of which characterizes 3-connected graphs when adding
an additional condition similar as for the sequence of contractions. We describe the equivalent
bottom-up construction due to Barnette and Grünbaum.

Definition 1. The following operations are defined on 3-connected graphs and called BG-operations
(see Figure 1).

(a) Add an edge xy with x 6= y (possibly a parallel edge).

(b) Subdivide an edge ab, a 6= b, by a vertex x and add the edge xy for a vertex y /∈ {a, b}.

(c) Subdivide two non-parallel edges by vertices x and y, respectively, and add the edge xy.

x

y

x

y

(a) possibly a
parallel edge

a b a b

y y

x

(b) y, a and b are pairwise dis-
tinct

e
a

f
v

b

w

a

v

b

w

x

y

(c) e and f are neither identical
nor parallel

Figure 1: The three BG-operations.

A classical result of Barnette and Grünbaum [3] and Tutte [65] states that BG-operations
characterize the 3-connected graphs: A graph G is 3-connected if and only if G can be constructed
from K4 using BG-operations. Therefore, if G is 3-connected, every intermediate graph obtained
by performing the previous construction must be 3-connected as well.

Corollary 2 (Barnette and Grünbaum [3], Theorems IV.14 – IV.18 in Tutte [66]). Applying a
BG-operation to a 3-connected graph G generates a 3-connected graph.

A BG-operation can always be inversed by removing a removable edge. Figure 2 shows that
the converse is not true. We show under which conditions the inverse operation of removing a
removable edge is a BG-operation.

Lemma 3. The inverse operation of removing a removable edge e = xy in a graph G is a BG-
operation if and only if either |V (G)| = 4 or |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5 (in
G).

Proof. Let G′ be the 3-connected graph generated from G by removing e and let O be the inverse
operation of this removal. Assume first that O is a BG-operation and assume further that |V (G)| >
4. With Corollary 2, G is 3-connected, which implies |N(x)| ≥ 3 and |N(y)| ≥ 3 in G. It remains
to show that |N(x) ∪ |N(y)| ≥ 5. Assume the contrary. Then |N(x)| = |N(y)| = 3, as |N(x)| ≥ 4
or |N(y)| ≥ 4 would imply |N(x) ∪ |N(y)| ≥ 5, as x and y are adjacent. For the same reason,

5

x y

a

b

Figure 2: The edge xy is removable, since removing xy results in a K4-multigraph, which is 3-
connected. However, the inverse operation of removing xy is not a BG-operation, because it
induces the separation pair {a, b}.

|N(x) ∩ N(y)| = 2. Since |V (G)| > 4, some vertex in N(x) ∩ N(y) must be adjacent to a vertex
that is neither adjacent to x nor y. Then N(x) ∩N(y) is a separation pair, which contradicts the
3-connectivity of G. This proves |N(x) ∪ |N(y)| ≥ 5 in G.

Assume that O is not a BG-operation. It suffices to show that |V (G)| 6= 4 and |N(x)| < 3,
|N(y)| < 3 or |N(x) ∪ N(y)| < 5. We distinguish cases by the number of end vertices of e that
are deleted in the process of removing e. This number must be either 0, 1 or 2. It cannot be
0, as in that case the removal just deletes e, implying that O just adds an edge, which would be
a BG-operation. Therefore, G contains more vertices than the 3-connected graph G′. Since the
smallest 3-connected graph is K4, |V (G)| 6= 4.

If exactly one vertex, say x, is deleted by the removal, let a and b be the two neighbors of x
in G that are different from y. Then y ∈ {a, b} holds to assure that O is not a BG-operation and
|N(x)| < 3 in G. If both vertices x and y are deleted by the removal, let f1 and f2 be the edges in
which x and y are smoothed, respectively. Then f1 and f2 have to be identical or parallel in order
to assure that O is not a BG-operation, which implies that |N(x) ∪N(y)| < 5.

If G is simple, the condition |V (G)| = 4 in Lemma 3 is not needed.

Lemma 3 implies that a graphG is 3-connected if and only if a sequence of removals on removable
edges e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 to a K4-multigraph exists. The
following alternative view on this sequence allows to represent intermediate graphs as subgraphs of
G. Let a vertex v in a subdivision S of either K3

2 or of a 3-connected graph be real if deg(v) ≥ 3.
Let Vreal(S) be the set of all real vertices in S. Let the links of S be the paths in S that have real
end vertices but contain no other real vertices. The links of S are in one-to-one correspondence to
the edges of the subdivided graph and therefore partition E(S). Let two links be parallel if they
share the same end vertices.

Definition 4. Let S be a subgraph of a graph G such that S is a subdivision of either K3
2 or of

a 3-connected graph. A BG-path for S is a path P = x →G y, x 6= y, with the properties (see
Figure 3):

1. V (P) ∩ V (S) = {x, y}.

2. Every link of S that contains both x and y contains them as end vertices.

3. If x and y are inner vertices of distinct links Lx and Ly of S, respectively, and |Vreal(S)| ≥ 4,
then Lx and Ly are not parallel.

6

S

P

x

y

(a) P is a BG-path for
the K4-subdivision S.

S

P

x

y

(b) P is not a BG-path for S,
since there is a link that con-
tains x and y such that y is
not an end vertex of that link
(see Property 4.2).

S P

x

y

(c) P is not a BG-path for the K4-
multigraph S, as x and y are in-
ner vertices of two parallel links and
|Vreal(S)| ≥ 4 (see Property 4.3).

Figure 3: BG-paths

Theorem 5 (implicitly in [3]). A graph G without self-loops is 3-connected if and only if δ(G) ≥ 3
and G can be constructed from a K4-subdivision in G by adding BG-paths.

Theorem 5 implies that every 3-connected graph contains a subdivision of K4, a result first
shown by J. Isbell [3]. Note that after the addition of a BG-path P , s(P) and t(P) are real. Let
S4, . . . , Sz be a sequence of subgraphs in G that are generated by the construction, i. e., S4 is the
K4-subdivision in G and Sz = G. The BG-path construction has the advantage that every Sl is a
subgraph of Sl+1 ⊆ G. This admits not only a straight-forward representation of the construction
in linear space by storing S4 and the added BG-paths, it provides also a way to compute a next
BG-path efficiently by searching the neighborhood of the current subgraph in G.

The choice of the K4-subdivision S4 is not crucial [47]: At the expense of having additional
parallel links in subgraphs Sl (we will be able to handle these efficiently), there exists a construction
sequence to a 3-connected graph G using BG-paths from every prescribed K4-subdivision in G. To
certify 3-connectivity, we will use a slightly modified variant of the BG-path construction that
starts with a K3

2 -subdivision instead of a K4-subdivision; let the sequence of generated subgraphs
be in that case S3, . . . , Sz. We will provide linear-time transformations to all other construction
sequences.

We summarize constructive characterizations of 3-connected graphs and group similar ones.
From now on, we assume G to be simple, although all results extend to multigraphs. When
convenient, a construction sequence of a special type A is referred to as sequence A, although there
might be more than one sequence of that type.

Theorem 6. A simple graph G is 3-connected

⇔ There is a sequence of BG-operations from K4 to G (1)
(see [3], Theorems 12.64 and 12.65 in [65])

⇔ There is a sequence of BG-operations from K4 to G such that every (2)
intermediate graph is simple (see [3], Theorem 6.(6) in [48])

⇔ There is a sequence of removals from G to K4 of removable edges e = xy with (3)
|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see Lemma 3)

⇔ There is a sequence of removals from G to K4 of edges e = xy with (4)
|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5

7

⇔ There is a sequence of contractions from G to a K4-multigraph of contractible (5)
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [47], chapter 5 in [64])

⇔ There is a sequence of contractions from G to a K4-multigraph of (6)
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [17])

⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from a K3
2 -subdivision in G to G (7)

such that the first BG-path generates a K4-subdivision
⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from a K4-subdivision in G to G [3, 47] (8)
⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from each K4-subdivision in G to G [47] (9)

Proof. Only the equivalences of (4) and (7) need to be shown. We first prove (7) ⇔ (8). Clearly,
deleting the first BG-path in a sequence (7) gives a sequence (8). Conversely, the K4-subdivision
of a sequence (8) can be decomposed into a K3

2 -subdivision S3 and a path P that connects inner
vertices of two parallel links of S3. Since |Vreal(S3)| < 4, P is a BG-path for S3.

For the equivalence of (4), clearly (3) ⇒ (4). We prove (4) ⇒ (1). Let a sequence (4) be given
and let Gi+1 be any graph in that sequence different from K4. Let xy be the edge in Gi+1 that
is removed in the sequence to generate the graph Gi. Assume first that Gi is 3-connected. Then
xy is removable and since |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 hold in Gi+1, the inverse
of removing xy is a BG-operation on Gi due to Lemma 3. In particular, the 3-connectivity of Gi

implies that Gi+1 is 3-connected with Corollary 2. Since K4 is 3-connected, the inverse of every
removal in the sequence is a BG-operation, giving a sequence (1).

We list linear-time transformations between the sequences of Theorem 6.

Lemma 7 ([47], Lemmas 7 and 13 in [48]). There are algorithms that transform every given se-
quence (1)–(4) and (8) to each of the sequences (1) and (3)–(8) in linear time. The transformations
to sequence (1), (3), (4) and (8), respectively, preserve the number of operations.

Lemma 8. Every sequence (1) can be transformed to a sequence (2) in linear time such that the
number of operations is preserved.

Proof. All vertices and edges in sequence (1) have unique identifiers. Whenever an edge is subdi-
vided by a BG-operation, new identifiers are assigned to the new vertex and to the two parts of
the former edge, respectively. Similarly, a new identifier is assigned to the newly created edge of
every BG-operation, i.e., to the edge xy in Definition 1. Once created, vertices do not change their
identifiers. In [47], it is shown that this representation can be stored in linear space.

Let F be the list of all edges that are contained in this representation with different identifiers,
ordered by their time of creation in the construction sequence. F contains the edges that are newly
created by BG-operations, the edges that arise from subdividing old edges and the edges that are
contained in the initial K4 (the latter ones are placed at the very beginning of F).

We first show how to group edges of F that have the same end vertices. Let < be any total
ordering on the vertices. We sort the edges of F in lexicographic order ≺ on their end vertices,
i.e., for two distinct edges ab and cd in F with a < b and c < d, ab ≺ cd if either a < c or a = c
and b < d. This sorting can be computed in linear time by performing two bucket sorts on the end
vertices of edges in F , respectively.

Sorting F allows us to efficiently group edges that have the same end vertices. Let Fa,b be the
list of the edges in F with end vertices a and b; for every edge e in Fa,b, we store pointers to Fa,b

8

and to the edge sub(e) that subdivides e (if exists), respectively. Since bucket sort is stable, the
edges in Fa,b are still ordered by their time of creation in the construction sequence.

In order to make every intermediate graph simple, we swap edges in Fa,b and move the operations
that create some of these edges to another position in the construction sequence. Clearly, we only
have to consider lists Fa,b that contain at least two edges, as otherwise no parallel edge ab occurs
in the construction sequence. Thus, |Fa,b| ≥ 2. There is at most one edge in Fa,b that is not
subdivided, since G is simple. Hence, Fa,b contains at least one edge e for which sub(e) exists.

Let emin be the edge in Fa,b = {e1, . . . , ek} that is subdivided earliest in the construction
sequence. This edge can be computed in time O(k) by passing once through the list Fa,b. If
emin 6= e1, we swap emin and e1 throughout the construction sequence. This modification preserves
every operation to be a BG-operation, as the vertices a and b are never deleted (recall that adding
an edge between two existing vertices is always a BG-operation) and since no edge in Fa,b is
subdivided before emin. In fact, all parallel edges ab are pairwise interchangeable until sub(emin) is
added. Clearly, the number of BG-operations has not changed.

Every remaining edge e ∈ {e2, . . . , ek} in Fa,b is now the newly added edge of some BG-operation
Oe, as a and b exist due to e1. Note that e1 is not necessarily the newly added edge of some BG-
operation; e.g., e1 may be part of the initial K4 instead. If there is an edge e in Fa,b that is not
subdivided, e must be distinct from e1 because of the previous modification. If such an edge e
exists, we move it to the very end of the construction sequence. This preserves any operation to
be a BG-operation, as a and b exist and no other edge interferes with e, as no edge subdivides e.

For every remaining edge e ∈ Fa,b, we move Oe to the position in the construction sequence
immediately before sub(e) is added. Again, this preserves every operation in the construction
sequence to be a BG-operation, as a and b exist and sub(e) is the only edge that interferes with e.
Since every such e is now added after emin in the construction sequence and immediately subdivided
after its addition, every intermediate graph is simple. Clearly, all modifications preserve the number
of BG-operations.

A sequence (7) can be easily transformed to a sequence (8) by using the first BG-path to create
a K4-subdivision; the transformed sequence will have one operation less. Moreover, Lemmas 7
and 8 allow to further transform a sequence (8) efficiently to every sequence (1)–(6). In the rest of
the paper we will therefore focus on computing only a sequence (7).

That is why a construction sequence will refer to a sequence (7) throughout the rest of the
paper: We can transform this sequence to every other sequence of Theorem 6 in linear time. The
following lemma provides an iterative algorithmic approach to build a sequence (7).

Lemma 9 (Corollary of [48]). Let G be a 3-connected graph and H ⊂ G with H being a subdivision
of either K3

2 or of a 3-connected graph. Then there is a BG-path for H in G. Moreover, every link
L of H of length at least 2 has a parallel link (maybe L itself) that contains an inner vertex on
which a BG-path for H starts.

Every sequence of contractions (i. e., every sequence (5) and (6)) contains exactly n − 4 con-
tractions, implying that the K4-multigraph contains exactly m − n − 2 parallel edges. The next
lemma is a corresponding result for the number of operations in construction sequences.

Lemma 10. Every sequence (1)–(4) and (8) contains exactly m− n− 2 operations, whereas every
sequence (7) contains exactly m− n− 1 operations.

9

Proof. It suffices to show the first claim for each sequence (1), as Lemmas 7 and 8 preserve the
number of operations, respectively. The remaining claim follows directly from the fact that the
transformation of a sequence (8) to a sequence (7) adds exactly one BG-path. Let a, b and c
denote the number of BG-operations in a sequence (1) that create zero, one and two new vertices,
respectively. Then b+ 2c = n− 4 and a+ 2b+ 3c = m− 6 hold, since K4 consists of four vertices
and six edges. Subtracting the first from the second equation gives a+ b+ c = m− n− 2.

4 Chain Decompositions and Certificates
Suppose there is a vertex or edge cut X of size k − 1, k ≥ 1, in a graph G with n > 1 (for
vertex-connectivity, let n > k). Then X would be a straight-forward certificate for G being not
k-connected respectively not k-edge-connected. However, certificates should be as easy to check
as possible, while the running time for computing the certificate is less important. We therefore
apply the paradigm of shifting as much as possible of the checker’s work to the computation of the
certificate.

