
Construction Sequences and Certifying
3-Connectivity

Journal Version∗

Jens M. Schmidt
Institute of Computer Science

Freie Universität Berlin, Germany

Abstract
Tutte proved that every 3-vertex-connected graph G on more than 4

vertices has a contractible edge. Barnette and Grünbaum proved the exis-
tence of a removable edge in the same setting. We show that the sequence
of contractions and the sequence of removals from G to K4 can be com-
puted in O(|V |2) time by extending Barnette’s and Grünbaum’s theorem.
As an application, we derive a certificate for the 3-vertex-connectivity of
graphs that can be easily computed and verified.

1 Introduction
For a given set O of operations and a given set B of base graphs, a construction
sequence of a graph G is a sequence of operations in O that constructs G when
being applied to a base graph in B. For 3-vertex-connected (we say 3-connected)
graphs G, we focus on construction sequences with B = {K4} and for which
O consists either of inverse contractions (Tutte’s construction sequence) or in-
verse removals (Barnette’s and Grünbaum’s construction sequence). These two
construction sequences are the inverse of the sequence of contractions and the
sequence of removals, respectively. We will define contractions, removals and
their inverse operations in Section 2.

Inductively defined constructions of graph classes are important, because
the set of operations used in the constructions can often be exploited to prove
properties on these graph classes. For 3-connected graphs, the existence the-
orems on contractible and removable edges yield such inductively defined con-
structions. Although these existence theorems are used frequently in graph
theory [12, 13, 16], we are not aware of any computational results to find the se-
quence of contractions or removals, except for sequences where contractions and
removals are allowed to intermix [1]. Moreover, efficient algorithms are unlikely
to be derived from the existence proofs as they, e. g., in the case of Barnette
and Grünbaum, depend heavily on adding longest paths, which are NP-hard

∗This research was supported by the Deutsche Forschungsgemeinschaft within the research
training group “Methods for Discrete Structures” (GRK 1408) and is an extended version
of [11].

1

to find. The main contribution of this paper is a structural result about the
existence of Barnette’s and Grünbaum’s construction sequence and, based on
that result, a simple algorithm to compute such a sequence in time O(|V |2). In
addition, we show that Barnette’s and Grünbaum’s construction sequence can
be transformed in linear time to the sequence of contractions, obtaining a close
connection between these two sequences and a simple quadratic time algorithm
for computing Tutte’s construction sequence. Both algorithms do not rely on
the 3-connectivity test of Hopcroft and Tarjan [6], which runs in linear time but
is rather involved.

The concept of certifying algorithms, which give a small and easy-to-verify
certificate of correctness along with their output, was initiated by Blum and
Kannan [3] and developed further by McConnell et al. [8]. While being impor-
tant for program verification, certifying algorithms often provide new insights
into a problem, which can lead to new techniques. For that reason they are
a major goal for problems on which the known fast solutions are complicated
and difficult to implement. Testing a graph on 3-connectivity is such a problem.
Yet, surprisingly little work has been devoted to certify 3-connectivity, although
a sophisticated linear-time recognition algorithm (not giving an easy-to-verify
certificate) is known for over 35 years [6, 17, 18]. In fact, we are aware of only one
certifying algorithm (in the sense of McConnell et al.) for that problem, which
runs in quadratic time, but is quite involved [1]. Using construction sequences,
we give a simple alternative solution with running time O(|V |2) that performs
essentially DFS-traversals and show that the used certificate is easy-to-verify in
time O(|E|).

We first recapitulate well-known results on the existence of construction se-
quences in Sections 2.1 and 2.2 and point out how the sequence of contraction
can be obtained from Barnette’s and Grünbaum’s sequence in linear time. Sec-
tions 2.3 and 3 cover the main idea for the existence result that we use for
computing Barnette’s and Grünbaum’s construction sequence. The end of Sec-
tion 3 deals with the representation of construction sequences. Section 4 shows
how to use construction sequences for a certifying 3-connectivity test.

2 Construction Sequences
Let G = (V,E) be a finite graph with n := |V |, m := |E|, V (G) = V and
E(G) = E. A graph is connected if there is a path between any two vertices and
disconnected otherwise. For k ