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Abstract

One of the most noted construction methods of 3-vertex-connected
graphs is due to Tutte and based on the following fact: Every 3-vertex-
connected graph G on more than 4 vertices contains a contractible
edge, i. e., an edge whose contraction generates a 3-connected graph.
This implies the existence of a sequence of edge contractions from G
to K4 such that every intermediate graph is 3-vertex-connected. A
theorem of Barnette and Grünbaum yields a similar sequence using
removals of edges instead of contractions.

We show how to compute both sequences in optimal time, improv-
ing the previously best known running times of O(|V |2) to O(|E|).
Based on this result, we give a linear-time test of 3-connectivity that is
certifying; finding such an algorithm has been a major open problem in
the design of certifying algorithms in the last years. The 3-connectivity
test is conceptually different from well-known linear-time tests of 3-
connectivity; it uses a certificate that is easy to verify in time O(|E|).
We also provide an optimal certifying test of 3-edge-connectivity.

1 Introduction
The class of 3-connected (i. e., 3-vertex-connected) graphs has been studied
intensively for many reasons in the past 50 years. Besides being a fundamen-
tal graph property, 3-connectivity has numerous applications, in particular
(but not only) for problems in graph drawing (see [14] for a survey), prob-
lems related to planarity and online problems on planar graphs (see [3] for
a survey).

We use graph constructions throughout the paper. Let B be a set of
graphs, G be a graph and O be a finite set of graph operations. A sequence
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of operations of O that generates G when applied to a graph of B is called
a construction sequence from B to G (using O). We will call B the set of
base graphs. When B and O are clear from the context, we just refer to
a construction sequence of G. Such a sequence can also be described by
giving the inverse operations from G to a base graph; we call this the top-
down variant of a construction sequence, as opposed to a bottom-up variant.

The importance of construction sequences for this paper stems mainly
from the fact that they certify 3-connectivity; it is however the author’s
belief that the inductive nature of construction sequences is a very useful,
yet not fully utilized, framework to solve computational graph problems
efficiently.

One of the most noted constructions for 3-connected graphs was given
by Tutte [19]: Every 3-connected graph G on more than 4 vertices contains
a contractible edge, i. e., an edge whose contraction generates a 3-connected
graph. Iteratively contracting such an edge yields a top-down construction
sequence from G to a K4-multigraph. Unfortunately, also non-3-connected
graphs can contain contractible edges, but adding a side condition estab-
lishes a full characterization [6]: A graph G on more than 4 vertices is
3-connected if and only if there is a construction sequence from G to a K4-
multigraph using contractions on edges with both end vertices having at
least 3 neighbors; we will call this a sequence of contractions. In fact, the
existence of the bottom-up variant of this sequence is commonly stated as
Tutte’s famous wheel theorem [19].

Barnette and Grünbaum [2] and Tutte [20] prove that every 3-connected
graph G on more than 4 vertices contains a removable edge, i. e., an edge
whose deletion generates a subdivision of a 3-connected graph. Let removing
an edge e be the operation that deletes e and, for each end vertex v of e
with exactly two distinct neighbors x and y in the remaining graph, deletes
v and inserts the edge xy. Removing a removable edge leads, similar as in
the sequence of contractions, to a top-down construction sequence from G to
K4; we will call this a sequence of removals. Again, adding a side condition
fully characterizes the 3-connected graphs [18].

Although both existence theorems on contractible and removable edges
are used frequently, the first non-trivial computational result to create the
corresponding construction sequences was published more than 45 years af-
terwards: In 2006, Albroscheit [1] showed how to compute a construction
sequence for 3-connected graphs in time O(|V |2). However, in this algo-
rithm, contractions and removals are allowed to intermix. In 2010, two
results [13, 18] were given that both computed a sequence of contractions
in time O(|V |2). The latter result also gives an algorithm that computes a
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sequence of removals in O(|V |2). All mentioned algorithms do not rely on
the 3-connectivity test of Hopcroft and Tarjan [9], which runs in linear time
but is rather involved. No algorithm is known that computes any of these
sequences in subquadratic time.

We give an algorithm that computes a sequence of removals in linear
time. This will also imply a linear-time algorithm that computes a sequence
of contractions (in the bottom-up and top-down variants) and has a number
of consequences.

Certifying 3-connectivity in linear time. Mehlhorn and Näher [12]
(see [11] for a survey) introduced the concept of certifying algorithms, i. e.,
algorithms that produce with each output a certificate that the particu-
lar output has not been compromised by a bug. Such a certificate can be
any data that allows to check the correctness of the particular output (uni-
formly using a verifying algorithm), but should allow for an easy verifica-
tion. Achieving certifying algorithms is a major goal for problems where the
fastest solutions known are complicated and difficult to implement. Testing
a graph on 3-connectivity is such a problem, but surprisingly little work has
been devoted to certify 3-connectivity, although sophisticated linear-time
recognition algorithms are known for over 35 years [9, 17, 21]. However,
none of them describes an easy-to-verify certificate.

The currently fastest algorithms that certify 3-connectivity need Θ(|V |2)
time and use construction sequences as certificates [1, 13, 18]. Recently, a
linear time certifying algorithm for 3-connectivity has been proposed for
the subclass of Hamiltonian graphs, when a Hamiltonian cycle is given [6].
In general, finding a certifying algorithm for 3-connectivity in subquadratic
time is a major open problem [11, Chapter 5.4] [6].

We give a linear-time certifying algorithm for 3-connectivity that uses
a sequence of removals as certificate. This implies a new linear-time 3-
connectivity test that neither assumes the graph to be 2-connected nor needs
to compute low-points (see [9] for a definition); instead, it uses the structure
of 3-connected graphs implicitly by applying simple path-generating rules.
This is conceptually different from all previous linear-time 3-connectivity
tests. The algorithm has already been implemented and made publicly avail-
able [15]; interestingly, it outperforms the test in [9] on no-instances.

Certifying 3-edge-connectivity in linear time. There is no test for 3-
edge-connectivity that is certifying and runs in linear time, although many
non-certifying linear-time algorithms for this problem are known, the first
being [7]. Based on a reduction in [7], we give a linear-time test on 3-edge-
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connectivity that is certifying.

Applications. Certifying 3-connectivity allows to make many graph algo-
rithms that use the SPQR-tree data structure [8] certifying (e. g., [3, 14]).
Moreover, algorithms on polytopes can be augmented with a quick and easy
check that their input represents indeed a polytope. Applications in commu-
nication networks include certificates for their reliability and the property
to admit a perfectly secure message transmission [5].

We use standard graph-theoretic terminology from [4]; let n = |V | and
m = |E|. Let v →G w denote a path P from vertex v to vertex w in a graph
G and let s(P ) = v and t(P ) = w be the source and target vertex of P ,
respectively (this imposes an orientation from s(P ) to t(P ) on P ). Every
vertex in P \ {s(P ), t(P )} is called an inner vertex of P . For v ∈ V (G), let
N(v) = {w | vw ∈ E} (possibly v ∈ N(v)) and deg(v) its degree (counting
multiedges). Let δ(G) be the minimum degree in G. Let T be an undirected
tree rooted at r. For two vertices x and y in T , let x be an ancestor of y
and y be a descendant of x if x ∈ V (r →T y). If additionally x 6= y, x and y
are proper ancestors and descendants, respectively. Let T (x) be the subtree
of T that contains all descendants of x. Let Km

2 be the graph on 2 vertices
that contains exactly m parallel edges and no self-loops.

2 BG-paths
Iteratively removing removable edges in a 3-connected graph G leads to
a sequence of removals from G to K4, in which all generated intermediate
graphs are 3-connected. However, the intermediate graphs are not neces-
sarily subgraphs of G, which makes a linear-time computation difficult. For
that reason, we reduce the computation to a closely related construction
sequence [18], which is described next.

A subdivision of a graph G is a graph generated from G by replacing
each edge of G by a path of length at least one. Let S be a subdivision of
either K3

2 or of a 3-connected graph. Let a vertex v in S be real if deg(v) ≥ 3
and let Vreal(S) be the set of real vertices in S. Let the links of S be the
paths in S that have real end vertices but contain no other real vertices.
Note that the links of S are in one-to-one correspondence to the edges of
the subdivided graph (which is K3

2 or 3-connected) and thus partition E(S).
Let two links be parallel if they share the same end vertices.

Definition 1. A BG-path for S (see Figure 1) is a path P = x→G y, x 6= y,
such that
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1. V (P ) ∩ V (S) = {x, y}

2. Every link of S that contains both x and y contains them as end
vertices.

3. If x and y are inner vertices of distinct links Lx and Ly of S, respec-
tively, and |Vreal(S)| ≥ 4, then Lx and Ly are not parallel.

S

P

x

y

(a) P is a BG-
path for the K4-
subdivision S.

S

P

x

y

(b) P is not a BG-path for S,
since there is a link containing
x and y such that y is no end
vertex of that link (see Prop-
erty 1.2).

S P

x

y

(c) P is not a BG-path for S, as x
and y are inner vertices of two links,
respectively, that are parallel and
|Vreal(S)| ≥ 4 (see Property 1.3).

Figure 1: BG-paths

It was shown in [18] that a graph G without self-loops is 3-connected
if and only if δ(G) ≥ 3 and G can be constructed from an (arbitrary) K4-
subdivision in G by adding BG-paths. This implies that every 3-connected
graph G contains a subdivision of K4, a result first shown by J. Isbell [2].
For technical reasons, we will use a slightly modified construction that starts
with a K3

2 -subdivision and demand that the first BG-path generates a K4-
subdivision. Thus, a construction sequence using BG-paths starts with a
K3

2 -subdivision of G, adds one BG-path that generates a K4-subdivision
and then adds BG-paths until G is constructed.

Let S3, S4, S5, . . . , Sz = G be the intermediate graphs that are generated
by such a construction. We benefit from two key features: Each Sl, 3 ≤ l <
z, is a subdivision of a 3-connected graph and, additionally, a subgraph of
Sl+1 and therefore of G. This does not only yield an easy representation
in linear space, it will also allow to compute a next BG-path efficiently by
searching the neighborhood of the current subgraph in G. We give old and
new results about construction sequences.

Theorem 2. The following statements are equivalent.

(1) A simple graph G is 3-connected
(2) There is a sequence of removals from G to K4 of removable edges

e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see [18])
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(3) There is a sequence of removals from G to K4 of edges
e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5

(4) There is a sequence of contractions from G to a K4-multigraph of
contractible edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [18],
chapter 5 in [19])

(5) There is a sequence of contractions from G to a K4-multigraph of
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see [6])

(6) δ(G) ≥ 3 and there is a sequence of BG-paths from a K3
2 -subdivision

in G to G such that the first BG-path generates a K4-subdivision
(7) δ(G) ≥ 3 and there is a sequence of BG-paths from a K4-subdivision

in G to G [2, 18]
(8) δ(G) ≥ 3 and there is a sequence of BG-paths from each K4-subdivision

in G to G [18]

Lemma 3. There are algorithms that transform a sequence of Type (6) to
the sequences of each of the Types (2)–(7) in linear time.

With Lemma 3, we can transform a sequence of Type (6) to every se-
quence of Theorem 2 efficiently. We will therefore focus on computing this
sequence; if not stated otherwise, a construction sequence will refer to a se-
quence of Type (6). The following lemma provides an iterative algorithmic
approach to compute it.

Lemma 4 ([18]). Let G be a 3-connected graph and H ⊂ G such that H is
a subdivision of either K3

2 or of a 3-connected graph. There is a BG-path
for H in G.

Clearly, every sequence of Type (4) and (5) must contain exactly n− 4
contractions. We give a corresponding result for the number of operations
in the other sequences.

Lemma 5. Every sequence of Type (2), (3) and (7) contains exactly m −
n− 2 operations and every sequence of Type (6) contains exactly m− n− 1
operations.

3 Chain Decompositions and Certificates
We first describe a decomposition of a simple graph G, which is closely
related to ear and open ear (i. e., no ear is a cycle) decompositions [10].
This decomposition will be the base structure that allows to compute a
sequence of Type (6) efficiently. We define the structure algorithmically on
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a depth-first search (DFS) forest [9]; a similar procedure for the computation
of so-called low-points (see [9]) can be found in [17]. Let F be a (rooted)
DFS-forest of G. For every backedge e, let s(e) and t(e) denote the two end
vertices of e such that s(e) is a proper ancestor of t(e) in F .

