Cubic Plane Graphs on a Given Point Set

Jens M. Schmidt Pavel Valtr

point set P in the plane in general position; n := |P| > 3

point set P in the plane in general position; n := |P| > 3

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a connected graph on P?

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a connected graph on P?

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P?

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P?

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P? 2-regular

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 3-connected graph on P? 3-regular / cubic

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 3-connected graph on P? 3-regular / cubic

- n = |P|
- h = # boundary vertices of convex hull
- i = # inner vertices of convex hull

	Necessary and sufficient conditions for a				
k	k-connected	k-edge-connected	k-regular		
	plane graph	plane graph	plane graph		
0	Т	T	1		
1					
2	-				
3	-				

- n = |P|
- h = # boundary vertices of convex hull
- i = # inner vertices of convex hull

	Necessary and sufficient conditions for a			
k	k-connected	k-edge-connected	k-regular	
	plane graph	plane graph	plane graph	
0	none	none	none	
1	none	none	n even	
2	none	none	none	
3	P not in convex po-	P not in convex po-		
	sition	sition	_	

- n = |P|
- h = # boundary vertices of convex hull
- i = # inner vertices of convex hull

	Necessary and sufficient conditions for a			Minimum number of edges
k	k-connected	k-edge-connected	k-regular	in a k -(edge-)connected plane
8	plane graph	plane graph	plane graph	graph on P
0	none	none	none	0
1	none	none	n even	n-1
2	none	none	none	n
3	P not in convex po-	P not in convex po-	? (known for $h \leq$	$max(\frac{3}{2}n, n+h-1)$
	sition	sition	$\frac{3}{4}n)$	

- n = |P|
- h = # boundary vertices of convex hull
- i = # inner vertices of convex hull

	Necessary and sufficient conditions for a			Minimum number of edges
k	k-connected	k-edge-connected	k-regular	in a k -(edge-)connected plane
	plane graph	plane graph	plane graph	graph on P
0	none	none	none	0
1	none	none	<i>n</i> even	n-1
2	none	none	none	n
3	P not in convex po-	P not in convex po-	? (known for $h \leq$	$max(\frac{3}{2}n, n+h-1)$
	sition	sition	$\frac{3}{4}n)$	-
4	? (known for $h =$?	?	?
	3)			
5	?	?	?	?

- n = |P|
- h = # boundary vertices of convex hull
- i = # inner vertices of convex hull

	Necessary and sufficient conditions for a			Minimum number of edges
k	k-connected	k-edge-connected	k-regular	in a k -(edge-)connected plane
	plane graph	plane graph	plane graph	graph on P
0	none	none	none	0
1	none	none	<i>n</i> even	n-1
2	none	none	none	n
3	P not in general po-	P not in general po-	? (known for $h \leq$	$max(\frac{3}{2}n, n+h-1)$
	sition	sition	$\frac{3}{4}n)$	2
4	? (known for $h =$?	?	?
	3)			
5	?	?	?	?

Is there a polynomial time algorithm that finds a cubic graph on a given point set P (if exists)?

Diagonals

From now on: n even, h > 3n/4

• A diagonal of P joins two non-consecutive points of H.

Diagonals

From now on: n even, h > 3n/4

• A diagonal of P joins two non-consecutive points of H.

Lemma: Any cubic plane graph on P has at least (h-3i)/2 diagonals.

Diagonals

From now on: n even, h > 3n/4

• A diagonal of P joins two non-consecutive points of H.

Lemma: Any cubic plane graph on P has at least (h-3i)/2 diagonals.

Proof:

- Let s be the number of edges with exactly one vertex in H.
- Let d be the number of diagonals.
- <u>s</u> ≤ 3i
- s ≥ h-2d

• Non-crossing diagonals induce a set of induced faces.

- Non-crossing diagonals induce a set of induced faces.
- Every induced face defines sets I, H, and V,

- Non-crossing diagonals induce a set of induced faces.
- Every induced face defines sets I_f, H_f and V_f.

Diagonal configuration = A set of non-crossing diagonals and a multiset of half-edges s.t.

- every point in P has degree 3,
- each half-edge is assigned to an adjacent induced face.

Clear: cubic plane graph => diagonal configuration

Vertices in Diagonal Configurations

In an induced face f...

We define $\Delta(f) = 3i_f - h_f - v_f^+ - v_f^{-u}$ for every induced face f.

For a cubic graph on P, we have for every f

Lemma: $\Delta(f) \ge 0$

Shown: cubic plane graph => diagonal configuration

Outline:

diagonal configuration => special diagonal configuration => cubic
plane graph (constructively)

This way we can expect "special" cubic graphs on P (if there is any).

We create a special diagonal configuration by applying two operations.

Operation 1: If $\Delta(f) > 0$, cut any boundary edge of f into two halfedges and assign them to the new face.

We create a special diagonal configuration by applying two operations.

Operation 1: If $\Delta(f) > 0$, cut any boundary edge of f into two halfedges and assign them to the new face.

...preserves $\Delta(f) \ge 0$ and $\Delta(f)$ to be even

Operation 2: If $v \in V^{-u}$ for an induced face f, cut the boundary diagonal vw of f into two half-edges and assign them to the new face.

...also preserves $\Delta(f) \ge 0$ and $\Delta(f)$ to be even

Operation 2: If $v \in V^{-u}$ for an induced face f, cut the boundary diagonal vw of f into two half-edges and assign them to the new face.

...also preserves $\Delta(f) \ge 0$ and $\Delta(f)$ to be even

Iteratively applying Operations 1 and 2 gives a diagonal configuration s.t. for every induced face f

- $\Delta(f) = 0$ and
- no vertex is unmatched.

Let C be a special diagonal configuration.

Lemma: There is a O(n log n) time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_f.

Let C be a special diagonal configuration.

Lemma: There is a O(n log n) time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_f.

Let C be a special diagonal configuration.

Lemma: There is a O(n log n) time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_f.

Use Ham-Sandwich cuts (O(n)).

Thm.: P admits a cubic plane graph if and only if $h \le 3n/4$ or there is a special diagonal configuration.

Thm.: P admits a 2-connected cubic plane graph if and only if h≤3n/4 or there is a special diagonal configuration and all vertices are balanced.

Thm.: P admits a cubic plane graph if and only if $h \le 3n/4$ or there is a special diagonal configuration.

Thm.: P admits a 2-connected cubic plane graph if and only if h≤3n/4 or there is a special diagonal configuration and all vertices are balanced.

Thm.: There is a $O(n^3)$ algorithm that constructs a cubic graph on P if possible.

Open Problems

• [Solved] We know a point set, which admits a connected but no 2connected cubic plane graph. What about 0- and 1-connectivity?

- Augmentation: Given P and a subgraph G on P, is it possible to augment G to a cubic plane graph?
- 4-regular graphs? What about your favorite graph class?