
Cubic Plane Graphs on a Given Point Set

Jens M. Schmidt         Pavel Valtr



Given

point set P in the plane in general position; n := |P| > 3



Given

point set P in the plane in general position; n := |P| > 3



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a connected graph on P?



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a connected graph on P?



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P?



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P?



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 2-connected graph on P?
2-regular



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 3-connected graph on P?
3-regular / cubic



Question

point set P in the plane in general position; n := |P| > 3

Is there a planar straight-line drawing of a 3-connected graph on P?
3-regular / cubic

No!

● otherwise, augment to 
triangulation

● every triangulation of a 
convex polygon has a 
degree-2 vertex
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Straight-Line Graphs on P
● n = |P|
● h = # boundary vertices of convex hull
● i = # inner vertices of convex hull

Is there a polynomial time algorithm that finds a cubic graph on a 
given point set P (if exists)?
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Diagonals

From now on: n even, h > 3n/4
● A diagonal of P joins two non-consecutive points of H.

Lemma: Any cubic plane graph on P has at least (h-3i)/2 diagonals.

Proof:
● Let s be the number of edges with exactly one vertex in H.
● Let d be the number of diagonals.
● s  3i
● s  h-2d
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Diagonal Configurations
● Non-crossing diagonals induce a set of induced faces.
● Every induced face defines sets I

f
, H

f
 and V

f
.

Diagonal configuration = A set of non-crossing diagonals and a 
multiset of half-edges s.t.

● every point in P has degree 3,
● each half-edge is assigned to an adjacent induced face.



Diagonal Configurations

Clear: cubic plane graph => diagonal configuration

=>



Vertices in Diagonal Configurations

 

v

f

v

fv

f

v

f

v is hungry (vV+)

v is balanced (vV0)

In an induced face f...

v is sated and 
unmatched (vV-u)

v is sated and 
matched (vV-m)



Diagonal Configurations

 We define (f) = 3if - hf - vf+ - vf-u for every induced face f.

For a cubic graph on P, we have for every f

Lemma:  (f)  0

Lemma:  (f) is even

=0

=6-4=2

=0

=0

=12-7-0-1=4



Special Diagonal Configurations

Shown: cubic plane graph => diagonal configuration

Outline:
diagonal configuration => special diagonal configuration => cubic 
plane graph (constructively)

This way we can expect “special” cubic graphs on P (if there is any).

=>



Special Diagonal Configurations

 We create a special diagonal configuration by applying two 
operations.

Operation 1: If (f) > 0, cut any boundary edge of f into two half-
edges and assign them to the new face.
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Special Diagonal Configurations

 We create a special diagonal configuration by applying two 
operations.

Operation 1: If (f) > 0, cut any boundary edge of f into two half-
edges and assign them to the new face.

...preserves (f)  0 and (f) to be even

=0

=0

=12-7-0-1=4

=6-5-1=0



Special Diagonal Configurations

 Operation 2: If vV-u for an induced face f, cut the boundary diagonal 
vw of f into two half-edges and assign them to the new face.

...also preserves (f)  0 and (f) to be even
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Special Diagonal Configurations

 Operation 2: If vV-u for an induced face f, cut the boundary diagonal 
vw of f into two half-edges and assign them to the new face.

...also preserves (f)  0 and (f) to be even

=0

=0

=18-14=4



Special Diagonal Configurations

 Iteratively applying Operations 1 and 2 gives a diagonal configuration 
s.t. for every induced face f

● (f) = 0 and
● no vertex is unmatched.



Construction

 Let C be a special diagonal configuration.

Lemma: There is a O(n log n) time algorithm constructing a cubic 
plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.
● their union is plane,
● every inner point has degree 3,
● the union of all leaves are exactly the boundary vertices needing 

a half-edge to If.
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Construction

 Let C be a special diagonal configuration.

Lemma: There is a O(n log n) time algorithm constructing a cubic 
plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.
● their union is plane,
● every inner point has degree 3,
● the union of all leaves are exactly the boundary vertices needing 

a half-edge to If.

Use Ham-Sandwich cuts (O(n)).

=6-5-1=0



Construction

 Thm.: P admits a cubic plane graph if and only if
h3n/4 or there is a special diagonal configuration.

Thm.: P admits a 2-connected cubic plane graph if and only if
h3n/4 or there is a special diagonal configuration and all vertices
are balanced.



Construction

 Thm.: P admits a cubic plane graph if and only if
h3n/4 or there is a special diagonal configuration.

Thm.: P admits a 2-connected cubic plane graph if and only if
h3n/4 or there is a special diagonal configuration and all vertices
are balanced.

Thm.: There is a O(n3) algorithm that constructs a cubic graph on P if 
possible.



Open Problems

 ● [Solved] We know a point set, which admits a connected but no 2-
connected cubic plane graph. What about 0- and 1-connectivity?

● Augmentation: Given P and a subgraph G on P, is it possible to 
augment G to a cubic plane graph?

● 4-regular graphs? What about your favorite graph class?
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