We decomposeG into a set C = {C1, . . . , C|C|} of cycles and paths, called
chains, by applying the following procedure for each vertex v in DFS-order
(see also Figure 2): Let T be the tree in F that contains v and let r be
the root of T . For every backedge vw with s(vw) = v, we traverse the path
w →T r until a vertex x is found that is either r or already contained in a
chain. The traversed subgraph vw ∪ (w →T x) forms a new chain Ci with
s(Ci) = v and t(Ci) = x. We call C a chain decomposition. Let < be the
strict total order on C in which the chains were found, i. e., C1 < · · · < C|C|.
Clearly, the decomposition into chains can be computed in time O(n+m).

Interestingly, C is an open ear decomposition if and only if G is 2-
connected, an ear decomposition if and only if G is 2-edge-connected and
we can test both facts by checking very easy conditions on C in linear
time (proofs omitted). Thus, chain decompositions unify existing linear-
time tests on 2-connectivity and 2-edge-connectivity without the necessity
to compute low-points in advance. If G is not 2-(edge)-connected, a cut
vertex (respectively, a bridge) can be found in linear time.

Easy-to-verify certificates for low (edge-)connectivity. Suppose there
is a vertex or edge cut X of size k − 1 ≥ 0 in a graph G with n > 1 (for
vertex-connectivity, let n > k). Then X would be a straight-forward certifi-
cate for G being not k-(edge-)connected. However, certificates should be as
easy to check as possible, while the running time for computing them is less
important. We thus apply a paradigm of shifting as much as possible of the
checker’s work to the computation of the certificate.

Instead of using X as certificate, we color the vertices of one connected
component of G \X red and the vertices of all other connected components
of G \ X green (we call this a red-green coloring). A checker for G being
not k-connected then just needs to check that at most k − 1 vertices are
uncolored, there is at least one red and one green vertex and that no edge
joins a red vertex with a green one. For G being not k-edge-connected, it
suffices to check that there is a red, a green and no uncolored vertex and
that the end vertices of at most k − 1 edges differ in color. The certificates
need space O(n) and can be checked in time O(m), as n > m+ 1 proves G
to be disconnected.

A certificate for G being connected is given in [11], using an easy num-
bering scheme on the vertices. Easy-to-verify certificates for 2- and 2-edge-
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connectivity are open ear decompositions and ear decompositions [10], re-
spectively, as computed by the chain decomposition. For 3-connectivity,
we will use a sequence of Type (6) as certificate, which proves G to be
3-connected due to Theorem 2. A simple checker in O(m) time for this
sequence is given in [18].

For certifying 3-edge-connectivity, we use a reduction to 3-connectivity
due to Galil and Italiano [7]. The reduction modifies the simple input graph
G in linear time to a graph with m + 3n vertices and 3m edges. First,
a graph G′ is generated from G by subdividing each edge with one ver-
tex; these vertices are called arc-vertices. For each non-arc-vertex w in
G′, let v1, . . . , vdeg(w) be the arc-vertices neighboring w. Then the edges
(v1v2, v2v3, . . . , vdeg(w)v1) are added to G′ if not already existent. The graph
G is 3-edge-connected if and only if G′ is 3-connected [7]. Moreover, every
vertex cut of minimal size in G′ contains only arc-vertices (Lemma 2.2 in
[7]).

We now apply a certifying 3-connectivity test to G′. If G′ is not 3-
connected, the test on 3-connectivity returns a vertex cut of minimal size
in G′, which corresponds to an edge cut X of size at most two in G. We
can then use a red-green coloring of the connected components of G \X as
certificate.

Otherwise, G′ is 3-connected and we have a sequence of Type (6) for
G′. The certificate consists of this sequence, G′ and the injective mapping φ
from each vertex in G′ to its corresponding vertex or edge in G to certify the
construction of G′. For a checker, it suffices to test that G′ is 3-connected
using the given sequence, every vertex in G has a unique preimage in V (G′)
under φ, every non-arc-vertex v in G′ is the hub of a wheel graph with v+ 1
vertices that are all arc-vertices except for v, every two wheels in G′ share at
most one arc-vertex and every arc-vertex u in G′ is incident to exactly two
non-arc-vertices v and w such that φ(u) = φ(v)φ(w) and φ(u) ∈ E(G). Note
that this checker may fail in detecting additional edges (but not additional
vertices) in G and that this does not harm the 3-edge-connectivity of G. In
both cases, the given certificate needs linear space and can be checked in
time O(m).

