Cubic Plane Graphs on a Given Point Set

Jens M. Schmidt
Pavel Valtr

Given

point set P in the plane in general position; $n:=|P|>3$

Given

point set P in the plane in general position; $n:=|P|>3$

Question

point set P in the plane in general position; $n:=|P|>3$

Is there a planar straight-line drawing of a connected graph on P ?

Question

$$
\text { point set } P \text { in the plane in general position; } n:=|P|>3
$$

Is there a planar straight-line drawing of a connected graph on P ?

Question

point set P in the plane in general position; $n:=|P|>3$

Question

point set P in the plane in general position; $n:=|P|>3$

Is there a planar straight-line drawing of a 2-connected graph on P ?

Question

point set P in the plane in general position; $n:=|P|>3$

Is there a planar straight-line drawing of a 2-connected graph on P ?
2-regular

Question

$$
\text { point set } P \text { in the plane in general position; } n:=|P|>3
$$

Is there a planar straight-line drawing of a 3-connected graph on P ?
3-regular / cubic

Question

point set P in the plane in general position; $n:=|P|>3$

Is there a planar straight-line drawing of a 3-connected graph on P ?
3-regular / cubic

Straight-Line Graphs on P

- $n=|P|$
- $\mathrm{h}=$ \# boundary vertices of convex hull
- $\mathrm{i}=$ \# inner vertices of convex hull

	Necessary and sufficient conditions for a		
k	k-connected plane graph	k-edge-connected plane graph	k-regular plane graph
0			
1			
2			
3			

Straight-Line Graphs on P

- $n=|P|$
- $h=\#$ boundary vertices of convex hull
- i = \# inner vertices of convex hull

	Necessary and sufficient conditions for a		
k	k-connected plane graph	k-edge-connected plane graph	k-regular plane graph
0	none	none	none
1	none	none	n even
2	none	none	none
3	P not in convex po- sition	P not in convex po- sition	

Straight-Line Graphs on P

- $n=|P|$
- $h=\#$ boundary vertices of convex hull
- i = \# inner vertices of convex hull

k	Necessary and sufficient conditions for a			
k	k-connected plane graph	k-edge-connected plane graph	k-regular plane graph	Minimum number of edges in a k-(edge-)connected plane graph on P
0	none	none	none	0
1	none	none	n even	$n-1$
2	none	none	none	n
3	P not in convex po- sition	P not in convex po- sition	$?$ $\left.\frac{3}{4} n\right)$	$\max \left(\frac{3}{2} n, n+h-1\right)$

Straight-Line Graphs on P

- $n=|P|$
- $h=\#$ boundary vertices of convex hull
- i = \# inner vertices of convex hull

$\left.$| Necessary and sufficient conditions for a
 k | | k-connected
 plane graph | k-edge-connected
 plane graph | k-regular
 plane graph |
| :--- | :--- | :--- | :--- | :--- | | Minimum number of edges |
| :--- |
| in a k-(edge-)connected plane |
| graph on P | \right\rvert\,

Straight-Line Graphs on P

- $n=|P|$
- $h=\#$ boundary vertices of convex hull
- i = \# inner vertices of convex hull

Necessary and sufficient conditions for a k	k-connected plane graph	k-edge-connected plane graph	k-regular plane graph	Minimum number of edges in a k-(edge-)connected plane graph on P
0	none	none	none	0
1	none	none	n even	$n-1$
2	none	none	none	n
3	P not in general po- sition	P not in general po- sition	$?$ (known for $h \leq$ $\left.\frac{3}{4} n\right)$	$\max \left(\frac{3}{2} n, n+h-1\right)$
4	$?$ (known for $h=$ $3)$	$?$	$?$	$?$
5	$?$	$?$	$?$	$?$

Is there a polynomial time algorithm that finds a cubic graph on a given point set P (if exists)?

Diagonals

From now on: n even, $\mathrm{h}>3 \mathrm{n} / 4$

- A diagonal of P joins two non-consecutive points of H .

Diagonals

From now on: n even, $\mathrm{h}>3 \mathrm{n} / 4$

- A diagonal of P joins two non-consecutive points of H .

Lemma: Any cubic plane graph on P has at least ($\mathrm{h}-3 \mathrm{i}$)/2 diagonals.

Diagonals

From now on: n even, $\mathrm{h}>3 \mathrm{n} / 4$

- A diagonal of P joins two non-consecutive points of H .