Instead of using X as certificate, we color the vertices of one connected component of G \ X
red and the vertices of all other connected components of G \X green. A checker for G being not
k-connected then just needs to check that at most k − 1 vertices are uncolored, there is at least
one red and one green vertex and that no edge joins a red vertex with a green one. For G being
not k-edge-connected, it suffices to check that there is at least one red, one green and no uncolored
vertex and that the end vertices of at most k − 1 edges differ in color. Note that this certifies a
graph to be disconnected for k = 1. We will always use these certificates instead of using X itself.
The certificates need space O(n) and can be checked in time O(m), as n > m + 1 proves G to be
disconnected.

For a certifying algorithm, it remains to show how the vertex and edge cuts X for these certifi-
cates are computed and which certificates is to be used for k-connectivity and k-edge-connectivity,
1 ≤ k ≤ 3. Performing a depth-first search [35, 53, 56] or any other suited graph traversal gives
the connected components of G in linear time. A certificate for G being connected is given in [36],
using an easy numbering scheme on the vertices.

Chain Decomposition. We use a very simple decomposition of graphs into cycles and paths,
which links DFS-trees, ear decompositions [34] and open (i. e., no ear is a cycle) ear decompo-
sitions [34, 69] without needing to compute low-points in advance (see [31] for a definition of
low-points). This decomposition does not only unify existing linear-time tests on 2-connectivity [9,
10, 16, 19, 20, 22, 53, 55] and 2-edge-connectivity [54, 59, 62], it will also be the base structure
that allows to compute a construction sequence of a 3-connected graph efficiently. We define the
decomposition algorithmically; a similar procedure for the computation of so-called low-points can
be found in [46].

Let G be a simple but not necessarily connected graph and let T be a depth-first search forest
of G. The DFS assigns a depth-first index (DFI) to every vertex. Recall that, for every backedge
e, s(e) and t(e) are the two end vertices of e such that s(e) is a proper ancestor of t(e) in T .

We decompose G into a set C = {C1, . . . , C|C|} of cycles and paths, called chains, by applying
the following procedure for each vertex v in ascending DFI-order: Let T ′ be the tree in the DFS-
forest T that contains v and let r be the root of T ′. For every backedge vw with s(vw) = v, we

10

traverse the path w →T ′ r until a vertex x is found that is either r or already contained in a chain.
The traversed subgraph vw ∪ (w →T ′ x) forms a new chain Ci with s(Ci) = v and t(Ci) = x.

We call C a chain decomposition (although it does not necessarily partition E(G) when G is
not 2-edge-connected). Let < be the strict total order on C in which the chains were found, i. e.,
C1 < · · · < C|C|, when forming the decomposition. Processing the vertices in ascending DFI-order
is not crucial; any pre-order on V (T) can be used instead (a strict total order ≺ on V (T) is a
pre-order if, for every vertex v ∈ V (T), all proper ancestors of v in T precede v in ≺). Clearly, the
decomposition into chains can be computed in time O(n+m).

Lemma 11. Let C be a chain decomposition of a simple graph G. Then G is 2-connected if and
only if δ(G) ≥ 2 and C1 is the only cycle in C.

Proof. Let G be 2-connected. Then G contains at least 3 vertices, the DFS-forest T is a tree and
the root r of T has exactly one child, as otherwise r would be a cut vertex. Additionally, G cannot
contain a vertex of degree one, as otherwise its neighbor would be a cut vertex. It follows that r
is adjacent to a backedge, implying that C1 is a cycle. Assume to the contrary that another chain
Ci 6= C1 is a cycle. Let v be the vertex in Ci of minimal DFI and let w be the child of v in T that is
also in Ci. Then no backedge adjacent to a vertex with smaller DFI than v can enter T (w), as this
backedge would have been processed before in the chain decomposition, contradicting Ci. Because
v 6= r, v is a cut vertex, which contradicts the assumption and the claim follows.

Now let every vertex in G have degree at least two and let C1 be the only cycle in C. This implies
thatG is connected, thus, T is a tree. Assume to the contrary thatG is not 2-connected and consider
the decomposition of G into maximal 2-connected components (2-components), where single edges
are regarded as 2-connected graphs. It is well-known that representing each 2-component by a
vertex that is adjacent to every cut vertex contained in that 2-component gives a tree [24, 29],
called the block-cut-tree (BC-tree). Every cycle in G must be contained in a 2-component, as a
cycle is 2-connected. Let X be the 2-component that contains C1, let r be the root of T and let Y be
a leaf of the BC-tree that is different from X. Then Y is not an edge, as otherwise it would contain
a vertex with degree one. It follows that Y contains a cycle. Let a be the last cut vertex on a path
from r to an arbitrary vertex in Y (it may happen that a = r). Then the chain decomposition
must find a cycle in Y when processing a. This cycle is different from C1 ⊆ X, which contradicts
the assumption.

Lemma 12. Let C be a chain decomposition of a simple graph G. Then G is 2-edge-connected if
and only if G is connected and the chains in C partition E(G).

Proof. Let G be 2-edge-connected. In particular, G is connected and the DFS-forest T is a tree. By
construction, the edge-sets of chains in C are disjoint and every backedge is contained in a chain.
We show that every edge e = xy in T (say, x is an ancestor of y) is also contained in a chain of C.
There must be a cycle in G that contains e, as otherwise e would be a bridge. It follows that there
is a backedge that enters T (y). The chain in C containing the first such backedge that is traversed
in the chain decomposition contains e.

Let G be not 2-edge-connected. We show that G is not connected or that the chains in C do
not partition E(G). Assume w. l. o. g. that G is connected, thus, T is a tree. Then G contains a
bridge e = xy (say, x is an ancestor of y), which must be a DFS-tree edge, as every backedge is
contained in a cycle. As no backedge enters T (y), e cannot be contained in any chain of C.

11

4.1 Certificates for Low Connectivity

If G is connected, we can detect whether G is 2-connected or 2-edge-connected in linear time using
Lemmas 11 and 12. If G is not 2-connected, we extract a cut vertex as follows: If a vertex with
degree one exists, its neighbor is a cut vertex. Otherwise, a chain decomposition C contains a cycle
Ci 6= C1 according to Lemma 11. Then the vertex with minimal DFI in Ci is a cut vertex. If G is
not 2-edge-connected, every edge that is not contained in a chain of C is a bridge.

For G being 2-connected and 2-edge-connected, C will be an open ear decomposition and an
ear decomposition, respectively. It is well-known that these decompositions characterize the 2-
connectivity respective 2-edge-connectivity of a graph [34, 69]. We therefore use in both cases C as
a certificate that can be verified by going along the definition of (open) ear decompositions in time
O(m). Note that C is not an arbitrary (open) ear decomposition; it depends on the DFS-tree.

For 3-connectivity, we will use a sequence (7) as certificate, as this is a proof for 3-connectivity
due to Theorem 6. A simple checker for a sequence (8) with running time O(m) is given in [47] that
can be easily extended to check a sequence (7) by replacing the K4-subdivision by a K3

2 -subdivision.
Moreover, this certificate can be easily stored in space O(|E|) [47].

3-Edge-Connectivity. For 3-edge-connectivity, we use the reduction to 3-connectivity due to
Galil and Italiano [23]. The reduction modifies the simple input graph G in linear time to a graph
with n + m vertices and 4m edges. First, a graph G′ is generated from G by subdividing each
edge with one vertex; these vertices are called arc-vertices. For each non-arc-vertex w in G′ we do
the following: Let v1, . . . , vdeg(w) be the arc-vertices neighboring w in an arbitrary order. Then the
edges (v1v2, v2v3, . . . , vdeg(w)v1) are added to G′ if not already existent. Note that the reduction
blows up each vertex v ∈ V (G) to a wheel graph with as many spokes as v has neighbors.

The graph G is 3-edge-connected if and only if G′ is 3-connected [23]. Moreover, every vertex
cut of minimal size in G′ contains only arc-vertices (Lemma 2.2 in [23]). We apply the certifying
3-connectivity test to G′ to obtain a certifying 3-edge-connectivity test in linear time and space. If
G′ is not 3-connected, the test for 3-connectivity returns a vertex cut of minimal size in G′, which
corresponds to an edge cut X of size at most two in G. The certificate then consists just of the
red-green coloring of the connected components of G \X as described above.

Otherwise, G′ is 3-connected and we get a sequence (7) for G′. The certificate consists of this
sequence, G′ and the injective mapping φ from each vertex in G′ to its corresponding vertex or edge
in G to certify the construction of G′. For a checker, it suffices to test that G′ is 3-connected using
the given sequence, every vertex in G has a unique preimage in V (G′) under φ, every non-arc-vertex
v in G′ is the hub of a wheel graph with deg(v) + 1 vertices that are all arc-vertices except for v,
every two wheels in G′ share at most one arc-vertex and every arc-vertex u in G′ is incident to
exactly two non-arc-vertices v and w such that φ(u) = φ(v)φ(w) and φ(u) ∈ E(G). Note that this
checker may fail in detecting additional edges (but not additional vertices) in G and that this does
not harm the 3-edge-connectivity of G. In both cases, the certificate needs linear space and can be
checked in time O(m).

5 A Certifying Algorithm in Linear Time
For convenience, we will assume that the input graph G is simple throughout this chapter. However,
if needed, all results can be extended to non-simple graphs G by applying them to the underlying

12

simple graph of G; the underlying simple graph of G can be computed in time O(n+m) by using
two bucket sorts on E(G).

We do not impose any other restrictions on G; in particular, we neither assume G to be 2-
connected nor connected. The certifying algorithm that we will describe, actually tests a graph on
having connectivity k for k = 0, 1, 2 and k ≥ 3 and gives a certificate for each case. Its running
time is O(n + m). In the case that G is 3-connected, we will use a sequence (7) as certificate and
show how to compute it in linear time. According to Lemmas 7 and 8, this implies that every
sequence (1)–(8) of a 3-connected graph can be computed in time O(n+m).

5.1 Using the Chain Decomposition

If n ≤ 1, G has connectivity 0 and the number of vertices certifies that fact. Otherwise, we perform
a DFS on G in time O(n + m) and obtain a DFS-forest T . In particular, the DFS detects the
connected components of G. If there is more than one connected component, we use the red-green
coloring of Section 4 on the connected components as certificate that G is disconnected and, thus,
has connectivity 0, as n > 1. For upcoming tests, we will assume that every vertex cut is certified
by a red-green coloring.

In the remaining case, G is connected and T is a tree. If n = 2, G has connectivity 1. Otherwise,
we compute a chain decomposition C on T in time O(m) and obtain the chains C1 < · · · < C|C|.
Additionally, we compute the minimum degree δ(G) of G during the computation of the chain
decomposition and store a vertex x that attains this degree. Moreover, by comparing the end
vertices of each chain on identity, the number y of cycles in C is computed.

If deg(x) = 1, G is not 2-connected and the neighbor of x must be a cut vertex, which implies
that G has connectivity 1. Let deg(x) > 1. If y > 1, the vertex with minimal DFI in a cycle Ci 6= C1
is a cut vertex and can be computed directly from C in linear time; thus, G has connectivity 1.
Otherwise, y = 1 and it follows that the root of T can have only one child. We conclude with
δ(G) ≥ 2 that the only cycle in C is C1. According to Lemma 11, G is 2-connected and C is an
open ear decomposition, which is a certificate for the 2-connectivity of G.

If n = 3, G has connectivity 2. The same holds, if deg(x) = 2, as then the two neighbors of x
form a separation pair. In the remaining case, G satisfies the following Property A.

Property A: n ≥ 4, δ(G) ≥ 3 and G is 2-connected

From now on, we will assume Property A, as we dealt with all other cases. We summarize some
implications.

Lemma 13. The chains in C partition E(G) and the last chain is Cm−n+1. The root r of T has
exactly one child.

Proof. According to Property A, G is 2-connected. As every 2-connected graph is 2-edge-connected,
Lemma 12 implies that the chains in C partition E(G). Since G is in particular connected, |C| =
m− n+ 1, as |C| is the number of backedges in G by construction. If r had more than one child,
the DFS-tree would imply that r is a cut vertex, contradicting the 2-connectivity of G.

5.2 Computing a K3
2 -Subdivision

Assume for a moment that G is 3-connected. According to Lemma 9, it suffices to add iteratively
BG-paths to an arbitrarily prescribed K3

2 -subdivision S3 in G to get a construction sequence (7)

13

from S3 to Sz = G. Note that we cannot make wrong decisions when choosing a BG-path, except
for the first BG-path that has to generate a K4-subdivision. The reason for this is that Lemma 9
can always be applied on the new generated subgraph and therefore ensures a completion of the
sequence. With Lemma 10, Sz = Sm−n+2 = G. Unfortunately, we do not know whether G is
3-connected. However, we can already compute a K3

2 -subdivision.
Let r be the root of T . Because of Property A, deg(r) ≥ 3 in G. Since r has exactly one

child in T , at least two chains exist and the chains C1 and C2 must both start at r. According to
Lemma 11, C1 is a cycle and all other chains are paths. By construction of the chains, C1 ∪ C2 is
a K3

2 -subdivision and we set S3 = C1 ∪ C2.
Recall that for a path P = v →G w, we defined s(P) = v and t(P) = w. To keep notation

simple, we abuse notation and split the cycle C1 into the two different paths from r to t(C2), i. e., we
set C0 = t(C2)→T r and redefine C1 = r →C1\E(C0) t(C2). Note that s(C0) = t(C2) and s(C1) = r.
From now on, we will represent the chain decomposition as this list C = C0, . . . , Cm−n+1 of paths.
Sometimes, we will regard C as a set. By construction, the following holds.

Proposition 14. Let Ci be a chain in C \ {C0}. Then s(Ci) is a proper ancestor of t(Ci). Addi-
tionally, Ci contains exactly one backedge, namely its first edge.

According to Lemma 12, every edge in G is contained in exactly one chain. We define parents
and children of chains.

Definition 15. Let the parent of a chain Ci 6= C0 be the chain Ck that contains the edge from
t(Ci) to the parent of t(Ci) in T . Conversely, let Ci be a child of the chain Ck.

The children of C0 are exactly the chains Ci with t(Ci) ∈ V (C0). The children of a chain
Ck 6= C0 are exactly the chains Ci for which t(Ci) is an inner vertex of Ck. The following two
lemmas reveal much of the structure of chains and are often used in subsequent theorems.

Lemma 16. Let Ck 6= C0 be a chain with child Ci. Then Ck < Ci, s(Ci) is a descendant of s(Ck)
in T and t(Ci) is a proper descendant of t(Ck) in T .

Proof. By the definition of the parent relation, t(Ci) must be an inner vertex of Ck and the last
claim follows. As the traversal of Ci stopped at Ck in the chain decomposition, Ck < Ci must hold.
Therefore, s(Ci) cannot be a proper ancestor of s(Ck) in T . As T is a DFS-tree, s(Ci) must be a
descendant of s(Ck) in T .

We show that chains admit a tree structure.

Lemma 17. The parent relation on C defines a tree U with V (U) = C and root C0.

Proof. Let D0 6= C0 be a chain in C and let D1, . . . , Dk be the sequence of chains containing
the edges of t(D0) →T r in that order, omitting double occurrences. By definition of the parent
relation, each Di, 0 ≤ i < k, has parent Di+1. It follows with Dk = C0 that U is connected.
Moreover, U is acyclic, as parent chains are always smaller in < than their children due to the
chain decomposition.

