## Construction Sequences and Certifying 3-Connectedness

Jens M. Schmidt

## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.


## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.
$G$ is 3 -connected $\Leftrightarrow$
$n>3$ and deleting 2 nodes does not result in a disconnected graph


## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.
$G$ is 3 -connected $\Leftrightarrow$
$n>3$ and deleting 2 nodes does not result in a disconnected graph


## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.
$G$ is 3 -connected $\Leftrightarrow$
$n>3$ and deleting 2 nodes does not result in a disconnected graph

not 3-connected

## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.
$G$ is 3 -connected $\Leftrightarrow$
$n>3$ and deleting 2 nodes does not result in a disconnected graph

not 3-connected
3-connected

## 3-Connectedness

Let $G=(V, E)$ be a finite graph without self-loops, $n=|V|, m=|E|$.
$G$ is 3 -connected $\Leftrightarrow$
$n>3$ and deleting 2 nodes does not result in a disconnected graph


Problem 1: Is there a nice certificate for 3 -connectedness?

## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.


## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.


## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.

(parallel edges may occur)

## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.


## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.

...we end up with the $\mathrm{K}_{4}$

## Contractible+Removable edges

An edge is contractible if its contraction obtains a 3connected graph.


Thm (Tutte '61):
A 3-connected graph $\neq \mathrm{K}_{4}$ contains a contractible edge.

## Subdivisions



Subdivision of $\mathrm{K}_{4}$

## Subdivisions


smooth(G)

## Contractible+Removable edges

An edge is removable if smooth(Gle) is 3-connected.

$\Longrightarrow$


## Contractible+Removable edges

Thm (Barnette, Grünbaum '69):
A 3-connected graph $\neq \mathrm{K}_{4}$ contains a removable edge.

## Contractible+Removable edges

Thm (Barnette, Grünbaum '69):
A 3-connected graph $\neq \mathrm{K}_{4}$ contains a removable edge.

Problem 2: How fast can a sequence of contractions / removals from G to the $\mathrm{K}_{4}$ be computed?

## Construction Sequences

Thm (Barnette-Grünbaum '69):
$G$ is 3-connected $\Leftrightarrow$
$G$ can be constructed from the $K_{4}$ with BG-operations

## Barnette-Grünbaum Operations

In a 3-connected graph:

parallel edges allowed

$a \neq b, a \neq c$

$e \neq f$, e and f not parallel

Each operation preserves 3-connectedness

## Construction Sequences

A construction sequence (of BG-operations) would give

- the sequence of removals and
- a certificate for 3-connectedness.

But what about the sequence of contractions?
Thm: A sequence of BG-operations from the $K_{4}$ to $G$ can be transformed to a contraction sequence in linear time.

## Construction Sequences

How can we compute a construction sequence?

$\mathrm{K}_{4}$


G

## Construction Sequences

How can we compute a construction sequence?


## Construction Sequences

How can we compute a construction sequence?


## Construction Sequences

How can we compute a construction sequence?


## Construction Sequences

How can we compute a construction sequence?


## Construction Sequences

How can we compute a construction sequence?


## Construction Sequences

How can we compute a construction sequence?


A performed BG-operation is basic, if it does not create parallel edges

## Construction Sequences

## Thm (Barnette-Grünbaum '69):

$G$ is simple and 3-connected $\Leftrightarrow$
$G$ can be constructed from the $K_{4}$ with basic BGoperations


From now on $G$ is simple.

## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.

$\mathrm{K}_{4}$


G

## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.


## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.


## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.


## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.


## Construction Sequences

The inverse construction sequence applied to $G$ yields a subgraph in $G$ that is a $K_{4}$-subdivision.


## Construction Sequences

## In a construction sequence

start with $K_{4} \quad \Leftrightarrow$ start with a subdivision of $K_{4}$ in $G$
3-conn. graphs $\Leftrightarrow$ subdivisions of 3-conn. graphs in $G$ add BG-edge nodes
$\Leftrightarrow$ add subdivided BG-edge (BG-path)
$\Leftrightarrow$ nodes of degree $\geq 3$ (real nodes)


H

## Construction Sequences

## In a construction sequence

start with $K_{4}$
3-conn. graphs add BG-edge nodes
$\Leftrightarrow$ start with a subdivision of $K_{4}$ in $G$
$\Leftrightarrow$ subdivisions of 3-conn. graphs in $G$
$\Leftrightarrow$ add subdivided BG-edge (BG-path)
$\Leftrightarrow$ nodes of degree $\geq 3$ (real nodes)


H

## Outline

## 1. Definitions

## 2. Existence Results

3. Algorithm
4. Testing 3-Connectedness

## Idea

Idea: We construct the sequence bottom-up!

## Idea

Barnette-Grünbaum choose a special $K_{4}$-subdivision in G.
What if we prescribe a $K_{4}$-subdivision?
Is there still a basic construction sequence starting from that subdivision?

## Idea

Barnette-Grünbaum choose a special $K_{4}$-subdivision in G.
What if we prescribe a $K_{4}$-subdivision?
Is there still a basic construction sequence starting from that subdivision?

NO

## Idea

Barnette-Grünbaum choose a special $K_{4}$-subdivision in G.
What if we prescribe a $K_{4}$-subdivision?
Is there still a basic construction sequence starting from that subdivision?

## Idea

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that $K_{4}$-subdivision?

## Idea

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that $K_{4}$-subdivision?

## YES

## Idea

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that $K_{4}$-subdivision?
YES

Is there even a (possibly non-basic) construction sequence when starting from a prescribed subgraph $H$ in $G$ with smooth $(H)$ being 3 -connected?

## Idea

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that $K_{4}$-subdivision?
YES

Is there even a (possibly non-basic) construction sequence when starting from a prescribed subgraph $H$ in $G$ with smooth $(H)$ being 3 -connected?

YES

## Existence Result

Thm. Let $H \subset G$ with $G$ and smooth $(H)$ being 3-connected. Then there is a BG-path in $G$ that can be added to H .

Proof:

- $H=\operatorname{smooth}(H)$
- $H \neq \operatorname{smooth}(H)$


## Existence Result

- $H=\operatorname{smooth}(H)$

Only real nodes in H .


## Existence Result

- $H=\operatorname{smooth}(H)$

Only real nodes in H .


## Existence Result

- $H=\operatorname{smooth}(H)$

Only real nodes in H .


## Existence Result

- $H \neq \operatorname{smooth}(H)$

Some BG-path $\mathrm{C}=\mathrm{a} \rightarrow \mathrm{b}$ in $H$ contains a node $x$ having degree 2 in $H$.

## Existence Result

- Then there is a path to a node that is neither in C nor in a parallel BG-path.



## Existence Result

- Take $x^{\prime}$ as the last node being in $C$ or a parallel BGpath.



## Existence Result

## Corollary

Let $H \subseteq G$ with $\operatorname{smooth}(H)$ being 3-connected. Then
$G$ is 3-connected
$\Leftrightarrow \exists$ construction sequence from smooth $(H)$ to $G$

## Existence Result

## Corollary

Let $H \subseteq G$ with $\operatorname{smooth}(H)$ being 3-connected. Then
$G$ is 3-connected
might be non-basic
$\Leftrightarrow \exists$ construction sequence from smooth $(H)$ to $G$

## Existence Result

## Corollary

Let $H \subseteq G$ with smooth $(H)$ being 3-connected. Then
$G$ is 3-connected might be non-basic
$\Leftrightarrow \exists$ construction sequence from smooth $(H)$ to $G$
$\Leftrightarrow \exists$ basic construction sequence from smooth $(H)$ to $G$ using the additional operation Expand


Expand
(attach degree-3 node, preserves 3-connectedness with Menger)

## Outline

## 1. Definitions

2. Existence Results

## 3. Algorithm

4. Testing 3-Connectedness

# Computing construction sequences 

Let $H$ be given. How to compute the (possibly non-basic) sequence?
$O\left(m^{3}\right)$ by trying to remove every edge not in $H$ and checking the graph on 3 -connectedness
$O\left(n^{3}\right)$ by preprocessing that reduces the graph to one with O(n) edges (Nagamochi, Ibaraki '92)
$O\left(n^{2}\right)$ here

$\mathrm{O}(n+m)$ ? (open even for H being a $\mathrm{K}_{4}$-subdivision)

## Outline

## 1. Definitions

2. Existence Results
3. Algorithm
4. Testing 3-Connectedness

## Testing 3-connectedness

Hopcroft \& Tarjan '73:
Test on 3-connectedness in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns no certificate


## Testing 3-connectedness

Hopcroft \& Tarjan '73:
Test on 3-connectedness in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns no certificate

Alternative approach with construction sequences:

- Find any $\mathrm{K}_{4}$-subdivision in G in $\mathrm{O}(\mathrm{n})$
- Find construction sequence


## Testing 3-connectedness

Hopcroft \& Tarjan '73:
Test on 3-connectedness in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns no certificate

Alternative approach with construction sequences:

- Find any $\mathrm{K}_{4}$-subdivision in G in $\mathrm{O}(\mathrm{n})$
- Find construction sequence

Test on 3-connectedness in the same time as finding sequence

- here $O\left(n^{2}\right)$, but simple
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected:
returns construction sequence (easy to check)


## Certificate for 3-connectivity

How to validate a construction sequence in linear time


## Certificate for 3-connectivity

How to validate a construction sequence in linear time


## Certificate for 3-connectivity

How to validate a construction sequence in linear time


## Certificate for 3-connectivity

How to validate a construction sequence in linear time


## Certificate for 3-connectivity

How to validate a construction sequence in linear time


$e \neq f$,
e and f not parallel

## Certificate for 3-connectivity

How to validate a construction sequence in linear time


## Certificate for 3-connectivity

How to validate a construction sequence in linear time

$\mathrm{K}_{4}$ easy to check