Lemma: Any cubic plane graph on P has at least $(\mathrm{h}-3 \mathrm{i}) / 2$ diagonals.
Proof:

- Let s be the number of edges with exactly one vertex in H .
- Let d be the number of diagonals.
- $\mathrm{s} \leq 3 \mathrm{i}$
- $s \geq h-2 d$

Diagonal Configurations

- Non-crossing diagonals induce a set of induced faces.

Diagonal Configurations

- Non-crossing diagonals induce a set of induced faces.
- Every induced face defines sets I_{f}, H_{f} and V_{f}.

Diagonal Configurations

- Non-crossing diagonals induce a set of induced faces.
- Every induced face defines sets $\mathrm{I}_{\mathrm{f}}, \mathrm{H}_{\mathrm{f}}$ and V_{f}.

Diagonal configuration $=$ A set of non-crossing diagonals and a multiset of half-edges s.t.

- every point in P has degree 3,
- each half-edge is assigned to an adjacent induced face.

Diagonal Configurations

Clear: cubic plane graph => diagonal configuration

Vertices in Diagonal Configurations

In an induced face f...

Diagonal Configurations

We define $\Delta(f)=3 i_{f}-h_{f}-v_{f}{ }^{+}-v_{f}-u$ for every induced face f.
For a cubic graph on P, we have for every f
Lemma: $\Delta(f) \geq 0$
Lemma: $\Delta(\mathrm{f})$ is even

Special Diagonal Configurations

Shown: cubic plane graph => diagonal configuration
Outline:
diagonal configuration => special diagonal configuration => cubic plane graph (constructively)

This way we can expect "special" cubic graphs on P (if there is any).

Special Diagonal Configurations

We create a special diagonal configuration by applying two operations.

Operation 1: If $\Delta(\mathrm{f})>0$, cut any boundary edge of f into two halfedges and assign them to the new face.

Special Diagonal Configurations

We create a special diagonal configuration by applying two operations.

Operation 1: If $\Delta(\mathrm{f})>0$, cut any boundary edge of f into two halfedges and assign them to the new face.

...preserves $\Delta(\mathrm{f}) \geq 0$ and $\Delta(\mathrm{f})$ to be even

Special Diagonal Configurations

Operation 2: If $\mathrm{v} \in \mathrm{V}$ - u for an induced face f , cut the boundary diagonal vw of f into two half-edges and assign them to the new face.

...also preserves $\Delta(\mathrm{f}) \geq 0$ and $\Delta(\mathrm{f})$ to be even

Special Diagonal Configurations

Operation 2: If $\mathrm{v} \in \mathrm{V}$ - u for an induced face f , cut the boundary diagonal vw of f into two half-edges and assign them to the new face.

...also preserves $\Delta(\mathrm{f}) \geq 0$ and $\Delta(\mathrm{f})$ to be even

Special Diagonal Configurations

Iteratively applying Operations 1 and 2 gives a diagonal configuration s.t. for every induced face f

- $\Delta(\mathrm{f})=0$ and
- no vertex is unmatched.

Construction

Let C be a special diagonal configuration.
Lemma: There is a $O(n \log n)$ time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_{f}.

Construction

Let C be a special diagonal configuration.
Lemma: There is a $O(n \log n)$ time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3-stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_{f}.

Construction

Let C be a special diagonal configuration.
Lemma: There is a $O(n \log n)$ time algorithm constructing a cubic plane graph from C (with no edge joining two inner vertices).

Idea: Create a collection L of 3 -stars for each induced face f s.t.

- their union is plane,
- every inner point has degree 3,
- the union of all leaves are exactly the boundary vertices needing a half-edge to I_{f}.

Use Ham-Sandwich cuts (O(n)).

Construction

Thm.: P admits a cubic plane graph if and only if $h \leq 3 n / 4$ or there is a special diagonal configuration.

Thm.: P admits a 2-connected cubic plane graph if and only if $h \leq 3 n / 4$ or there is a special diagonal configuration and all vertices are balanced.

Construction

Thm.: P admits a cubic plane graph if and only if $h \leq 3 n / 4$ or there is a special diagonal configuration.

Thm.: P admits a 2 -connected cubic plane graph if and only if $h \leq 3 n / 4$ or there is a special diagonal configuration and all vertices are balanced.

Thm.: There is a $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm that constructs a cubic graph on P if possible.

Open Problems

- [Solved] We know a point set, which admits a connected but no 2connected cubic plane graph. What about 0-and 1-connectivity?

- Augmentation: Given P and a subgraph G on P, is it possible to augment G to a cubic plane graph?
- 4-regular graphs? What about your favorite graph class?