For convenience, U will always denote the tree that is defined by the parent relation on C.

It remains to show how we can efficiently compute either a next BG-path for the current
subgraph Sl, starting with l = 3, or a cut vertex or separation pair. For this purpose, we classify

14

the chains into different types in Section 5.3. We will eventually consider the chains Ci ∈ C in
the total order < and focus on the chains that have a non-empty intersection with Ci in every
step. Certain types of these chains will be BG-paths and therefore lead to the next subgraph
in the construction sequence. The remaining ones will be grouped into bigger structures, called
caterpillars, that can be decomposed into BG-paths later if the input graph is 3-connected (see
Section 5.4).

To make the computation efficient, Section 5.5 restricts the desired construction sequence, which
we try to compute, to a more special sequence. It is not clear that this restricted construction
sequence for 3-connected input graphs exists; its existence is shown in Section 5.6. Section 5.7
deals with the computation of the restricted construction sequence in linear time by a reduction to
interval overlaps.

5.3 Classification of Chains

We assign one of the Types 1, 2a, 2b, 3a and 3b to each chain Ci ∈ C \ {C0} in ascending order of
<. Some of these types will be BG-paths under certain conditions. The types are determined by
Algorithm 1 and dependent on the parent Ck of Ci: E. g., Ci is of Type 1 if (t(Ci)→T s(Ci)) ⊆ Ck

and of Type 2 if it is not of Type 1 and s(Ci) = s(Ck). All chains are unmarked at the beginning
of Algorithm 1. Note that chains that are backedges, in particular chains of Type 2a, cannot have
children. We illustrate the different types in Figures 4, 5 and 12(b).

Algorithm 1 classify(Ci ∈ C \ {C0},DFS-tree T) . classifies chains into types 1,2a,2b,3a,3b
1: Let Ck be the parent of Ci in U . Ck < Ci

2: if t(Ci)→T s(Ci) is contained in Ck then . Type 1
3: assign Type 1 to Ci

4: else if s(Ci) = s(Ck) then . Type 2: Ck 6= C0, t(Ci) is inner vertex of Ck

5: if Ci is a backedge then
6: assign Type 2a to Ci . Type 2a
7: else
8: assign Type 2b to Ci; mark Ci . Type 2b
9: else . Type 3: s(Ci) 6= s(Ck), Ck 6= C0, t(Ci) is inner vertex of Ck

10: if Ck is not marked then
11: assign Type 3a to Ci . Type 3a
12: else . Ck is marked
13: assign Type 3b to Ci; create a list Li = {Ci}; Cj := Ck . Type 3b
14: while Cj is marked do . Li is called a caterpillar
15: unmark Cj ; append Cj to Li; Cj := parent(Cj)

We first prove a basic property of chains of Types 2 and 3 and then show that the classification
of chains can be carried out in linear time.

Lemma 18. Let Ci 6= C0 be a chain of Type 2 or 3 and let Ck be the parent of Ci. Then Ck 6= C0
and t(Ci) is an inner vertex of Ck.

Proof. Assume to the contrary that Ck = C0. Because t(Ci) is contained in C0, s(Ci) must be in
C0 as well. But then Ci would be of Type 1, since t(Ci)→T s(Ci) ⊆ C0. Therefore, Ck 6= C0 holds

15

Ck

Ci

...

(a) Ci is of Type 1.

Ck

..
.

Ci

(b) Ci is of
Type 2a, as it is
a backedge.

Ci

D2

D1

Ck

..
.

D4

D3

..
.

..
.

(c) Ci and D1 − D4 are of
Type 2b and therefore marked
during the classification.

Ci

Ck

...

...

(d) Ci is of
Type 3a.

D2

D1

D0

D3

Ck

Ci

..
.

..
.

..
.

(e) Ci is of Type 3b, as Ck is
marked. The chain classifica-
tion traverses the marked an-
cestors Ck, D0, D1 and D2 of
Ci, unmarks them and builds
the list Ci, Ck, D0, D1, D2 (the
caterpillar Li).

Figure 4: Different types of chains. The underlying DFS-tree is always depicted with straight edges,
while backedges are bent; in addition, higher vertices are visited first in the DFS. Light solid (blue)
chains are of Type 1, (red) dashed ones of Type 2 and black solid ones of Type 3.

16

and Ck must start with a backedge. Then the definition of the parent relation implies that t(Ci) is
an inner vertex of Ck.

Lemma 19. Classifying each chain with Algorithm 1 takes running time O(m).

Proof. In order to obtain a fast classification, we store the following information for each chain Ci:
A pointer to its parent Ck (for Ci 6= C0), pointers to s(Ci) and t(Ci) and the information whether
Ci is a backedge. In addition, we store on each inner vertex of Ci a pointer to Ci. That allows us
to check vertices on being contained as inner vertices or end vertices in arbitrary chains in O(1). If
Ck = C0, Ci is of Type 1, as in that case t(Ci) and s(Ci) are contained in C0 (see also Lemma 18).
If Ck 6= C0, Ci is of Type 1 if s(Ci) is contained in Ck \ s(Ck), which can be checked in constant
time. The conditions for Type 2a and 2b need constant time as well. Every chain is marked at
most once, therefore unmarked as most once in Line 15 of Algorithm 1, which gives a total running
time of O(m).

Note that the classification with Algorithm 1 can be easily integrated into the chain decompo-
sition. From now on, we assume that we have classified all chains.

We remark that the chains of Types 1 and 3 are identical to the paths that the path-finding
procedure in the algorithm of Hopcroft and Tarjan [30] computes by using low-points, although the
order is different. However, this does not hold for the chains of Types 2a and 2b.

We next define a necessary property for G to be 3-connected. Recall that T (x) is the subtree
of T that contains all descendants of x.

Property B: For every chain Ci ∈ C \ {C0} that is not a backedge and for its last inner vertex x,
G contains a backedge e that enters T (x) such that s(e) is an inner vertex of t(Ci)→T s(Ci).

We say that a chain Ci has Property B if Ci does not violate Property B. In particular, C0 and
every chain that is a backedge has Property B.

Lemma 20. If a chain Ci violates Property B, {s(Ci), t(Ci)} is a separation pair in G.

Proof. The chain Ci can neither be C0 nor a backedge. Let x be the last inner vertex of Ci. We first
show that G contains a vertex y that is neither in {s(Ci), t(Ci)} nor in T (x). Assume otherwise.
Then s(Ci) must be the root of T , C0 is the tree edge s(Ci)t(Ci) in T and Ci is either C1 or C2, say
C1. As C2 cannot contain inner vertices, C2 must be the backedge s(Ci)t(Ci), which contradicts
the simpleness of G.

We show that every backedge that enters T (x) must start at a vertex in t(Ci)→T s(Ci). Clearly,
such a backedge e starts at a proper ancestor of x due to the DFS-structure, i.e., it starts at an
ancestor of t(Ci). Moreover, e does not start at a proper ancestor of s(Ci), as otherwise the chain
containing e would have been traversed by the chain decomposition procedure before Ci and contain
x. As Property B does not hold for Ci, we conclude that all backedges that enter T (x) start either
at s(Ci) or t(Ci). This causes {s(Ci), t(Ci)} to be a separation pair in G, because its deletion
separates the vertices y and x.

Thus, Property B is necessary for G being 3-connected. The reader that is mainly interested
in the computation of a construction sequence for a given 3-connected graph can therefore safely
take Property B for granted. For the case that G is not known to be 3-connected, we show how to
check Property B in linear time as part of the chain decomposition.

17

Lemma 21. Property B can be checked in time O(n+m) as part of the chain decomposition.

Proof. We mark every chain that has Property B with a special marker during the chain decom-
position. This gives a test on Property B in O(n + m) time. Clearly, C0 has Property B and we
mark it in advance. Every chain that is a backedge has also Property B and we mark those chains
as well (note that these are leaves in U , as they have no child). Whenever a chain D0 6= C0 is
found in the chain decomposition that is not of Type 2 (in fact, it suffices to deal with Type 3
chains), we traverse the path P = D0 →U C0 until a chain Cj 6= D0 is reached that is already
marked or contains s(D0). We mark every chain in V (P) \ {D0, Cj}. The total running time for
this procedure is O(n+m), as no chain is marked twice.

It remains to show correctness. Let Ci be a chain that has Property B and assume to the
contrary that Ci was not marked by the procedure. Then Ci 6= C0 and Ci is not a backedge. Let
x be the last inner vertex of Ci. Let e be the backedge that enters T (x) with s(e) being an inner
vertex of t(Ci) →T s(Ci) such that e was traversed first by the chain decomposition. Let D0 be
the chain that contains e and let D0, . . . , Dk, Ci be the vertices on the path D0 →U Ci. As e is
the first traversed backedge entering T (x) such that s(e) is an inner vertex of t(Ci) →T s(Ci),
Lemma 16 implies s(D1) = s(D2) = · · · = s(Dk) = s(Ci). In particular, D0 cannot be of Type 2. It
follows that D0 was traversed by our procedure and that s(D0) is not contained in any of the chains
D1, . . . , Dk, Ci. As Ci is not marked by assumption, no chain in D0, . . . , Dk can be marked at this
point in time in the chain decomposition. Thus, the procedure marks all chains D1, . . . , Dk, Ci,
which gives a contradiction.

Conversely, let Ci be a chain that does not have Property B. Then Ci 6= C0 and Ci is not a
backedge. Let x be the last inner vertex of Ci. Assume to the contrary that Ci was marked by the
procedure and let e be the backedge that initiated the traversal that marked Ci. We denote the
chain that contains e with D0. With Lemma 16 and Ci < D0, s(e) must be a descendant of s(Ci).
As D0 is by assumption not of Type 2 and s(e) is not an inner vertex of t(Ci)→T s(Ci), s(e) must
be a descendant of t(Ci). But this contradicts that the traversal of e in the procedure marks Ci,
as Ci contains s(e).

We check Property B by applying the algorithm of Lemma 21. If Property B is violated
by a chain Ci, G has connectivity 2 due to Lemma 20 and the algorithm efficiently computes
the separation pair {s(Ci), t(Ci)}. Otherwise, Property B is true; from now on, we will assume
Property B.

We conclude this section with two direct consequences of Property B. Let a chain Ci 6= C0 enter
a subtree T ′ of a tree if the backedge in Ci enters T ′. A chain in a subset of C is minimal if it is
minimal with respect to <.

Lemma 22. The chain C0 contains an inner vertex.

Proof. At least one of the chains C1 and C2, say C1, is not a backedge, as G is simple and both
chains have the same end vertices as C0. Since C1 has Property B, there is an inner vertex in
C0 = t(C1)→T s(C1).

Lemma 23. Let Ci 6= C0 be a chain that is not a backedge and let x be the last inner vertex
in Ci. Then there is a chain Cj of Type 3 that enters T (x) with s(Cj) being an inner vertex of
t(Ci)→T s(Ci).

18

Proof. According to Property B, there is a non-empty set X of backedges that enter T (x) and start
at an inner vertex of t(Ci) →T s(Ci). Due to Lemma 13, every backedge in X is contained in
exactly one chain. Let Cj be the minimal chain that contains a backedge in X. By definition of
the types of the chains, Cj must be of Type 3.

5.4 Caterpillars

Whenever a chain Ci of Type 3b is found in Algorithm 1, the path Ci →U C0 is traversed until a
chain Cj is found whose parent is not marked. The chains in Ci →U Cj are stored in a list Li and
unmarked (see Line 15 of Algorithm 1 and Figure 4(e)). This way, every chain Ci of Type 3b is
associated with a list Li; we call each Li a caterpillar (sometimes, we will regard Li as a set instead
of a list). Caterpillars group chains in order to handle them more easily. We give basic properties
of caterpillars.

Lemma 24. Every caterpillar Li consists of exactly one chain of Type 3b, namely the chain Ci,
and one or more chains of Type 2b.

Proof. Clearly, Ci ∈ Li (see Line 13 in Algorithm 1). The claim follows directly from the fact that
only chains of Type 2b are marked and the definition of Type 3b.

Lemma 25. The set of chains C \ {C0} is partitioned into the chains of Types 1, 2a and 3a and
the chains being contained in caterpillars. Moreover, no chain is contained in two caterpillars.

Proof. With Lemma 24, it remains to show that every chain Ci of Type 2b is contained in exactly
one caterpillar. At the time Ci was classified as Type 2b, Ci was marked. Any chain of Type 2b
can only be added to a caterpillar if it is marked. If such a marked chain is added to a caterpillar,
it immediately becomes unmarked for the rest of Algorithm 1 (see Line 15 of Algorithm 1). We
conclude that Ci can be in at most one caterpillar; to show that Ci is contained in exactly one
caterpillar, we prove that Algorithm 1 unmarks Ci.

Let Ck be the parent of Ci. Because Ci is of Type 2b, Ci 6= C0 and Ci is not a backedge. Let x
be the last inner vertex of Ci. According to Lemma 23, there is a chain of Type 3 that enters T (x)
and starts at an inner vertex in t(Ci) →T s(Ci). Let Cj be the minimal such chain. Immediately
before Cj is found in the chain decomposition, every chain that ends at a vertex in T (x) must start
at s(Ci) with Lemma 16 and is therefore of Type 2a or 2b. Since chains of Type 2a are backedges
and cannot have children, the parent of Cj must be of Type 2b and is therefore marked. Moreover,
every chain corresponding to a vertex in V (Cj →U Ci) \ {Cj} is of Type 2b and marked. Thus, Cj

is of Type 3b and Algorithm 1 unmarks Ci (see Line 15 of Algorithm 1).

The above arguments show also that the chain of Type 3b in a caterpillar cannot start at an
arbitrary vertex. We get the following result.

Lemma 26. Let Li be a caterpillar and Dk be the minimal chain in Li. Then s(Ci) is an inner
vertex of t(Dk)→T s(Dk).

Proof. Let x be the last inner vertex of Dk. According to the construction of caterpillars, Ci is the
minimal chain that ends on a vertex in T (x) and is neither of Type 1 nor Type 2. With Lemma 23,
s(Ci) is an inner vertex in t(Dk)→T s(Dk).

Definition 27. Let the parent of a caterpillar Li be the parent of the minimal chain in Li.

19

For computing the next BG-paths, we will often consider caterpillars as whole or chains that
are not contained in caterpillars.

Definition 28. A cluster is either a caterpillar or a chain of Type 1, 2a or 3a.

With Lemma 25, every chain Ci 6= C0 is contained in exactly one cluster. The cluster of a chain
is the cluster that contains the chain. The clusters of a set X of chains are the clusters of chains
in X, omitting double occurrences. We extend the strict total order < on chains to clusters.

Definition 29. For two clusters A and B, let A < B if there is a chain Ca in A and a chain Cb in
B with Ca < Cb.

Note that the relation < on clusters is still a strict total order, as caterpillars correspond to
vertex-disjoint paths P in U with the property that one end vertex of P is a proper ancestor of the
other end vertex in U . Recall that we defined a pre-order only for the vertices of a forest, e. g., < is
a pre-order on V (U). For completeness, we extend pre-orders to clusters. Note that the ancestors
of cluster are well-defined by the given parent-relations for chains and caterpillars.

