Construction Sequences and Certifying 3-Connectedness

Jens M. Schmidt

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected \Leftrightarrow

n > 3 and deleting 2 nodes does not result in a disconnected graph

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected \Leftrightarrow

n > 3 and deleting 2 nodes does not result in a disconnected graph

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected \Leftrightarrow

n > 3 and deleting 2 nodes does not result in a disconnected graph

not 3-connected

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected \Leftrightarrow

n > 3 and deleting 2 nodes does not result in a disconnected graph

not 3-connected

3-connected

Let G=(V,E) be a finite graph without self-loops, n=|V|, m=|E|.

G is 3-connected \Leftrightarrow

n > 3 and deleting 2 nodes does not result in a disconnected graph

Problem 1: Is there a nice certificate for 3-connectedness?

An edge is *contractible* if its contraction obtains a 3connected graph.

An edge is *contractible* if its contraction obtains a 3connected graph.

An edge is *contractible* if its contraction obtains a 3connected graph.

(parallel edges may occur)

An edge is *contractible* if its contraction obtains a 3connected graph.

An edge is *contractible* if its contraction obtains a 3connected graph.

...we end up with the K_4

An edge is *contractible* if its contraction obtains a 3connected graph.

<u>Thm (Tutte '61):</u>

A 3-connected graph $\neq K_{A}$ contains a *contractible* edge.

Subdivisions

Subdivision of K₄

Subdivisions

smooth(G)

An edge is *removable* if $smooth(G \e)$ is 3-connected.

 \implies

<u>Thm (Barnette, Grünbaum '69):</u> A 3-connected graph $\neq K_{A}$ contains a *removable* edge.

<u>Thm (Barnette, Grünbaum '69):</u> A 3-connected graph $\neq K_{A}$ contains a *removable* edge.

Problem 2: How fast can a sequence of contractions / removals from G to the $K_{_{A}}$ be computed?

Thm (Barnette-Grünbaum '69):

G is 3-connected \Leftrightarrow *G* can be constructed from the K_{A} with BG-operations

Barnette-Grünbaum Operations

In a 3-connected graph:

Each operation preserves 3-connectedness

A construction sequence (of BG-operations) would give

- the sequence of removals and
- a certificate for 3-connectedness.

But what about the sequence of contractions?

<u>Thm:</u> A sequence of BG-operations from the K_4 to G can be transformed to a contraction sequence in linear time.

How can we compute a construction sequence?

A performed BG-operation is **basic**, if it does not create parallel edges

Thm (Barnette-Grünbaum '69):

G is simple and 3-connected \Leftrightarrow *G* can be constructed from the K_4 with basic BGoperations

From now on *G* is simple.

The inverse construction sequence applied to G yields a subgraph in G that is a K_4 -subdivision.

The inverse construction sequence applied to G yields a subgraph in G that is a K_4 -subdivision.

The inverse construction sequence applied to G yields a subgraph in G that is a K_{a} -subdivision.

The inverse construction sequence applied to G yields a subgraph in G that is a K_{a} -subdivision.

The inverse construction sequence applied to G yields a subgraph in G that is a K_{a} -subdivision.

The inverse construction sequence applied to G yields a subgraph in G that is a K_4 -subdivision.

In a construction sequence

start with K_4 3-conn. graphs add BG-edge nodes

- \Leftrightarrow start with a subdivision of K_4 in G
- 3-conn. graphs \Leftrightarrow subdivisions of 3-conn. graphs in G
- add BG-edge \Leftrightarrow add subdivided BG-edge (*BG-path*)
 - \Leftrightarrow nodes of degree ≥ 3 (*real* nodes)

In a construction sequence

start with K_4 3-conn. graphs add BG-edge nodes

- \Leftrightarrow start with a subdivision of $K_{_{\mathcal{A}}}$ in G
- 3-conn. graphs \Leftrightarrow subdivisions of 3-conn. graphs in G
- add BG-edge \Leftrightarrow add subdivided BG-edge (*BG-path*)
 - \Leftrightarrow nodes of degree ≥ 3 (*real* nodes)

Outline

1. Definitions

2. Existence Results

3. Algorithm

4. Testing 3-Connectedness

Idea: We construct the sequence bottom-up!

