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 3-Connectedness

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected 
n > 3 and deleting 2 nodes does not result in a disconnected graph

Problem 1: Is there a nice certificate for 3-connectedness?
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An edge is contractible if its contraction obtains a 3-
connected graph.

 Thm (Tutte '61):
A 3-connected graph  K

4
 contains a contractible edge.
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Contractible+Removable edges

An edge is removable if smooth(G\e) is 3-connected.


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Contractible+Removable edges

Thm (Barnette, Grünbaum '69):
A 3-connected graph  K

4 
contains a removable edge.

Problem 2: How fast can a sequence of contractions / 
removals from G to the K

4
 be computed?
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Thm (Barnette-Grünbaum '69):

G is 3-connected 
G can be constructed from the K

4
 with BG-operations



Barnette-Grünbaum Operations

In a 3-connected graph:

Each operation preserves 3-connectedness

ab, ac ef,
e and f not parallel

parallel edges allowed

b c

b c

e

f

a

a



Construction Sequences

A construction sequence (of BG-operations) would give
– the sequence of removals and
– a certificate for 3-connectedness.

But what about the sequence of contractions?

Thm: A sequence of BG-operations from the K
4
 to G can 

be transformed to a contraction sequence in linear time.
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How can we compute a construction sequence?

GK
4





Construction Sequences

How can we compute a construction sequence?



Construction Sequences

How can we compute a construction sequence?



Construction Sequences

How can we compute a construction sequence?



Construction Sequences

How can we compute a construction sequence?



Construction Sequences

How can we compute a construction sequence?



Construction Sequences

How can we compute a construction sequence?

A performed BG-operation is basic, if it does not create 
parallel edges



Construction Sequences

Thm (Barnette-Grünbaum '69):

G is simple and 3-connected 
G can be constructed from the K

4
 with basic BG-

operations

From now on G is simple.



Construction Sequences

The inverse construction sequence applied to G yields a 
subgraph in G that is a K

4
-subdivision.

GK
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Idea: We construct the sequence bottom-up!
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Idea

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence 
starting from that K

4
-subdivision?

Is there even a (possibly non-basic) construction 
sequence when starting from a prescribed subgraph H 
in G with smooth(H) being 3-connected?

YES

YES



Existence Result

Thm. Let H  G with G and smooth(H) being 3-connected. 
Then there is a BG-path in G that can be added to H.

Proof:
● H = smooth(H)
● H  smooth(H)
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Existence Result

● H  smooth(H)
Some BG-path C=ab in H contains a node x having 
degree 2 in H.

H

...

... G

...

x’

C

a

b

...

y

x



Existence Result

● Then there is a path to a node that is neither in C nor in 
a parallel BG-path.

H

...

... G

...

x’

...

y

C

a

b

x



Existence Result

● Take x' as the last node being in C or a parallel BG-
path.

H

...

... G

...

x’

...

y

C

a

b

x



Existence Result

Corollary
Let H  G with smooth(H) being 3-connected. Then

G is 3-connected
  construction sequence from smooth(H) to G
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Existence Result

Corollary
Let H  G with smooth(H) being 3-connected. Then

G is 3-connected
  construction sequence from smooth(H) to G
  basic construction sequence from smooth(H) to G using 
the additional operation Expand

Expand
(attach degree-3 node, preserves 
3-connectedness with Menger)

might be non-basic



Outline

1. Definitions

2. Existence Results

3. Algorithm

4. Testing 3-Connectedness



Computing construction 
sequences

Let H be given. How to compute the (possibly non-basic) 
sequence?

O(m3) by trying to remove every edge not in H and 
checking the graph on 3-connectedness

O(n3) by preprocessing that reduces the graph to one with 
O(n) edges (Nagamochi, Ibaraki '92)

O(n2) here

O(n+m)? (open even for H being a K
4
-subdivision)
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● G not 3-connected: returns separation pair (easy to check)
● G 3-connected:    returns no certificate
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Testing 3-connectedness

Hopcroft & Tarjan '73:
Test on 3-connectedness in O(n+m)
● difficult to understand / implement
● G not 3-connected: returns separation pair (easy to check)
● G 3-connected:    returns no certificate

Alternative approach with construction sequences:
● Find any K

4
-subdivision in G in O(n)

● Find construction sequence

Test on 3-connectedness in the same time as finding sequence
● here O(n2), but simple
● G not 3-connected: returns separation pair (easy to check)
● G 3-connected:    returns construction sequence (easy to 

check)
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How to validate a construction sequence in linear time

3

21

4

4

5

5

6

ab, ac ef,
e and f not parallel

b c

b c

e

f

a

a

parallel edges 
allowed



Certificate for 3-connectivity

How to validate a construction sequence in linear time

3

21

4
5

6

K
4
 easy to check
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