Definition 30. Let a strict total order ≺ on a set of clusters F be a pre-order if, for every cluster
A ∈ F , all proper ancestors of A in F precede A in ≺.

5.5 Restrictions

We impose restrictions on the construction sequence that will simplify the computation. Recall that
S3, . . . , Sm−n+2 is the sequence of generated subgraphs of G in the construction sequence when G
is 3-connected.

Definition 31. Let Sl, 3 ≤ l ≤ m− n + 2, be upwards-closed if, for each vertex v in Sl, the edge
from v to its parent in T is contained in Sl. Let Sl be modular if Sl is the union of chains.

Thus, if a modular and upwards-closed subgraph Sl contains a chain Ci, Sl must contain also
the parent of Ci. Clearly, S3 is upwards-closed and modular. We would be done if we could restrict
every Sl to be upwards-closed and modular, as then every chain would be a BG-path. However,
this is not possible, as the following example shows. Consider S3 = {C0, C1, C2} in the graph of
Figure 5. As every BG-path for S3 has end vertices x and y, S4 cannot be modular.

C3
C2

C0
C4

C6
C5

C1

y

x

Figure 5: C1 and C2 are of Type 1, C3 is of Type 2b, C4 of Type 2a, C5 of Type 3b and C6 of
Type 3a. No BG-path for the subgraph S3 (depicted with thick blue edges) preserves modularity.

Therefore, we impose the following weaker restriction (R1): We add only clusters that can be
decomposed into subsequent BG-paths and whose additions generate upwards-closed and modular

20

subgraphs. We additionally demand that each cluster is decomposed into as many BG-paths as it
contains chains. Thus, if the cluster is not a caterpillar, just a chain of Type 1, 2a or 3a is added
that is a BG-path. Note that intermediate BG-paths of clusters that are caterpillars may violate
upwards-closedness and modularity.

..
.

Ci

...

...

(a) allowed
...

Ci

Cj

...

(b) forbidden

Figure 6: The effect of Restriction (R2) on adding the BG-path Ci to the fat subgraph. If (R2)
would not forbid to add Ci in Figure (b), adding chain Cj next could violate Property 4.3.

For the generated subgraph Sl+t, we impose also the restriction (R2) that no link in Sl+t that
consists only of tree edges has a parallel link. This restriction will cause certain BG-path candidates
(e.g., certain chains) to automatically satisfy Property 4.3 of the BG-path definition 4 due to the
DFS-structure (see Figure 6). It implies also that the BG-path that is applied on S3 generates a
K4-subdivision and not a K4

2 -subdivision. This is necessary for a sequence (7) by definition. Note
that (R2) does not hold for S3, as C0 has the parallel links C1 and C2. It must however hold for
all following subgraphs. We summarize the restrictions.

Restrictions: Let Sl ⊂ G be the current upwards-closed and modular subgraph. We will only
add a cluster that

(R1) – can be decomposed into as many subsequent BG-paths as it contains chains and that
– creates an upwards-closed and modular subgraph Sl+t such that

(R2) – no link in Sl+t that consists only of tree edges has a parallel link in Sl+t (note that
Sl+t 6= S3).

In particular, Restriction (R1) forces the total number of operations in the construction sequence
to be |C \ {C0, C1, C2}| = |C|− 3. According to Lemma 13, |C|− 3 = m−n− 1, which is necessary
for every sequence (7), as shown in Lemma 10.

From now on, we will only deal with construction sequences that are restricted by (R1) and (R2).
Whenever we are searching for new BG-paths, the current subgraph Sl is upwards-closed, modular
and consists of exactly l chains. We denote Sl by SR

l in such cases to emphasize these properties.
It is not clear whether such a restricted construction sequence exists; we will prove its existence in
Section 5.6.

Let a cluster that satisfies (R1) and (R2) on SR
l be addable. We first show that Restriction (R2)

implies Property 4.3.

Lemma 32. Every path P for SR
l with Properties 4.1 and 4.2 is a BG-path. If P is additionally

a chain of Type 2a or 3a, P is addable.

21

Ca

Ci

Ck

Q

...
...

Figure 7: The chain Ci of Type 3 is addable to the fat subgraph.

Proof. For the first claim, assume to the contrary that P violates Property 4.3. Then |Vreal(SR
l)| ≥ 4

must hold and SR
l 6= SR

3 follows. Let Q and Z be the parallel links of SR
l that contain the end

vertices of P as inner vertices, respectively. Both links, Q and Z, must contain a backedge, as
otherwise one of them would contain only tree edges and (R2) would be violated, since SR

l 6= SR
3 .

Let Ci 6= C0 be the chain in SR
l that contains Q and let Cj 6= C0 be the chain in SR

l that contains
Z. According to Proposition 14, Ci and Cj contain each exactly one backedge (the first edge). This
implies that s(Ci) is an end vertex of Q, s(Cj) is an end vertex of Z and s(Ci) = s(Cj). Let v be
the vertex in Q ∩ Z that is different from s(Ci). By construction of the chain decomposition, the
inner vertices of Q and Z are contained in disjoint subtrees of T . Since T is a DFS-tree, P must
contain an inner vertex that is an ancestor of v. As SR

l is upwards-closed, this vertex is already
contained in SR

l , which contradicts P to have Property 4.1.
For the second claim, let P be a chain of Type 2a or 3a. Since P is a chain, SR

l+1 is upwards-
closed and modular and (R1) is satisfied. By definition of Types 2 and 3, t(P) →T s(P) is not
contained in a chain in SR

l and therefore has an inner vertex that is the end vertex of a chain in
SR

l . As this vertex is real, adding P preserves (R2) if SR
l 6= SR

3 . In the remaining case SR
l = SR

3 ,
P must be of Type 3a, as otherwise P would contradict Property 4.2. Then adding P must induce
an inner real vertex in C0, which satisfies (R2) for SR

4 .

We show under which conditions chains of Types 1, 2a and 3a are addable to SR
l if not already

contained in SR
l .

Lemma 33. Let Ci 6= C0 be a chain such that the parent Ck of Ci but not Ci itself is contained in
SR

l . If Ci is either of Type 1 with an inner real vertex in t(Ci) →T s(Ci), of Type 2a with a real
vertex in (t(Ci)→Ck

s(Ci)) \ s(Ci) or of Type 3a, Ci is addable.

Proof. Since SR
l is upwards-closed, modular and contains Ck, Ci satisfies Property 4.1 in all cases.

Let Ci be of Type 1. Then the inner real vertex in t(Ci)→T s(Ci) prevents any link that contains
both, s(Ci) and t(Ci), from having s(Ci) or t(Ci) as an inner vertex. This causes Ci to have
Property 4.2. Lemma 32 implies that Ci is a BG-path for SR

l . As adding Ci preserves SR
l+1 to be

upwards-closed and modular, (R1) is satisfied. Due to the inner real vertex in t(Ci)→T s(Ci), SR
l

must be different from SR
3 and (R2) holds in SR

l+1. It follows that Ci is addable.
Let Ci be of Type 2a. The vertex s(Ci) is real, as it is the end vertex of a chain in SR

l . If
additionally t(Ci) is real, every link in SR

l that contains s(Ci) and t(Ci) must contain s(Ci) and

22

t(Ci) as end vertices. Otherwise, t(Ci)→Ck
s(Ci) contains an inner real vertex by assumption and

t(Ci) must be an inner vertex of a link in SR
l that does not contain s(Ci), as t(Ck) is real. Both

cases ensure that Ci has Property 4.2. By Lemma 32, Ci is addable.
Let Ci be of Type 3a. Then s(Ci) 6= s(Ck) holds by definition and Ck 6= C0, as otherwise Ci

would be of Type 1. Additionally, Ck < Ci, since Ck is the parent of Ci. According to Lemma 16,
s(Ci) must be an inner vertex of the path t(Ck) →T s(Ck) (see Figure 7). Therefore, every chain
Cj that contains both, s(Ci) and t(Ci), satisfies Ci ∩ Cj = {s(Ci), t(Ci)} = {s(Cj), t(Cj)}. This
causes Ci to have Property 4.2. By Lemma 32, Ci is addable.

According to Lemma 33, the condition for adding a chain Ci 6⊆ SR
l of Type 3a is very simple: It

suffices that its parent is contained in SR
l . This gives a valuable algorithmic approach: Whenever

a chain in SR
l has children of Type 3a in U that are not already in SR

l , these children are addable.
We next give similar conditions for the remaining Types 2b and 3b. According to Lemma 25, these
chains are exactly the ones that are contained in caterpillars.

Definition 34. Let a caterpillar Li with parent Ck be bad for SR
l if s(Ci) is contained in Ck and

s(Ci) →Ck
s(Ck) contains no inner real vertex (see Figure 8(a)). Otherwise, Li is called a good

caterpillar (see Figures 8(b) and (c)).

Ci

D0

Ck..
.

y

..
.

(a) A bad caterpillar Li

with parent Ck.

Ci

D0

Ck

..
.

y

..
.

(b) A good caterpillar Li with
parent Ck such that s(Ci) is
an inner vertex of t(Ck) →T

s(Ck).

Ci

D0

Ck..
.

y

b

a

..
.

(c) A good caterpillar Li

with parent Ck, s(Ci) ∈
V (Ck) and an inner real
vertex a in s(Ci) →Ck

s(Ck).

Figure 8: Kinds of caterpillars.

Let Li be a bad caterpillar with parent Ck and let y be the last vertex of the minimal chain in
Li. According to Lemma 26, s(Ci) ∈ V (t(Ck)→Ck

y) \ {y}. We characterize good caterpillars.

Lemma 35. A caterpillar Li with parent Ck is good if s(Ci) is either an inner vertex of t(Ck)→T

s(Ck) (see Figure 8(b)) or a vertex in Ck such that s(Ci)→Ck
s(Ck) contains an inner real vertex

(see Figure 8(c)).

23

Proof. If s(Ci) /∈ V (Ck), s(Ci) must be an inner vertex of t(Ck) →T s(Ck) with Lemma 26.
Otherwise, s(Ci) ∈ V (Ck) and the path s(Ci)→Ck

s(Ck) contains an inner real vertex, as otherwise
Li would be bad.

We show that good caterpillars are addable under minor assumptions.

Lemma 36. Let Li be a caterpillar such that the parent Ck of Li but no chain in Li is contained
in SR

l . If Li is good, Li is addable.

Proof. Let Li be good and let t > 1 be the number of chains in Li. Clearly, the graph generated by
adding all chains in Li to SR

l is upwards-closed and modular, as Li consists of consecutive ancestors
of Ci in U . It remains to show that Li can be decomposed into t successive BG-paths for SR

l that
generate the subgraphs Sl+1, Sl+2, . . . , Sl+t such that Sl+t satisfies (R2). Let y be the last vertex
of the minimal chain in Li, thus y ∈ V (Ck).

We assume at first that s(Ci) is an inner vertex of t(Ck)→t s(Ck) (see Figure 8(b)). Then the
path P = Ci∪ (t(Ci)→T y) fulfills Properties 4.1 and 4.2 and is a BG-path for SR

l with Lemma 32.
Note that adding P preserves Sl+1 to be upwards-closed but not modular. Successively, for each
chain Cj of the t− 1 chains in Li \ {Ci} (in arbitrary order), we add the path s(Cj)→Cj v with v
being the first vertex in Cj that is in P . All these paths are BG-paths, because y is real in Sl+1.

Now assume with Lemma 35 that s(Ci) is contained in Ck with an inner real vertex a in
s(Ci) →Ck

s(Ck) (see Figure 8(c)). We first show that t(Ck) →T s(Ck) contains an inner real
vertex as well. Assume the contrary. Then Ck must be of Type 1 and contradicts (R2), unless
SR

l = SR
3 . But SR

l must be different from SR
3 , since a exists, and it follows that t(Ck) →T s(Ck)

contains an inner real vertex b.
Let D0 be the parent of Ci, which must be contained in Li, as t > 1. Then (Ci ∪ D0) \

((t(Ci) →T y) \ t(Ci)) is a BG-path due to the real vertices a and b and we add it, although it
neither preserves Sl+1 to be upwards-closed nor modular. We next add t(Ci)→T y, which restores
upwards-closedness. Successively, for each chain Cj of the t−2 remaining chains in Li\{Ci, D0} (in
arbitrary order), we add the path s(Cj)→Cj v with v being the first vertex in Cj that is contained
in V (t(Ci) →T y). With the same line of argument as before and Lemma 32, all these paths are
BG-paths.

We show that Sl+t satisfies (R2). Let Q be a link in Sl+t that consists only of tree edges and
that is not a link in SR

l , i. e., Q is generated when adding Li. If Q is contained in Li, Q has no
parallel link in Sl+t by construction. Otherwise, Q must be contained in a link in SR

l that was
subdivided by at least one of the real vertices s(Ci) and y when adding Li. In this case, Q has no
parallel link in Sl+t, as t(Ci) is real in Sl+t for both decompositions of Li.

Otherwise, let Q be a link in Sl+t that consists only of tree edges and is a link in SR
l as well.

Then SR
l 6= SR

3 holds, as otherwise Q = C0 and adding Li would induce an inner real vertex in Q,
contradicting the choice of Q. It follows with (R2) that Q has no parallel link in SR

l . Then Q cannot
have a parallel link in Sl+t, as every path between two of the three vertices {s(Ci), y, s(Ck)} in the
union of chains in Li contains an inner real vertex in Sl+t. We conclude that Sl+t satisfies (R2)
and that Li is addable.

Note that the decomposition of a good caterpillar Li into subsequent BG-paths as shown in
Lemma 36 can be computed in time linearly dependent on the edges in Li.

24

5.6 Existence of the Restricted Sequence

We show that, even under the Restrictions (R1) and (R2), a construction sequence from SR
3 to G

exists.

Definition 37. Let ∼ be the equivalence relation on E(G) \ E(Sl) such that

– ∀e, f ∈ E(G) \ E(Sl) : e ∼ f if e = f or there is a path in G that contains e and f but no
vertex of Sl as inner vertex.

Let a subgraph H of a graph G be edge-induced by an edge set E′ ⊆ E(G) if E(H) = E′ and
V (H) is the union of the end vertices of all edges in E′.

Definition 38. Let the segments of Sl be the subgraphs of G that are edge-induced by the equiv-
alence classes of ∼. For a segment H of Sl, let V (H) ∩ V (Sl) be the attachment vertices of H.

It is important to note that every segment of SR
l is the union of all vertices in a subtree of U

(we say of all chains in this subtree), as SR
l is modular and upwards-closed. For a chain Ci that is

not contained in Sl, let the segment of Ci be the segment of Sl that contains Ci. Sometimes, we
will identify a segment with the set of the chains it contains.

The concept of segments is not new. Starting with the work of Auslander and Parter [2],
segments were used to design many efficient algorithms for problems related to planarity [26, 12,
31, 41, 37, 49, 68, 71] and 3-connectivity [30, 67, 68]. It is folklore that a segment of a cycle in a
3-connected graph is either an edge or has at least three attachment vertices. Due to Lemma 23,
we can deduce this result (in our notation) also for G, although G is not known to be 3-connected.