Barnette-Grünbaum choose a special K_{A} -subdivision in G.

What if we prescribe a K_{a} -subdivision?

Is there still a basic construction sequence starting from that subdivision?

Barnette-Grünbaum choose a special K_{A} -subdivision in G.

What if we prescribe a K_{A} -subdivision?

Is there still a basic construction sequence starting from that subdivision?

Barnette-Grünbaum choose a special K_{A} -subdivision in G.

What if we prescribe a K_{a} -subdivision?

Is there still a basic construction sequence starting from that subdivision?

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that K_{a} -subdivision?

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that K_4 -subdivision? YES

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that K_4 -subdivision? YES

Is there even a (possibly non-basic) construction sequence when starting from a prescribed subgraph *H* in *G* with *smooth(H)* being 3-connected?

We drop the condition that sequences are basic.

Is there a (possibly non-basic) construction sequence starting from that K_4 -subdivision? YES

Is there even a (possibly non-basic) construction sequence when starting from a prescribed subgraph *H* in *G* with *smooth(H)* being 3-connected?

YES

<u>Thm.</u> Let $H \subset G$ with G and smooth(H) being 3-connected. Then there is a BG-path in G that can be added to H.

Proof:

- *H* = *smooth*(*H*)
- *H* ≠ *smooth*(*H*)

• H = smooth(H)Only real nodes in H. G Η

• H = smooth(H)Only real nodes in H. G Η

• H = smooth(H)Only real nodes in H. G Η

H ≠ smooth(*H*)
Some BG-path C=a→b in *H* contains a node *x* having degree 2 in *H*.

• Then there is a path to a node that is neither in C nor in a parallel BG-path.

• Take x' as the last node being in C or a parallel BGpath.

<u>Corollary</u> Let $H \subseteq G$ with *smooth*(H) being 3-connected. Then

G is 3-connected \Leftrightarrow **∃** construction sequence from *smooth(H)* to *G*

<u>Corollary</u> Let $H \subseteq G$ with *smooth*(H) being 3-connected. Then

 $G \text{ is 3-connected} \qquad \stackrel{\text{might be non-basic}}{\checkmark} \\ \Leftrightarrow \exists \text{ construction sequence from } smooth(H) \text{ to } G$

<u>Corollary</u> Let $H \subseteq G$ with *smooth*(H) being 3-connected. Then

 $G \text{ is 3-connected} \xrightarrow[]{\text{might be non-basic}} \\ \Leftrightarrow \exists \text{ construction sequence from } smooth(H) \text{ to } G \\ \Leftrightarrow \exists \text{ basic construction sequence from } smooth(H) \text{ to } G \text{ using} \\ \text{the additional operation } Expand$

Outline

1. Definitions

2. Existence Results

3. Algorithm

4. Testing 3-Connectedness

Computing construction sequences

Let *H* be given. How to compute the (possibly non-basic) sequence?

 $O(m^3)$ by trying to remove every edge not in H and checking the graph on 3-connectedness

 $O(n^3)$ by preprocessing that reduces the graph to one with O(n) edges (Nagamochi, Ibaraki '92)

 $O(n^2)$ here

O(n+m)? (open even for H being a K₄-subdivision)

Outline

1. Definitions

2. Existence Results

3. Algorithm

4. Testing 3-Connectedness

Testing 3-connectedness

Hopcroft & Tarjan '73:

Test on 3-connectedness in O(n+m)

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns no certificate

Testing 3-connectedness

Hopcroft & Tarjan '73:

Test on 3-connectedness in O(n+m)

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns no certificate

Alternative approach with construction sequences:

- Find any K_4 -subdivision in G in O(n)
- Find construction sequence

Testing 3-connectedness

Hopcroft & Tarjan '73:

Test on 3-connectedness in O(n+m)

- difficult to understand / implement
- G not 3-connected: returns separation pair (easy to check)
- *G* 3-connected: returns no certificate

Alternative approach with construction sequences:

- Find any K_4 -subdivision in G in O(n)
- Find construction sequence

Test on 3-connectedness in the same time as finding sequence

- here $O(n^2)$, but simple
- *G* not 3-connected: returns separation pair (easy to check)
- G 3-connected: returns construction sequence (easy to check)

How to validate a construction sequence in linear time

 K_4 easy to check