4 A Certifying Algorithm for 3-Connectivity in
Linear Time

Due to space constraints, we give only a high level description of the certify-
ing algorithm. According to Lemma 4, it suffices to add iteratively BG-paths
to an arbitraryK3

2 -subdivision S3 in G to get a sequence of Type (6) from S3
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to Sz = G. With Lemma 5, z = m−n+2. Note that we cannot make wrong
decisions when choosing a BG-path (except for the first one), as Lemma 4
ensures a completion of the sequence if G is 3-connected. We aim for adding
chains as BG-paths, as they can be efficiently computed.

We compute a chain decomposition on a DFS-forest T of G and check
n ≥ 4, δ(G) ≥ 3 and 2-connectivity of G as part of this computation. If
the test fails, we can easily find a certificate for G being not 3-connected;
otherwise, we obtain the K3

2 -subdivision S3 = C1 ∪ C2. To keep further
explanations as simple as possible, we abuse notation and split the cycle C1
into two paths by setting C0 = t(C2)→T r and redefining C1 = r →C1\E(C0)
t(C2). We will represent the chain decomposition C as C0, . . . , Cm−n+1.

For every chain Ci 6= C0, Ci contains exactly one backedge, namely its
first edge, and s(Ci) is a proper ancestor of t(Ci). We define the following
necessity for the 3-connectivity of G, which can be checked in linear time,
giving a separation pair if violated. Recall that T (x) is the subtree of T that
contains all descendants of x.

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

Figure 2: A chain
decomposition. Light
solid chains are of
Type 1 , red dashed
ones of Type 2
(Type 2a: C3) and
black solid ones of
Type 3 (Type 3b:
C14 and C16, giv-
ing the caterpillars
L14 = {C14, C6, C4}
and L16 = {C16, C5}).

Property B: For every chain Ci ∈ C \ {C0}
that is not a backedge and for its last inner vertex
x, G contains a backedge e that enters T (x) such
that s(e) is an inner vertex of t(Ci)→T s(Ci).

Until now we only checked necessary properties
for the 3-connectivity of G, which we will take for
granted for the rest of the paper. Let the parent of
a chain Ci 6= C0 be the chain Ck that contains the
edge from t(Ci) to the parent of t(Ci) in T . Chains
admit the following tree structure.
Lemma 6. The parent relation on C defines a tree
U with V (U) = C and root C0.

We assign one of the Types 1, 2a, 2b, 3a and
3b to each chain Ci 6= C0 in ascending order of
<. Some types will be BG-paths and therefore
lead to the next subgraph in the construction se-
quence. The remaining ones will be grouped into
bigger structures that can be decomposed into BG-
paths later. Algorithm 1 defines the types in linear
time; all chains are unmarked at the beginning. We
illustrate the different types in Figure 2.

Algorithm 1 marks every chain of Type 2b. We
explain how the algorithm groups chains of certain
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Algorithm 1 Classify(Ci ∈ C \ {C0},DFS-tree T ) . classifies chains into Types
1,2a,2b,3a,3b
1: Let Ck be the parent of Ci in U . Ck < Ci
2: if t(Ci)→T s(Ci) is contained in Ck then . Type 1
3: assign Type 1 to Ci
4: else if s(Ci) = s(Ck) then . Type 2: Ck 6= C0, t(Ci) is inner vertex of Ck
5: if Ci is a backedge then
6: assign Type 2a to Ci . Type 2a
7: else
8: assign Type 2b to Ci; mark Ci . Type 2b
9: else . Type 3: s(Ci) 6= s(Ck), Ck 6= C0, t(Ci) is inner vertex of Ck
10: if Ck is not marked then
11: assign Type 3a to Ci . Type 3a
12: else . Ck is marked
13: assign Type 3b to Ci; create a list Li = {Ci}; Cj := Ck . Type 3b
14: while Cj is marked do . Li is called a caterpillar
15: unmark Cj ; append Cj to Li; Cj := parent(Cj)

types. Whenever a chain Ci of Type 3b is found,
the path Ci →U C0 is traversed until a chain Cj occurs whose parent is not
marked. The chains in Ci →U Cj are stored in a list Li and unmarked (see
Line 15 of Algorithm 1). This way, every chain Ci of Type 3b is associated
with a list Li of chains; we call Li a caterpillar. Property B ensures that
caterpillars consist of exactly the chains in C that are of Type 2b and 3b.