Lemma 39. Every segment H of SR
l that is not a backedge has at least three attachment vertices.

Proof. Let Ci be the minimal chain in H. Since t(Ci) ∈ SR
l and SR

l is upwards-closed, both vertices
s(Ci) and t(Ci) are attachment vertices of H. The chain Ci is not a backedge, as otherwise H would
be a backedge. According to Lemma 23, H contains a chain that starts at an inner vertex x of
t(Ci)→T s(Ci). As SR

l is upwards-closed, x is a third attachment vertex of H.

A chain whose parent is in SR
l but which is not contained in SR

l itself is of interest, as it is a
possible candidate for a BG-path.

Lemma 40. Every segment H of SR
l contains exactly one chain that is a child of a chain in SR

l ,
namely the chain that is minimal in H.

Proof. Recall that upwards-closedness and modularity of SR
l implies that there is a subtree U ′ of

U such that H is the union of the chains in U ′. Clearly, only the root Dk of U ′ (i. e., the minimal
chain in H) can be a child of a chain in SR

l . The chain Dk is a child of a chain in SR
l , as t(Dk) ∈ SR

l ,
SR

l is upwards-closed and SR
l contains at least the root C0 of U .

We show in which cases chains of Type 3 that start in SR
l but are not contained in SR

l are
addable.

Lemma 41. Let D0 be a chain of Type 3 such that s(D0) ∈ V (SR
l), D0 6⊆ SR

l and D0 is minimal
among the chains of Type 3 in its segment H. Let Dk < · · · < D0 be all ancestors of D0 that are
contained in H. Then the clusters of Dk, . . . , D0 are successively addable to SR

l , unless one of the
following exceptions holds.

25

e

D0

D1..
.
..
.

..
.

..
.

x

Sl

T(x)

(a) Exception 41.1

T(x)

Dk

D0

D2

D1

..
.
..
.

x

Sl

..
.
..
.

(b) Exception 41.2

e

T(x)

Dk-1

D0

D2

D1

Dk

..
.
..
.

..
. ..
.

..
.

x

Sl

(c) Exception 41.3

Figure 9: The three exceptions of Lemma 41. The black vertices in Exceptions 41.1 and 41.3 may
also be non-real.

1. D0 is of Type 3a, k = 1, Dk is of Type 1, s(D0) is an inner vertex of t(Dk) →T s(Dk) and
there is no inner real vertex in t(Dk)→T s(Dk) (see Figure 9(a)),

2. D0 is of Type 3b and {D0, . . . , Dk} is a bad caterpillar (see Figure 9(b)),

3. D0 is of Type 3b, {D0, . . . , Dk−1} is a caterpillar, Dk is of Type 1, s(D0) is an inner vertex
of t(Dk)→T s(Dk) and there is no inner real vertex in t(Dk)→T s(Dk) (see Figure 9(c)).

Proof. Due to the choice of D0, there is no chain of Type 3 in {D1, . . . , Dk}. The chain Dk is
minimal in H. Additionally, {D1, . . . , Dk} does not contain a chain of Type 2a, as chains of that
type cannot have children.

Let D0 be of Type 3a. If k = 0, t(D0) is contained in SR
l and D0 is addable with Lemma 33,

implying the claim. Otherwise, k ≥ 1. Assume that D1 is of Type 2b and let Cj 6= D0 be the chain
of Type 3b in the caterpillar containing D1. Then Cj is contained in H, as SR

l is upwards-closed
and modular. Moreover, Cj < D0 holds, as otherwise D0 would have been of Type 3b in the chain
decomposition. This contradicts the minimality of D0 and it only remains that D1 is of Type 1.

The vertex s(D1) is a proper ancestor of s(D0), since D1 < D0 and D0 is not of Type 2. Since
D0 is not of Type 1, s(D0) must be a proper ancestor of t(D1). It follows that s(D0) is an inner
vertex of t(D1) →T s(D1). If k ≥ 2, D2 must contain t(D1) →T s(D1), because D1 is of Type 1
and a child of D2. Hence, the edge e joining s(D0) with the parent of s(D0) in T is contained in
D2 (see Figure 9(a)). But since SR

l is upwards-closed and s(D0) ∈ V (SR
l), e must be contained

in SR
l , contradicting that k ≥ 2. Thus, k = 1 and the parent of D1 in U is contained in SR

l . If
t(D1)→T s(D1) contains an inner real vertex, D1 andD0 are subsequently addable with Lemma 33.
Otherwise, Exception 41.1 holds.

Let D0 be of Type 3b and let Li be the caterpillar that contains D0. Due to (R1), every chain
in Li is contained in H and, by definition of caterpillars, D1 is of Type 2b and in Li. Let Dt,

26

1 ≤ t ≤ k, be the minimal chain in Li. If t = k and Li is good, the parent of Li is contained in SR
l

and Li is addable with Lemma 36. If t = k and Li is bad, Exception 41.2 holds (see Figure 9(b)).
The only remaining case is t < k. Assume that Dt+1 is of Type 2b and let Cj be the chain of

Type 3b in the caterpillar containing Dt+1. Then, Cj is contained in H and Cj < D0 holds. This
contradicts the minimality of D0 and we conclude that Dt+1 is of Type 1 (see Figure 9(c)).

As Dt+1 < D0 and D0 is not of Type 2, s(Dt+1) is a proper ancestor of s(D0). Since Dt+1 has
a child, Dt+1 is not a backedge. Applying Lemma 23 to the chain Dt+1 implies together with the
minimality of D0 that s(D0) is an inner vertex of t(Dt+1) →T s(Dt+1). The parent of Dt+1 is in
SR

l , as it contains t(Dt+1) →T s(Dt+1) and s(D0) →T s(Dt+1) is contained in SR
l . This implies

k = t + 1. If there is no inner real vertex in t(Dk) →T s(Dk), Exception 41.3 holds. Otherwise,
Lemma 33 implies that Dk is addable. After adding Dk, Li is good due to Lemma 35 and addable
with Lemma 36.

We extend Lemma 41 to all chains of Type 3 that start at a vertex in SR
l . Let a caterpillar Li

start at the vertex s(Ci).

Lemma 42. Let the preconditions of Lemma 41 hold and let D0 be not contained in one of the
Exceptions 41.1–41.3. Let Y be the set of ancestors of all chains in H that are of Type 3 and start
in SR

l . Then the clusters of Y are successively addable in any pre-order that adds clusters that start
at t(Dk) last, e. g., in ascending order of <.

Proof. We show how the clusters of Y are successively addable by iteratively applying Lemma 41.
Note that Y is the vertex set of a subtree UY of U that is rooted on Dk (Dk is defined by the
preconditions of Lemma 41). By definition of Y , the leaves of UY are chains of Type 3 that start
at a vertex in SR

l .
Let any pre-order σ on the clusters of Y be given that adds clusters that start at t(Dk) ∈ V (SR

l)
last. We go along σ. After adding an arbitrary number of clusters in the order of σ, let J be the
next cluster to add. Let Js be the minimal chain in J and let SR

t be the current subgraph of G.
At this point, Js is the root of a subtree U ′ of UY and, as σ is a pre-order, the minimal chain in its
segment H ′ of SR

t . Let J0 be the minimal chain of Type 3 in V (U ′) that starts at a vertex in SR
l .

Then J0 is also the minimal such chain in H ′. Let Js < · · · < J0 be all ancestors of J0 in U ′.
We apply Lemma 41 to J0 in H ′ and show that J0 cannot be contained in one of the Excep-

tions 41.1–41.3. This implies that the clusters of Js, . . . , J0 are addable in pre-order. The claim
follows from merely adding J and iterating the argument for the next cluster in σ.

It remains to show that J0 is not contained in one of the Exceptions 41.1–41.3. By assumption,
this holds for J0 = D0; in that case, the cluster of Dk is added. As σ is a pre-order, the cluster
of Dk is the first cluster in H that is added. We can therefore assume for the following arguments
that Dk is in SR

t .
First, assume to the contrary that J0 is contained in Exception 41.1 or 41.3 (see Figure 10(a)).

Since SR
l is upwards-closed, s(J0) ∈ V (SR

l) implies that s(Js) ∈ V (SR
l). Because of Lemma 40,

Dk is the only chain in H that ends on a vertex in SR
l . Since Js is a proper descendant of Dk and

of Type 1, it follows from s(Js) ∈ V (SR
l) that s(Js) = t(Dk). As J0 > Js and s(J0) ∈ V (SR

l),
s(J0) = s(Js) = t(Dk) holds due to Lemma 16. This contradicts J0 to be in Exception 41.1 or 41.3,
because s(J0) is not an inner vertex of t(Js)→T s(Js).

Now assume to the contrary that J0 is contained in Exception 41.2 (see Figure 10(b)). Then J0
is of Type 3b and part of a bad caterpillar Lj in SR

t , whose parent D is not contained in H ′. We
show that D = Dk. Because Lj contains only chains in H ′ ⊂ H and Dk is the minimal chain in

27

...

H

H’

Dk

Js

..
.

..
.

St

..
.

..
.

J0

(a) J0 is not contained in Excep-
tions 41.1 and 41.3.

H

Dk

..
.

St

x

H’

Js

J0
...

..
.

(b) J0 is not contained in Excep-
tion 41.2.

Figure 10: In SR
t , J0 is not contained in one of the Exceptions 41.1–41.3.

H that is already contained in SR
t , D must be a descendant of Dk. Since Lj is bad in SR

t , s(J0) is
contained in D \ s(D). By definition of J0, s(J0) ∈ V (SR

l). Because of Lemma 40, Dk is the only
chain in H that ends on a vertex in SR

l . Moreover, no inner vertex of a chain in H is contained in
SR

l , as H does not contain C0 and SR
l is upwards-closed. It follows that D = Dk and s(J0) = t(Dk).

We show that Lj cannot be bad in SR
t . The chain Dk is not a backedge, as it has the child

Js. Let x be the next to last vertex of Dk. Applying Lemma 23 on Dk implies that a chain Cy of
Type 3 enters T (x) with s(Cy) being an inner vertex of t(Dk)→T s(Dk). The chain Cy is contained
in H, but not in H ′, as that would contradict the choice of J0. As the pre-order σ adds clusters
that do start at t(Dk) last, the clusters of Cy and of all proper ancestors of Cy in H must have
been added before. Thus, Dk must contain at least one inner real vertex in SR

t , which contradicts
Lj to be bad.

Definition 43. For SR
l and a chain Ci in SR

l , let Children12(Ci) be the set of children of Ci of
Types 1 and 2 that are not contained in SR

l and let Type3(Ci) be the set of chains of Type 3 that
start at a vertex in Ci and are not contained in SR

l .

The definition of Children12(Ci) and Type3(Ci) for a chain Ci in SR
l is crucial, as the clusters of

these sets are essentially the ones for which we will prove that they can are addable under a certain
condition. We defined Children12(Ci) to contain only children of Type 1 and 2. On a high-level
view, it will not be necessary to consider children of Ci of Type 3, as these children (and their
clusters) are already contained in Sl, as they have been added when the clusters of Type3(Cj) for
an ancestor Cj of Ci were considered.

We start by showing that, under a certain condition, the clusters of the following subset of
Type3(Ci) are addable.

28

Lemma 44. Let Ci be a chain in SR
l such that Type3(Cj) = ∅ holds for every proper ancestor

Cj of Ci. Let B be the subset of chains in Type3(Ci) whose segments do not contain a chain in
Children12(Ci). Then the clusters of all ancestors of chains in B that are not in SR

l are successively
addable. The order of addition can be any pre-order that adds clusters in same segments of SR

l

consecutively and in which the start vertices of the clusters of B are consecutive in t(Ci)→Ci s(Ci),
e. g., in ascending order of <.

Proof. Let Cy be a chain in B such that s(Cy) is an ancestor of s(Cz) for every chain Cz ∈ B. Let
H be the segment of Cy. We show that the clusters of all ancestors of chains in B ∩H are addable.
Then choosing Cy as before for the remaining subset of B and iterating the argument on Cy gives
the claim.

Let D0 be the minimal chain of Type 3 in H. We show that D0 ∈ B. According to Lemma 16,
s(D0) is an ancestor of s(Cy). However, s(D0) cannot be contained in a proper ancestor Cj of Ci,
as Type3(Cj) = ∅ holds by assumption. It follows that s(D0) starts at a vertex in Ci and, thus,
D0 ∈ B.

We want to apply Lemma 42 on D0 to add the clusters of all ancestors of chains in B ∩H. Let
Dk be the minimal chain in H. To apply Lemma 42, it suffices to show that D0 is not contained
in one of the Exceptions 41.1–41.3. Note that this does not directly follow from the fact that
Dk /∈ Children12(Ci), as Dk does not need to be a child of Ci for Exceptions 41.1–41.3.

First, assume to the contrary that D0 is contained in Exception 41.1 or 41.3. Then Dk is of
Type 1. It suffices to show that Ci is the parent of Dk, as this would contradict the assumption that
H ∩Children12(Ci) = ∅. Since Dk is of Type 1, the path t(Dk)→T s(Dk) is contained in the parent
of Dk. In both Exceptions, s(D0) is an inner vertex of t(Dk)→T s(Dk) and, in addition, s(D0) is
not real, as t(Dk) →T s(Dk) does not contain inner real vertices. It follows with s(D0) ∈ V (Ci)
that the parent of Dk is Ci.

Assume to the contrary that D0 is contained in Exception 41.2. Then Dk is of Type 2b and
the set {D0, . . . , Dk} of ancestors of D0 in H is a bad caterpillar. Let D be the parent of Dk. We
claim that D = Ci. This implies that Dk is contained in Children12(Ci), which contradicts the
assumption that H ∩ Children12(Ci) = ∅.

We prove the remaining claim that D = Ci. Assume to the contrary that D 6= Ci. As
{D0, . . . , Dk} is a bad caterpillar and s(D0) ∈ V (Ci), s(D0) is contained in the intersection of
D \ s(D) and Ci. We first show that s(D0) = t(D). If Ci = C0, D \ s(D) can intersect with C0
only at the vertex t(D), which implies that s(D0) = t(D). Let Ci 6= C0. Then s(D0) can neither
be s(Ci) nor t(Ci), as these vertices are contained in proper ancestors Cj of Ci, contradicting the
assumption that Type3(Cj) = ∅. Thus, s(D0) is an inner vertex of Ci. Since D can contain the
inner vertex s(D0) of Ci only as end vertex and because s(D0) ∈ V (D \ s(D)), s(D0) = t(D) holds.
For the same reason, Ci must be the parent of D.

We take this to a contradiction. As {D0, . . . , Dk} is a bad caterpillar, D contains no inner real
vertex by definition. Moreover, D cannot be a backedge, as it has the child Dk. Thus, there is a
chain Cz of Type 3 that starts at an inner vertex in t(D) →T s(D) due to Lemma 23. This chain
Cz is not contained in SR

l , as otherwise D would contain an inner real vertex. If s(Cz) is contained
in Ci, Cz contradicts the choice of Cy, as Cz would be in B and s(Cz) would be a proper ancestor of
s(Cy). Otherwise, s(Cz) is contained in a proper ancestor Cj of Ci and contradicts the assumption
Type3(Cj) = ∅.

For each of the Exceptions 41.1–41.3 in Lemma 41, the parent of Dk contains a path that

29

obstructs D0 and its ancestors from being added, as it contains no inner real vertex. We refer to
this path as follows.

Definition 45. Let a chain Ci that is of Type 1 or 2a and has parent Ck be dependent on the
path t(Ci) →Ck

s(Ci). Let a caterpillar Li with parent Ck and s(Ci) ∈ V (Ck) (and every chain
contained in it) be dependent on the path s(Ci)→Ck

s(Ck). The dependent path of a chain that is
of Type 3a or contained in a caterpillar Li with s(Ci) /∈ V (Ck) is defined to be empty.

The idea behind the dependent path P of certain clusters D is that P carries information that
is needed to decide whether D is addable. E. g., if the parent of D is contained in SR

l and P is
empty, we can add D, as pointed out by Lemmas 33 and 36. In the case when the parent of D is
contained in SR

l but P is not empty, whether D can be added essentially depends on the existence
of inner real vertices in P . We show next that non-empty dependent paths of the minimal chains
in segments H of SR

l separate H from SR
l .

Lemma 46. Let H be a segment of SR
l and let D be the minimal chain of H. If D is neither of

Type 3a nor contained in a caterpillar Li with s(Ci) /∈ V (Ck), the dependent path P of D contains
all attachment vertices of H.

Proof. Assume first that D is a chain of Type 1. Then P = t(D)→T s(D). If D is a backedge, the
claim follows directly. Otherwise, let x be the last inner vertex of D. As T is a DFS-tree and due
to Lemma 16, every backedge that enters T (x) starts in P , which gives the claim.

Let Ck be the parent of D. Assume that D is a chain of Type 2a. Since D is a backedge, s(D)
and t(D) are the only attachment vertices of H. The claim follows, as the dependent path P ⊂ Ck

of D contains s(D) and t(D).
Due to (R1) and since Ck is contained in SR

l , D cannot be of Type 3b. Assume that D is a
chain of the remaining Type 2b. According to (R1), D is contained in a caterpillar Li, every chain
of which is contained in H. By assumption, s(Ci) ∈ V (Ck). The chain D is not a backedge, as
it has a child; let x be the last inner vertex of D. By the construction of caterpillars, Ci is the
minimal chain of Type 3 that enters T (x). It follows with Lemma 16 that every backedge that
enters T (x) starts either at s(Ck) or at a descendant of s(Ci) in Ck. Thus, all attachment vertices
are contained in P = s(Ci)→Ck

s(Ck).

The following theorem leads to an existence proof of the restricted construction sequence if G
is 3-connected.

Theorem 47. Assume that the input graph G is 3-connected. Let Ci be a chain in SR
l such that

Children12(Cj) = Type3(Cj) = ∅ holds for every proper ancestor Cj of Ci. Then there is an order
σ in which the clusters of all ancestors of the chains in Children12(Ci) ∪ Type3(Ci) that are not
contained in SR

l are successively addable.

Proof. By applying Lemma 44 in advance, we can assume that the segment of every chain in
Type3(Ci) contains a chain in Children12(Ci). Let H be such a segment of a chain in Type3(Ci) and
let Dk be the minimal chain in H. According to Lemma 40, Dk is the only chain in H that is in
Children12(Ci).

If Children12(Ci) = ∅, Type3(Ci) = ∅ and the claim follows. We will show that Children12(Ci) 6=
∅ causes Children12(Ci) to contain a chain D whose cluster is addable. Assume for a moment that
this already has been shown and let H ′ be the segment of D. Adding the cluster of D to the current

30

subgraph deletes D from the set Children12(Ci). Therefore, H ′ does not contain a minimal chain in
Children12(Ci) anymore and we can add the clusters of all ancestors of the chains in Type3(Ci)∩H ′
that are contained in H ′ by applying Lemma 44. Iterating this argument gives the claim.

Assume to the contrary that Children12(Ci) 6= ∅ and that the cluster of every chain in Children12(Ci)
is not addable. We first subsume properties of every chain D ∈ Children12(Ci); let H be the seg-
ment of D. By definition, D is of Type 1 or 2; D is also the minimal chain in its segment H with
Lemma 40. Let D be of Type 1. Then the dependent path P of D does not contain an inner real
vertex, as otherwise D is addable with Lemma 33. According to Lemma 23, D must be either a
backedge or H contains a chain of Type 3 that starts in Ci, implying that H contains a chain in
Type3(Ci). In the latter case, we can apply Lemma 42 and it follows that D must be contained in
Exception 41.1 or 41.3 (as the chain Dk).

Let D be of Type 2. Then Ci 6= C0. If D is of Type 2a, neither t(D) nor an inner vertex in
the dependent path P of D can be real, since otherwise D is addable due to Lemma 33. If D is of
Type 2b, D is the minimal chain of a caterpillar with parent Ci. As we assumed that the cluster
of D is not addable, this caterpillar must be bad with Lemma 36 and there is no inner real vertex
in the dependent path P of D. Because H ∩ Type3(Ci) 6= ∅, it follows with Lemma 42 that D is
contained in Exception 41.2 (as the chain Dk). We list the possible cases for each D.

1. D is of Type 1 without an inner real vertex in P and either a backedge or the chain Dk in
Exception 41.1 or 41.3

2. Ci 6= C0 and D is of Type 2a without a real vertex in P \ s(D)

3. Ci 6= C0, D is of Type 2b without an inner real vertex in P and D is the chain Dk in
Exception 41.2

In each of these cases, P is contained in Ci. If D is a backedge (possible in Cases 1. and 2.),
P is of length at least two, as G is simple. If D is no backedge (possible in Cases 1. and 3.), P
is also of length at least two due to Lemma 39. In every case, P does not contain an inner real
vertex. Hence, the dependent path P for some chosen chain D is contained in a link L of SR

l . Thus,
P ⊆ L ⊆ Ci and L is of length at least two. According to Lemma 9 and the 3-connectivity of G, a
parallel link of L (maybe L itself) contains an inner vertex v on which a BG-path starts. Note that
this BG-path does neither have to be a chain nor preserve (R1) or (R2). Also, v is not necessarily
contained in P .

We show next that L itself contains v as an inner vertex due to our imposed restrictions on the
construction sequence. This will imply a contradiction later. Assume first that all edges of L are
DFS-tree edges. If SR

l = SR
3 , L = C0 must hold. Because G is simple, at least one chain of C1 and

C2 is not a backedge, say C1. Let x be the last inner vertex of C1. The claim follows by applying
Lemma 23 on C1, as the chain of Type 3 that enters T (x) can be extended to a BG-path ending at
an inner vertex of C1. If SR

l 6= SR
3 , the claim follows from L having no different parallel link due

to Restriction (R2) in SR
l .

Now assume that L contains a backedge. Since L is contained in Ci, s(Ci) must be an end
vertex of L. Let w be the other end vertex of L. As Ci has a child, Ci is no backedge. Applying
Lemma 23 on Ci gives a chain of Type 3 that starts at a proper ancestor Cj of Ci and enters
T (x) for x being the last inner vertex of Ci. As Type3(Cj) = ∅ holds by assumption and SR

l is
upwards-closed, Ci contains an inner real vertex. Therefore, w is different from t(Ci). If there is a
parallel link L′ 6= L of L in SR

l , let Ck be the chain that contains L′. Then s(Ci) = s(Ck), Ck = L′

31

and Ck is a child of Ci, implying that Ck is of Type 2. The chain Ck is not of Type 2b, as otherwise
Ck would contain an inner real vertex due to the caterpillar Lk ⊂ SR

l . Therefore, Ck is of Type 2a
and cannot contain an inner vertex, as it is a backedge. We conclude that v is an inner vertex of
L on which a BG-path B starts.

Let H be the segment of SR
l that contains B. Assume first that H contains a chain D′ ∈

Children12(Ci) and let P ′ be the dependent path of D′. Then all attachment vertices of H must
be contained in P ′ by Lemma 46, this holds in particular for v. As v is non-real and H is not
contained in SR

l , B must contradict Property 4.2. It follows that H does not contain any child
of Ci that is of Type 1 or 2. Because Type3(Cj) = ∅ for all proper ancestors Cj of Ci, H cannot
contain a child of Ci that is of Type 3. We conclude that H does not contain any child of Ci.

Assume that H contains a chain Ca of Type 1 with s(Ca) = v. Let Cb be the parent of Ca, as
Ca 6= C0. Note that Cb is not necessarily in H. Then Cb 6= Ci, as otherwise Ca would be a child
of Ci in H. By definition of Type 1, Cb contains the tree edges t(Ca)→T v and t(Cb) = v follows,
as v is contained in Ci. This implies that Cb is a child of Ci, giving a contradiction. Additionally,
H cannot contain a chain Ca of Type 3 with s(Ca) = v, as otherwise Ca would be contained
in Type3(Ci), which implies that H contains a chain in Children12(Ci). Let J be the chain that
contains the first edge of B. By the previous arguments, J must be of Type 2 and s(J) = v.

We take this to a contradiction. Let Ca be the maximal (with respect to <) ancestor of J that
is not of Type 2. Then s(Ca) = v holds by definition of Type 2 and Ca must be contained in H, as
s(Ca) is non-real. This contradicts that H contains neither a chain of Type 1 nor a chain of Type 3
that starts at v. It follows that B cannot exist, implying the claim.

Assume for a moment that G is 3-connected. In order to be able to apply Theorem 47, we show
that every SR

l contains a chain Ci that satisfies the preconditions of Theorem 47. This is clearly
the case in SR

3 , as then C0 is such a chain. Applying Theorem 47 on Ci and adding the clusters
in σ generates a subgraph SR

t . The subgraph SR
t must contain all children of Ci and therefore

causes the precondition to hold for Ci+1. This ensures that iteratively applying Theorem 47 on
C0, C1, . . . , Cm−n+1 constructsG, which proves the existence of the restricted construction sequence.

Corollary 48. Let G be a 3-connected graph with a chain decomposition C = {C0, . . . , Cm−n+1}.
Then there is a construction sequence of G restricted by (R1) and (R2) that starts with SR

3 =
{C0 ∪ C1 ∪ C2}.

5.7 The Algorithm

We already described the parts of the certifying algorithm that

– compute the DFS-tree T ,

– compute whether G has connectivity 0, 1 or at least 2,

– compute the chain decomposition C and the chain classification,

– check whether Properties A and B are satisfied and

– compute SR
3 .

32

All steps can be computed in time O(n+m) (see Sections 5.1–5.3).

Although G is not known to be 3-connected, the proof of Theorem 47 still provides an algo-
rithmic method to search iteratively for BG-paths that build the restricted construction sequence,
starting with SR

3 : We iterate over all chains Ci, 0 < i < m− n+ 1 (we say that Ci is processed).
For Ci, let B be the set of all ancestors of the chains in Children12(Ci) ∪ Type3(Ci) that are not
contained in the current subgraph. We try to find an order on the clusters of B in which they are
all addable. This order does not necessarily exist, as G might not be 3-connected. However, we
will give an algorithm that either computes such an order or finds a separation pair. In the case
that this order can be found for every Ci, we obtain a construction sequence of G, which certifies
G to be 3-connected.

During the chain classification, we store on each chain a list of its children of Type 1 and 2 and
on each vertex v a list of the chains of Type 3 that start at v. This allows us to compute the sets
Children12(Ci) and Type3(Ci) efficiently for each Ci in time O(|Ci|+ |Children12(Ci)|+ |Type3(Ci)|)
by traversing (t(Ci)→Ci s(Ci)) \ s(Ci).

We describe the processing phase of Ci. First, the sets Children12(Ci) and Type3(Ci) are com-
puted. For convenience, we perform the following test in advance (this can however be handled
differently in an implementation). For each D ∈ Children12(Ci) that is of Type 2a and for which
t(D) is real, we add D due to Lemma 33.

Let SR
l be the current subgraph. We partition the chains in Type3(Ci) into the segments of SR

l

by storing a pointer on each Cj ∈ Type3(Ci) to the minimal chain D of the segment that contains
Cj . The chain D is computed by traversing the path in T from t(Cj) to the root of T until we
encounter a vertex v with a parent that is already contained in SR

l . Then v must be an inner vertex
of D (each inner vertex has a pointer to its chain) and we mark each vertex of the traversed path
with “D”. Further traversals in the same segment stop at the first vertex that is marked; hence,
they will find the marker “D”. Since the clusters of all traversed chains will eventually be added in
the same processing phase, the total running time of these traversals for all processed chains adds
up to a total of O(m).

Let X be the subset of the chains in Type3(Ci) that are contained in segments in which the
minimal chain is not a chain of Children12(Ci). With Lemma 40, each such segment does not
contain any chain in Children12(Ci). To compute X, it suffices to check for each Cj ∈ Type3(Ci) in
constant time whether its pointer points to a chain in Children12(Ci). In the affirmative case, Cj

is not contained in X; otherwise, Cj is contained in X.
According to Lemma 44, the clusters of all ancestors of the chains in X that are not in SR

l are
successively addable. Moreover, these clusters are successively addable in the order in which they
were traversed when partitioning the chains of Type3(Ci) into segments (i. e., in ascending order of
<). We add them in this order. However, as these clusters form a subtree U ′ of U for each segment
H with H ∩X 6= ∅, any other pre-order on V (U ′) in conformance with Lemma 44 can be computed
in time linearly dependent on |V (U ′)|. Whenever a cluster containing a chain in Type3(Ci) is added,
we delete it from Type3(Ci).

Let SR
t be the generated graph. The segment H of every remaining chain in Type3(Ci) must

contain a chain D in Children12(Ci). The chain D is the minimal chain in H due to Lemma 40.
According to Theorem 47, the clusters of all ancestors of the chains in Children12(Ci) ∪ Type3(Ci)
that are not in SR

t are successively addable if G is 3-connected. However, Theorem 47 does not
specify in which order these clusters are successively addable, so we need to compute a valid order
on them (if this order exists).

33

Let H be the segment of a chain D in Children12(Ci). The cluster of D cannot be a caterpillar
Lj with s(Cj) /∈ V (Ci), as we maintain the invariant that Children12(Ck) = Type3(Ck) = ∅ for every
proper ancestor Ck of Ci. Thus, D is dependent on a non-empty path P ⊆ Ci by Definition 45.
This path contains all attachment vertices of H with Lemma 46. We can compute the attachment
vertices of H efficiently, as the previously described partition of Type3(Ci) into segments provides
the set H ∩ Type3(Ci). The attachment vertices of H are the union of the start vertices of the
chains in H ∩ Type3(Ci) and the vertices s(D) and t(D). This gives also P , as P is the path of
maximal length in Ci that has attachment vertices of H as end vertices.

For computing a possible order in which the remaining clusters are addable, we need the follow-
ing lemma. It shows that the clusters of all ancestors of the chains inH∩(Children12(Ci)∪Type3(Ci))
that are not contained in SR

t are addable if and only if P contains an inner real vertex.