In order to decide which chain can be added as BG-path, we want to
impose the following structure on every graph Sl, 3 ≤ l ≤ m− n+ 2.

Definition 7. Let Sl be upwards-closed if, for each vertex v in Sl, the edge
from v to its parent in T is contained in Sl. Let Sl be modular if Sl is the
union of chains.

Clearly, S3 is upwards-closed and modular. We would be done if we
could restrict every Sl to be upwards-closed and modular, as then every
BG-path would be a chain:

Lemma 8. If Sl and Sl+1 are upwards-closed and modular, the BG-path P
for Sl is a chain.

Proof. Assume that P is not a chain. Since Sl+1 is modular, P must be the
union of t > 1 chains forming a path; let Ci be the first chain in P . Now P
cannot start with t(Ci), as Property 1.1 and s(Ci) ∈ V (Sl) would force Ci to
be the only chain in P , contradicting t > 1. Thus, P starts with s(Ci) and,
for the same reason, (t(Ci) →T s(Ci)) 6⊆ Sl. Since Sl+1 is upwards-closed,
(t(Ci) →T s(Ci)) ⊆ Sl+1. This contradicts t > 1 as well, as a chain in P
that contains an edge of t(Ci)→T s(Ci) would induce a vertex of degree at
least 3 in the path P , because it contains a backedge.
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Unfortunately, restricting every Sl to be upwards-closed and modular is
not possible, as the 3-connected graph in Figure 3 shows: Since every BG-
path for S3 has end vertices x and y, S4 cannot be modular. We therefore
aim to restrict only certain subgraphs. Let a cluster be either a caterpillar or
a chain of Type 1, 2a or 3a (the cluster of a chain is the cluster containing
the chain). Instead of adding BG-paths one by one, we will add clusters
that can be decomposed into subsequent BG-paths later; we restrict only
the subgraph obtained from the last BG-path to be upwards-closed and
modular. We list the restrictions for adding a cluster in detail.

Restrictions: We add a cluster to an upwards-closed modular subgraph Sl
only if it

(R1) can be decomposed into as many subsequent BG-paths as it con-
tains chains and creates an upwards-closed and modular sub-
graph Sl+t, t > 0, such that

(R2) no link in Sl+t that consists only of tree edges has a parallel link
in Sl+t (note that Sl+t 6= S3).

C3
C2

C0
C4

C6
C5

C1

y

x

Figure 3: No BG-path
for S3 (thick subgraph)
preserves modularity.

Finding such a cluster clearly gives the next t
BG-path(s) for Sl. In particular, (R1) ensures that
the total number of BG-operations is |C| − 3 =
m− n− 1, as shown in Lemma 5. Restriction (R2)
implies that the first BG-path generates a K4-
subdivision, as demanded for a construction se-
quence, and not, e. g., a K4

2 -subdivision. We will
assume from now on that Sl was obtained obeying
Restrictions (R1) and (R2). Let a cluster for Sl
that satisfies (R1) and (R2) be addable. In the fol-
lowing, we investigate how a set of addable clusters
for Sl can be obtained.

Definition 9. For Sl and a chain Ci in Sl, let Children12(Ci) be the set
of children of Ci of Types 1 and 2 that are not contained in Sl and let
Type3(Ci) be the set of chains of Type 3 that start at a vertex in Ci and are
not contained in Sl.

We process chains in the order < of creation, i. e., top-down in the tree
U . The key idea for each Ci is to add (among others) the clusters of all
chains in Children12(Ci) and the clusters of all chains in Type3(Ci). Note
that we defined Children12(Ci) to contain only chains of Type 1 and 2. It
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will not be necessary to consider children of Ci of Type 3, as their clusters
will be added before as part of Type3(Cj) for an ancestor Cj of Ci in U . The
sets Children12(Ci) and Type3(Ci) can be computed efficiently. We give the
precise set of clusters we add.

Definition 10. For Sl and a subset A ⊆ C of chains, let cl(A) be the
set of clusters that contains all (not necessarily proper) ancestors of chains
in A that are not contained in Sl. For every Ci, we add the clusters in
cl(Children12(Ci) ∪ Type3(Ci)).

Theorem 11. Let Ci be a chain in Sl with Children12(Cj) = Type3(Cj) = ∅
for every proper ancestor Cj of Ci. If G is 3-connected, there is an order in
which the clusters in cl(Children12(Ci)∪Type3(Ci)) are successively addable.

Assume for a moment that G is 3-connected. Clearly, C0 satisfies the
precondition of Theorem 11 for S3. By induction, let the precondition be
true for every Cj , j ≤ i. Applying Theorem 11 on Ci then generates a
subgraph, in which the precondition is satisfied for Ci+1. This ensures that
iteratively applying Theorem 11 on C0, C1, . . . , Cm−n+1 constructs G. We
obtain the following corollary.

Corollary 12. For every 3-connected graphG there is a sequence of Type (6)
to G that is restricted by (R1) and (R2).

4.1 Reduction to Overlapping Intervals

Theorem 11 provides an algorithmic method to compute a construction se-
quence: For each Ci, 0 ≤ i ≤ m− n+ 1, we add the clusters in cl(Children12(Ci)∪
Type3(Ci)); we say that Ci is processed. We describe the processing phase
of Ci (see Algorithm 2). Let Sl be the current subgraph. Theorem 11 does
not state in which order the clusters are addable; it therefore remains to
show how we can compute this order if exists. We first partition the chains
in Type3(Ci) into so-called segments of Sl.

Definition 13. Let E′ be a maximal subset of E(G)\E(Sl) such that every
two edges of E′ are contained in a path whose inner vertices are disjoint from
V (Sl). Then the edge-induced subgraph G[E′] is called a segment of Sl. Let
the segment of a chain Ci 6⊆ Sl be the segment of Sl that contains Ci.

Note that every segment of Sl is the union of all vertices in a subtree
of U , as Sl is upwards-closed and modular. A segment can therefore be
represented by the minimal chain it contains. Let X be the subset of chains
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Algorithm 2 Certify3Connectivity(Graph G)
1: Compute a DFS-tree T of G, a chain decomposition C, classify the chains and check simple

properties
2: Check Property B, Set S3 := C0 ∪ C1 ∪ C2 . Page 9 and Section 3
3: for i := 0 to m− n+ 1 do . process each Ci and add clusters of Theorem 11
4: Compute the lists Children12(Ci) and Type3(Ci)
5: Partition Type3(Ci) into segments
6: X := subset of chains in Type3(Ci) whose segments do not contain a chain of Children12(Ci)
7: Add the clusters in cl(X) successively in the order of <; update Type3(Ci)
8: Y := set of segments that contain a chain in Children12(Ci)
9: for each segment H ∈ Y do
10: Compute the attachment vertices of H and the dependent path of H
11: Map H to a set of intervals on Ci . Section 4.1
12: if the merged overlap graph G′ of Y is connected then
13: Obtain a proper order σ on Y from G′ . Lemma 15
14: for each segment H ∈ Y in the order of σ do . Add clusters; save construction seq.
15: Add the clusters in cl(Type3(Ci)∪Children12(Ci)) that are in H in the order of <
16: else
17: Compute a separation pair . G′ is not 3-connected

in Type3(Ci) whose segments do not contain a chain in Children12(Ci). Then
the clusters in cl(X) are successively addable in the order of <. We just add
them in this order and delete X from Type3(Ci). For convenience, we abuse
notation and let Sl be again the current subgraph.

Let Y be the set of segments that contain a chain in Children12(Ci).
Note that every cluster that we still have to add in this processing phase
is contained in one segment in Y . For each segment H ∈ Y , let H ∩ Sl
be the attachment vertices of H. It can be deduced from H containing a
chain in Children12(Ci) that all attachment vertices of H are contained in
Ci (see, e. g., Figure 4(a)). Let the maximal path in Ci that connects two
attachment vertices of H be the dependent path of H. For example, the
dependent path of H4 in Figure 4(a) is v5 →Ci v9.

Consider a segment H ∈ Y and its dependent path P . It can be shown
that the clusters in cl(Children12(Ci) ∪ Type3(Ci)) that are contained in H
are successively addable in the order of < if P contains an inner real vertex.
Moreover, if P does not contain an inner real vertex, none of these clusters
is addable. Whenever we have found a segment with an inner real vertex
in its dependent path, we will therefore add all clusters in this segment
successively.

Note that adding the clusters of a segment H causes all attachment
vertices of H to be real. This might induce new inner real vertices for
dependent paths of other segments in Y . It remains to compute in which
order the segments of Y can be added such that every dependent path
will have an inner real vertex if possible. Let an order σ on Y be proper
if the dependent path of each segment in σ contains an inner real vertex

13
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(a) Ci and the partition of the clusters in
cl(Type3(Ci)∪Children12(Ci)) into segments.
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I(H3)
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I(H2)

I0

Ci
v0

(b) For each of the two inner real ver-
tices v6 and v7 in Ci, there is one in-
terval in I0.

Figure 4: Mapping the segments H1−4 to intervals on Ci. Different colors
depict different segments.

or an inner vertex that is an attachment vertex of a previous segment in
σ. A proper order on Y thus gives the desired order on all clusters in
cl(Children12(Ci) ∪ Type3(Ci)).

We describe how to compute a proper order σ efficiently, if exists. This
is the heart of the reduction. We map each segment H in Y to a set I(H)
of intervals on V (Ci): Let a1, . . . , ak be the attachment vertices of H and
let I(H) =

⋃
1<j≤k{[a1, aj ]} ∪

⋃
1<j<k{[aj , ak]} (see Figure 4). Additionally,

we augment Ci by an artificial vertex v0 (next to t(Ci)) and map the real
vertices b1, . . . , bk of Ci to the set of intervals I0 =

⋃
1<j<k{[v0, bj ]}. The

intervals can be efficiently computed; there are at most |Children12(Ci)| +
2|Type3(Ci)|+ |Vreal(Ci)|−2 intervals for Ci, giving a total of O(m) intervals
for all processing phases.

Let two intervals [a, b] and [c, d] overlap if a < c < b < d or c < a <
d < b. We want to compute a proper order on Y by finding a sequence of
overlapping intervals that starts with an interval in I0. Let the overlap graph
of Y be the graph with vertex set I0 ∪

⋃
H∈Y I(H) and an edge between two

vertices if and only if the corresponding intervals overlap. Let the merged
overlap graph of Y be the graph that results from the overlap graph by
merging the vertices in I0 and in I(H), respectively, to one vertex, for every
segment H ∈ Y .

Lemma 14. There is a proper order on the segments in Y if and only if
the merged overlap graph G′ of Y is connected.

Clearly, the overlap graph (and the merged overlap graph) can have
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a quadratic number of edges in the number of intervals, e. g., consider k
pairwise distinct intervals of the same length lying very close to each other.
Interestingly, the connected components of the merged overlap graph can
still be computed in linear time, without the need to construct the graph
itself. The key idea is to use a modified variant of a sweep-line algorithm
in [16] that computes the connected components of interval overlap graphs
by selecting only sparse subgraphs for each component. If there is only one
component, a proper order on Y can be obtained from the sparse subgraph
of that component.

Lemma 15. Let k be the number of intervals that have been created for the
segments in Y and let G′ be the merged overlap graph of Y . There is an
algorithm with running time O(k+ |V (Ci)|) that computes a proper order σ
on Y , if it exists, and that computes the connected components of G′, if no
proper order on Y exists.

This computes the desired order. With Lemma 3, we obtain the following
theorem.

Theorem 16. The sequence of each of the types (2)–(7) for a simple 3-
connected graph G can be computed in time O(m).

It is possible to extend the algorithm to certify non-3-connectivity: If
the algorithm of Lemma 15 outputs more than one connected component of
the merged overlap graph, a separation pair can be computed.

Theorem 17. There are certifying algorithms for testing the 3-connectivity
and 3-edge-connectivity of graphs G in time O(n+m) using the certificates
of Section 3.
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