Lemma 49. Let D be a remaining chain in Children12(Ci) in SR
t , let H be the segment of SR

t

that contains D and let P be the dependent path of D. If P contains an inner real vertex, the
clusters of all ancestors of the chains in H ∩ (Children12(Ci) ∪ Type3(Ci)) that are not in SR

t are
successively addable. Moreover, these clusters are addable in any pre-order that adds clusters that
start at t(D) last, e. g., in ascending order of <. Conversely, if P does not contain an inner real
vertex, no cluster in H is addable.

Proof. Let P contain an inner real vertex. If H ∩ Type3(Ci) 6= ∅, the claim follows directly from
Lemma 42, as the dependent path of the minimal chain (Dk) of each of the Exceptions 41.1–41.3
contains no inner real vertex. If H ∩ Type3(Ci) = ∅, we only need to show that the cluster of D
is addable. Moreover, D must be of Type 1 or 2a, as otherwise H ∩ Type3(Ci) 6= ∅. According to
Lemma 33, D is addable.

Otherwise, P does not contain an inner real vertex. Assume to the contrary that we can add a
cluster in H. As Restriction (R1) requires upwards-closedness after adding each cluster, the cluster
of D must be added first. According to Lemma 46, all attachment vertices of H are contained in
P . The end vertices of P must be real, as otherwise no path in H can satisfy Property 4.2. Since
D ∈ Children12(Ci), D cannot be of Type 3. If D is of Type 1, s(D) and t(D) must be the end
vertices of P , P consists only of tree edges and adding D would contradict Restriction (R2).

Therefore, D is of Type 2. Then P must contain the backedge in Ci and it follows that
s(D) = s(Ci). If D is of Type 2a, the end vertices of D are the end vertices of P . Since both end
vertices are real, D would have been added before with Lemma 33.

We conclude thatD is of Type 2b. Then the cluster ofD is a bad caterpillar Lj , as s(Cj) /∈ V (Ci)
would contradict Type3(Ck) = ∅ for a proper ancestor Ck of Ci and because P does not contain an
inner real vertex. Let Q1 and Q2 be the first two BG-paths in Lj that are added as part of the
addition of Lj . As Q1 must connect the two end vertices of P and since Lj contains exactly one
edge e that is incident to s(Cj), Q1 contains e. Thus, Q2 cannot contain the end vertex s(Cj) of P
and it follows that Q2 has at most one real end vertex. Since P and Q1 are parallel links of St+1,
Q2 violates one of the Properties 4.1–4.3. This contradicts Restriction (R1), as Lj , the cluster of
D, can not be decomposed into BG-paths.

5.7.1 Reduction to Overlapping Intervals

Let Y be the set of segments that contain a remaining chain in Children12(Ci). Let the dependent
path of a segment H ∈ Y be the dependent path of its minimal chain, i. e., the maximal path in

34

H4

v1

..
.

Ci

v2

v3

H3

H2

H1

v4

v5

v6

v7

v8

v9

(a) The chain Ci and the remaining
chains in Type3(Ci) ∪ Children12(Ci).

v3 v4 v5v1 v2 v6 v7 v8 v9

I(H1)

I(H3)

I(H4)

I(H2)

I0

Ci
v0

(b) For each of the two inner real vertices v6 and
v7 in Ci, there is one interval in I0.

Figure 11: Mapping segments to intervals. Different colors depict different segments.

Ci connecting two attachment vertices of H. Let an order σ on a subset of Y be proper if the
dependent path of each segment in σ contains an inner real vertex or an inner vertex that is an
attachment vertex of a previous segment in σ. Note that the addition of the clusters in previous
segments H would cause the attachment vertices of H to be real.

Let B be all ancestors of chains in Children12(Ci)∪Type3(Ci) that are not in SR
l . According to

Lemma 49, finding an order in which the clusters of B are successively addable reduces to finding
a proper order σ on Y . Having σ allows us to add the clusters of B ∩ H subsequently for each
segment H in σ. We show how a proper order σ on Y can be efficiently computed by a reduction
to overlaps of intervals.

A very clear and simple characterization of 3-connectivity in terms of a binary relation (called
directly-linked) on the segments of cycles is given by Vo [67, 68] and based on the work of Williamson [70].
The binary relation represents a graph whose connectivity determines the 3-connectivity of the in-
put graph. To compute the proper order σ on Y (if it exists), we will use a similar concept: We
reduce the computation of σ to the computation of a spanning tree of the graph G′ of a certain
binary relation. In particular, σ exists if G′ is connected. The binary relation will correspond to
overlaps on intervals. The structure imposed by previous computation steps allows us to compute
these intervals efficiently.

We map each segment H ∈ Y to a set I(H) of intervals on the elements of V (Ci): Let a1, . . . , ak

be the attachment vertices of H and let I(H) =
⋃

1<j≤k{[a1, aj]}∪
⋃

1<j<k{[aj , ak]} (see Figure 11).
Additionally, we augment V (Ci) by an artificial first vertex v0 and map the real vertices b1, . . . , bk

of Ci to the set of intervals I0 =
⋃

1<j<k{[v0, bj]}. This construction can be efficiently computed

35

and creates at most |Children12(Ci)|+ 2|Type3(Ci)|+ |Vreal(Ci)| − 2 intervals for Ci, adding up to
a total of O(m) intervals for all chains.

Let two intervals [a, b] and [c, d] overlap if a < c < b < d or c < a < d < b. We want to compute
a proper order on Y by finding a sequence of overlapping intervals starting with an interval in I0.
Let the overlap graph of Y be the graph with vertex set I0 ∪

⋃
H∈Y I(H) and an edge between two

vertices if and only if the corresponding intervals overlap. Let the merged overlap graph of Y be
the graph that results from the overlap graph by merging the vertices corresponding to I0 and to
I(H) for every segment H ∈ Y , respectively, to one vertex.

Lemma 50. There is a proper order on the segments in Y if and only if the merged overlap graph
G′ of Y is connected.

Proof. Let G′ be connected and G′′ be a spanning connected subgraph of G′. Then V (G′) =
V (G′′) = Y ∪ {I0}. Let H0, H1, . . . ,H|Y | be the order in which the vertices of G′′ are visited first
by an arbitrary DFS in G′′ that starts on I0 = H0. We show that σ = H1, . . . ,H|Y | is a proper
order on Y . Let Hi, 1 ≤ i ≤ |Y |, be a segment in σ. Then Hi is adjacent to a vertex Hj , j < i,
in G′′ by construction and an interval in I(Hi) overlaps with an interval in I(Hj). If j = 0, the
dependent path of Hi contains an inner real vertex. If j > 0, the dependent path of Hi contains
an inner vertex that is an attachment vertex of the previous segment Hj of σ.

Let σ = H1, . . . ,H|Y | be a proper order on Y . We show that every Hi, 1 ≤ i ≤ |Y |, is adjacent
to I0 or a vertex Hj with j < i in G′. This implies that G′ is connected. If the dependent path Pi

of Hi contains an inner real vertex v, v must be the end point of an interval [v0, v] in I0. Since Pi

does not contain v0, the interval [s(Pi), t(Pi)] in I(Hi) and [v0, v] overlap. Otherwise, Pi does not
contain an inner real vertex. In that case, Pi contains an inner vertex that is an attachment vertex
of a segment Hj with 1 ≤ j < i, as σ is proper.

Let v be an inner vertex of Pi that is an attachment vertex of the segment Hj with minimal j
and let Pj be the dependent path of Hj . If Pj ⊆ Pi, no inner vertex of Pj can be real and it follows
that Pj contains an inner vertex that is an attachment vertex of a segment Hk with 1 ≤ k < j,
contradicting the choice of v. Thus, Pj is not contained in Pi. We conclude that I(Hj) contains an
interval [v, u] or [u, v] with u being an end vertex of Pj that is not in Pi. This implies that [v, u] or
[u, v] overlaps with the interval Pi ∈ I(Hi).

If G is 3-connected, a proper order σ on Y exists according to Theorem 47 and Lemma 49. The
merged overlap graph G′ of Y is then connected with Lemma 50. The following algorithm detects
whether G′ is connected and computes σ in the affirmative case and the connected components of
G′ otherwise.

Lemma 51. Let t be the total number of intervals that have been created for I0 and all segments
in Y and let G′ be the merged overlap graph of Y . There is an algorithm with running time
O(t + |V (Ci)|) that computes a proper order σ on Y , if exists, and that computes the connected
components of G′, if no proper order on Y exists.

Proof. We may construct G′ explicitly and, if G′ is connected, extract σ from G′ as described in
the proof of Lemma 50. Unfortunately, then G′ cannot be computed explicitly in time linearly
dependent on t, as it can contain up to

(t
2
)
∈ Ω(t2) edges. For a worst case example, consider t

slightly shifted copies of the same interval.
We cope with this problem by computing a sparse merged overlap graph, i. e., a spanning

subgraph Gs of G′ with at most 2t edges but with exactly the same connected components as G′.

36

A simple sweep-line algorithm due to Olariu and Zomaya [45] computes in time O(t) a spanning
subgraph G′s of the overlap graph of Y (but not of the merged overlap graph) such that G′s has
at most 2t edges and exactly the same connected components as the overlap graph of Y . The
algorithm assumes the end points of intervals to be sorted. As we deal only with intervals that
correspond to vertices on a chain Ci and an extra vertex v0, we can apply bucket sort in advance to
sort the end points. We remark that this will not be necessary in the application of this lemma, as
predecessors and successors in this order can be maintained during a traversal of Ci. Note also that
the work in [45] describes mainly a non-sequential variant of the algorithm; for a simple sequential
variant, Lemmas 4.1 and 4.2 in [45] suffice.

Thus, G′s can be computed in time O(t+ |V (Ci|). To obtain Gs, we just have to merge the sets
I0 and I(H) for each H ∈ Y in G′s to one vertex, respectively. This takes a total running time of
O(t + |V (Ci|). In Gs, we apply a DFS on the vertex I0 to decide whether Gs is connected. If Gs

is connected, Gs is a spanning connected subgraph of G′. Then, as described in the first lines of
the proof of Lemma 50, the order in which the vertices are visited first in the DFS gives a proper
order on Y . If Gs is not connected, the DFS computes the connected components of Gs, which are
exactly the connected components of G′.

For every chain Ci ∈ C, at most |Children12(Ci)| + 2|Type3(Ci)| + |Vreal(Ci)| − 2 intervals are
created. Thus, applying the algorithm of Lemma 51 for all chains in C adds up to a total time of
O(m).

We therefore gave a linear-time algorithm that either computes a construction sequence of G
or returns a witness for the fact F that there is no proper order σ on Y , namely that more than
one connected component of the merged overlap graph G′ exists. According to Theorem 47 and
Lemma 50, F proves that G is not 3-connected. However, to obtain an easy-to-verify certificate in
that case, we will show how a separation pair can be extracted in the next section. If the input
graph is assumed to be 3-connected, we get the following theorem.

Theorem 52. The sequences (1)–(8) for a simple 3-connected graph G can be computed in time
O(m).

We remark that the reduction to intervals does not have to be explicit in an implementation;
instead, we can work directly on the graph.

5.7.2 Extracting a Separation Pair

We show how a separation pair can be extracted if not all clusters of Children12(Ci) ∪ Type3(Ci)
have been added after processing Ci. Then Children12(Ci) must still contain a chain D. Let H be
the segment that contains D and let SR

l be the current subgraph. Let W be the union of H and
every segment that is mapped to the same connected component A of the merged overlap graph
as H. The set W can be represented as the connected component A itself, which was already
computed in the processing phase of Ci with the algorithm of Lemma 51.

The union of dependent paths of the segments in W is a path P = x→ y that is contained in
Ci, as there is a sequence of overlapping intervals for A. The path P cannot contain inner vertices
that are real due to Lemma 49. It follows that every edge in E(G) \ E(P) that is adjacent to an
inner vertex in P must be contained in a segment H ′ of SR

l (H ′ does not have to be contained in
W). As H ′ is contained in W or the intervals of H ′ do not overlap with any interval of a chain
in W , all the attachment vertices of H ′ must be in P . Additionally, P contains an inner vertex v,

37

since the two attachment vertices of segments that are backedges cannot connect two consecutive
vertices in T , as G is simple, and because every other segment has at least three attachment vertices
due to Lemma 39.

Therefore, deleting x and y separates v from G \ V (P) and x and y form a separation pair,
certifying that G is not 3-connected. The vertices x and y can be computed in O(n + m) by
considering the attachment vertices of the segments in W . This gives the following result.
Theorem 53. There is a certifying algorithm that tests the 3-connectivity of a simple graph G in
time O(n+m), returns each of the sequences (1)–(8) if G is 3-connected and returns a cut vertex
or a separation pair otherwise.

Algorithm 2 gives an overview of the whole approach. An example of its application can be
found in Figure 12. We get the following corollary from the discussion of certificates for 3-edge-
connectivity (see Section 4.1) and edge cuts (see Section 4).

Algorithm 2 Test3Connectivity(Graph G)
1: Compute a DFS-tree T of G, a chain decomposition C and classify the chains
2: Check Properties A and B, Compute SR

3 := C0 ∪ C1 ∪ C2 . Sections 5.1–5.3
3: for i := 0 to m− n+ 1 do . process each Ci

4: Compute the lists Children12(Ci) and Type3(Ci) . page 33
5: for each D ∈ Children12(Ci) that is of Type 2a such that t(D) is real do
6: Add D; update Children12(Ci) . omissible, see Section 5.7.3
7: Partition Type3(Ci) into segments . page 33
8: (every such segment is represented by the minimal chain it contains)
9: for each segment H with H ∩ Type3(Ci) 6= ∅ and H ∩ Children12(Ci) = ∅ do

10: Add the clusters of all ancestors of H ∩ Type3(Ci) that are in H in the
11: order of <; update Type3(Ci) . Lemma 44
12: Let Y be the set of segments that contain a chain in Children12(Ci)
13: for each H ∈ Y do
14: Compute the attachment vertices and the dependent path of H . page 34
15: Map H to a set of intervals on Ci . Section 5.7.1
16: Using these intervals, compute either a proper order σ on Y or more than
17: one connected component of the merged overlap graph G′ of Y . Lemma 51
18: if a proper order σ was computed then
19: for each segment H ∈ Y in the order of σ do . Add clusters; save construction seq.
20: Add the clusters of all ancestors of H ∩ (Type3(Ci) ∪ Children12(Ci))
21: that are in H in the order of <; update Type3(Ci) . Lemma 49
22: else . G′ is not 3-connected
23: Compute a separation pair . Section 5.7.2

Corollary 54. There is a certifying algorithm that tests the 3-edge-connectivity of a simple graph
G in time O(n+m).

5.7.3 Simplifications

We list some simplifications for Algorithm 2.

38

v9

v10

v11

v12

v13

v14 v15

v16

v17

v2

v4

v1

v7

v6

v5

v8

v3

(a) A 3-connected input graph
G with n = 17 and m = 33.
Straight lines depict the edges of
the DFS-tree T (the DFS visits
left children first).

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(b) The decomposition of G into m−
n + 2 chains. Light solid chains are
of Type 1 , red dashed ones of Type 2
and black solid ones of Type 3. The
only chain of Type 2a is C3. The
only chains of Type 3b are C14 and
C16, giving the caterpillars L14 =
{C14, C6, C4} and L16 = {C16, C5},
respectively.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(c) The K3
2 -subdivision

SR
3 = {C0, C1, C2} in G (thick green

edges). We start with processing
C0. Since Children12(C0) = ∅,
we can add all chains in
Type3(C0) = {C7, C8, C9} with
Lemma 44 in ascending order of <.
Thus, we add C7 first.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(d) The K4-subdivision SR
4

that is generated by the ad-
dition of C7. Its real vertices
are depicted in black. Note
that choosing C8 instead of
C7 would have led to a K4-
subdivision as well. The re-
maining chains C8 and C9 are
added in that order.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(e) The subgraph SR
6 . As C1

is finished, we process C2 next.
Due to Theorem 47, C3, C10,
C12, C13, C15 and L14 are
addable if G is 3-connected.
To obtain the right order on
these clusters, we group them
by segments and compute the
following mapping.

C2
v3 v5 v8 v9

I0

v10 v17 v1

I(C10)

I(C12)

I(C13)

I(C3)

I(H)

v0

(f) Mapping segments to intervals (I0 is
induced by v5). Let H be the seg-
ment of C14. Any sequence of overlap-
ping intervals, e. g., I0, I(C10), I(C12),
I(C13), I(C3), I(H), gives an order on
segments. For each such segment H ′,
we add the clusters of all ancestors of
H ′ ∩ (Children12(C2) ∪ Type3(C2)) in H ′.

39

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(g) The subgraph SR
14 after

adding the clusters C10, C12,
C13, C3, L16 and C15 due to
Lemma 49. The next non-
trivial chain to process is C4
with Children12(C4) = {C5}
and Type3(C4) = {C16}. Both
chains are contained in the good
caterpillar L16, which is a seg-
ment of SR

14 itself. We cre-
ate the interval [v0, v12] for C4
due to its inner real vertex v12
and map L16 to the intervals
[v11, v1], [v11, v12] and [v12, v1]
on C4. As [v0, v12] overlaps
with [v11, v1], we can add the
caterpillar L16, which is decom-
posed into the two BG-paths
v11 →G\E(SR

14) v1 and v17 →T

v12 with Lemma 36.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(h) The subgraph SR
16. As

there is nothing to do for
C5, we next process C6 with
Children12(C6) = {C17} and
Type3(C6) = ∅. Due to the in-
ner real vertex v13 of C6 (caus-
ing an interval of I0 to overlap
with I(C17)), C17 is addable.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(i) The subgraph SR
17. The next

non-trivial chain to process
is C8 with Children12(C8) =
{C11} and Type3(C8) = ∅. Due
to the inner real vertex v6 of
C8 (causing an interval of I0
to overlap with I(C11)), C11
is addable as the last BG-path
of the construction sequence.
This generates the subgraph
SR

18, which is identical to G.

Figure 12: An example of the algorithm.

40

• Treatment of chains of Type 2a:
Lines 5 and 6 in Algorithm 2 can be omitted. Let Ci be the currently processed chain and
suppose there is a chain D ∈ Children12(Ci) of Type 2a with t(D) being real. We show that
D will be added if G is 3-connected (if G is not 3-connected, the absence of D does not harm
the algorithm to find a separation pair, as D is a backedge).
Let G be 3-connected and let P be the dependent path of D. We can assume that P has
no inner real vertex after processing Ci, as otherwise D would have been added as well by
construction of the merged overlap graph. Clearly, Ci must contain an inner vertex, since D
is a child of Ci; let v be the first inner vertex of Ci. Since G is simple, t(D) 6= v holds, which
implies that v is an inner vertex of P . Thus, v is non-real and it follows that G contains no
chain of Type 3 that ends at v. Every chain that starts at v implies that v has a child in T .
We conclude with deg(v) ≥ 3 in G that at least one child of Ci ends at v and is of Type 1 or 2.
Since this chain is contained in Children12(Ci) and G is 3-connected, v is real after processing
Ci, contradicting the assumption.

• Integrating the preprocessing phase:
The processing phases of chains can be integrated into the chain decomposition. A chain Ci

can already be processed when it is contained in the current subgraph and when all chains
of Children12(Ci) ∪Type3(Ci) have been found. Therefore, the chain decomposition does not
have to be finished for computing a proper ordering and for adding clusters. This gives a
two-step approach of the whole algorithm: The first step just performs a DFS and the second
step computes the construction sequence by processing iteratively C0, C1, . . . , Cm−n+1.

6 Conclusions
We proposed several variants of construction sequences for the class of 3-connected graphs and
developed efficient transformations between them. This led to a conceptually new approach to
compute these construction sequences bottom-up, which runs in optimal linear time. Using con-
struction sequences as certificates for 3-connectivity allowed to create certifying algorithms for
testing graphs on being 3-connected and 3-edge-connected in time O(n+m).

An SPQR-tree of a 2-connected graph G is a tree that represents the 3-connected components
of G. Hopcroft and Tarjan [30] and Gutwenger and Mutzel [27] show that the SPQR-tree of
a 2-connected graph can be computed in linear time. Clearly, we can certify the 3-connected
components (the so-called R-nodes) of this tree to be 3-connected with the algorithm of Section 5. In
fact, this allows to certify the SPQR-tree decomposition itself, which gives a linear-time certifying
algorithm for computing SPQR-trees. However, it would be interesting and of practical interest
whether the algorithm itself can be extended to give an SPQR-tree in linear time.

In contrast to the non-certifying algorithms in [30, 67, 68], the given algorithm does neither
assume the graph to be 2-connected nor needs to compute low-points (as defined in [30]) in advance.
As 3-connectivity tests are used in practice and many implementation details are to consider, it
would be interesting and reasonable to compare these algorithms experimentally.

Another open question is whether construction sequences provide a general new approach to test
graphs efficiently on higher vertex connectivity. Up to now, no linear-time algorithm for testing
graphs on 4-connectivity is known. Interestingly, construction sequences for 4-connected graphs
exist [50].

41

References
[1] S. Albroscheit. Ein Algorithmus zur Konstruktion gegebener 3-zusammenhängender Graphen.

Diploma thesis, Freie Universität Berlin, 2006.

[2] L. Auslander and S. V. Parter. On imbedding graphs in the plane. J. Math. and Mech.,
10(3):517–523, 1961.

[3] D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-polytopes and
on some properties of 3-connected planar graphs. In Many Facets of Graph Theory, pages
27–40, 1969.

[4] V. Batagelj. Inductive classes of graphs. In Proceedings of the 6th Yugoslav Seminar on Graph
Theory, pages 43–56, Dubrovnik, 1986.

[5] V. Batagelj. An improved inductive definition of two restricted classes of triangulations of the
plane. In Combinatorics and Graph Theory, Banach Center Publications, volume 25, pages
11–18. PWN Warsaw, 1989.

[6] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal upward planarity testing
of single-source digraphs. SIAM J. Comput., 27(1):132–169, 1998.

[7] M. Blum and S. Kannan. Designing programs that check their work. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (STOC’89), pages 86–97, New York,
1989.

[8] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[9] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium of Algorithms
(ESA’02), pages 247–256, 2002.

[10] J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks. Algorithmica,
15(6):521–549, 1996.

[11] N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time solvable for 4-
connected planar graphs. J. Algorithms, 10(2):187–211, 1989.

[12] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Reconnaissance et con-
struction de representations planaires topologiques. Rev. Francaise Recherche Operationelle,
8:33–47, 1964.

[13] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS’89), pages 436–441, 1989.

[14] G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In Proceedings
of the 17th International Colloquium on Automata, Languages and Programming (ICALP’90),
pages 598–611, 1990.

[15] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. J.
ACM, 40:17–47, 1993.

42

[16] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19–33, 1983.

[17] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. An O(n+m) certifying triconnnectivity algo-
rithm for Hamiltonian graphs. Algorithmica, 62(3):754–766, 2012.

[18] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. Every DFS tree of a 3-connected graph contains
a contractible edge. Journal of Graph Theory, 72(1):112–121, 2013.

[19] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci., 2(3):339–344,
1976.

[20] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS 2(1976):339-344).
Theor. Comput. Sci., 4(1):123, 1977.

[21] D. S. Fussell, V. Ramachandran, and R. Thurimella. Finding triconnected components by
local replacement. SIAM J. Comput., 22(3):587–616, 1993.

[22] H. N. Gabow. Path-based depth-first search for strong and biconnected components. Inf.
Process. Lett., 74(3-4):107–114, 2000.

[23] Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT News,
22(1):57–61, 1991.

[24] T. Gallai. Elementare Relationen bezüglich der Glieder und trennenden Punkte von Graphen.
Magyar Tud. Akad. Mat. Kutato Int. Kozl., 9:235–236, 1964.

[25] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is
NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[26] A. J. Goldstein. An efficient and constructive algorithm for testing whether a graph can
be embedded in a plane. Technical report, Contract No. NONR 1858-(21), Department of
Mathematics, Princeton University, 1963.

[27] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In Proceedings of
the 8th International Symposium on Graph Drawing (GD’00), pages 77–90, 2001.

[28] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. In
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’01),
pages 246–255, 2001.

[29] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen, 13:103–107,
1966.

[30] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J.
Comput., 2(3):135–158, 1973.

[31] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.

[32] E. L. Johnson. A proof of the four-coloring of the edges of a regular three-degree graph.
Technical report, O. R. C. 63-28 (R. R.) Min. Report, Univ. of California, Operations Research
Center, 1963.

43

[33] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algorithms for
recognizing interval graphs and permutation graphs. SIAM J. Comput., 36(2):326–353, 2006.

[34] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS’85), pages 464–467, 1985.

[35] E. Lucas. Récréations Mathématiques. Part 1. Gauthier-Villars et Fils, Paris. second edition
(first edition in 1881), 1891.

[36] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, 2011.

[37] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan planarity
testing algorithm. Algorithmica, 16(2):233–242, 1996.

[38] K. Mehlhorn and S. Näher. From algorithms to working programs: On the use of program
checking in LEDA. In Proceedings of the 23rd International Symposium on Mathematical
Foundations of Computer Science (MFCS’98), pages 84–93, 1998.

[39] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking
geometric programs or verification of geometric structures. Comput. Geom. Theory Appl.,
12(1-2):85–103, 1999.

[40] K. Mehlhorn and P. Schweitzer. Progress on certifying algorithms. In Proceedings of the 4th
International Workshop on Frontiers in Algorithmics (FAW’10), pages 1–5, 2010.

[41] P. Mutzel. A fast 0(n) embedding algorithm, based on the Hopcroft-Tarjan planary test.
Technical Report 107, Zentrum für Angewandte Informatik Köln, 1992.

[42] P. Mutzel. The SPQR-tree data structure in graph drawing. In Proceedings of the 30th
International Colloquium on Automata, Languages and Programming (ICALP’03), pages 34–
46, 2003.

[43] H. Nagamochi and T. Ibaraki. A linear time algorithm for computing 3-edge-connected com-
ponents in a multigraph. Japan Journal of Industrial and Applied Mathematics, 9:163–180,
1992.

[44] A. Neumann. Implementation of Schmidt’s algorithm for certifying triconnectivity testing.
Master’s thesis, Universität des Saarlandes and Graduate School of CS, Germany, 2011.

[45] S. Olariu and A. Y. Zomaya. A time- and cost-optimal algorithm for interlocking sets – With
applications. IEEE Trans. Parallel Distrib. Syst., 7(10):1009–1025, 1996.

[46] V. Ramachandran. Parallel open ear decomposition with applications to graph biconnectivity
and triconnectivity. In Synthesis of Parallel Algorithms, pages 275–340, 1993.

[47] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Proceedings of
the 27th Symposium on Theoretical Aspects of Computer Science (STACS’10), pages 633–644,
2010.

44

[48] J. M. Schmidt. Construction sequences and certifying 3-connectivity. Algorithmica, 62:192–
208, 2012.

[49] R. W. Shirey. Implementation and analysis of efficient graph planarity testing algorithms. PhD
thesis, University of Wisconsin, 1969.

[50] P. J. Slater. A classification of 4-connected graphs. Journal of Combinatorial Theory, Series
B, 17(3):281–298, 1974.

[51] E. Steinitz. Polyeder und Raumeinteilungen. Encyclopädie der mathematischen Wis-
senschaften, 3 (Geometrie):1–139, 1922.

[52] S. Taoka, T. Watanabe, and K. Onaga. A linear time algorithm for computing all 3-edge-
connected components of a multigraph. IEICE Trans. Fundamentals E75, 3:410–424, 1992.

[53] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[54] R. E. Tarjan. A note on finding the bridges of a graph. Inf. Process. Lett., 2(6):160–161, 1974.

[55] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85–94, 1986.

[56] G. Tarry. Le problème des labyrinthes. Nouvelles Annales de Mathématique, 14:187–190, 1895.

[57] C. Thomassen. Kuratowski’s theorem. J. Graph Theory, 5(3):225–241, 1981.

[58] C. Thomassen. Reflections on graph theory. J. Graph Theory, 10(3):309–324, 2006.

[59] Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively. Inf. Process.
Lett., 91:147–153, 2004.

[60] Y. H. Tsin. A simple 3-edge-connected component algorithm. Theor. Comp. Sys., 40(2):125–
142, 2007.

[61] Y. H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J. of Discrete Algorithms,
7(1):130–146, 2009.

[62] Y. H. Tsin and F. Y. Chin. A general program scheme for finding bridges. Inf. Process. Lett.,
17(5):269–272, 1983.

[63] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116, 1956.

[64] W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441–455, 1961.

[65] W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15. University of
Toronto Press, 1966.

[66] W. T. Tutte. Graph Theory. Cambridge University Press, 1984.

[67] K.-P. Vo. Finding triconnected components of graphs. Linear and Multilinear Algebra, 13:143–
165, 1983.

45

[68] K.-P. Vo. Segment graphs, depth-first cycle bases, 3-connectivity, and planarity of graphs.
Linear and Multilinear Algebra, 13:119–141, 1983.

[69] H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34(1):339–362, 1932.

[70] S. G. Williamson. Embedding graphs in the plane — algorithmic aspects. In Combinato-
rial Mathematics, Optimal Designs and Their Applications, volume 6 of Annals of Discrete
Mathematics, pages 349–384. Elsevier, 1980.

[71] S. G. Williamson. Depth-first search and Kuratowski subgraphs. J. ACM, 31(4):681–693, 1984.

46

	Introduction
	Preliminaries
	Construction Sequences
	Chain Decompositions and Certificates
	Certificates for Low Connectivity

	A Certifying Algorithm in Linear Time
	Using the Chain Decomposition
	Computing a First Subdivision
	Classification of Chains
	Caterpillars
	Restrictions
	Existence of the Restricted Sequence
	The Algorithm
	Reduction to Overlapping Intervals
	Extracting a Separation Pair
	Simplifications

	Conclusions

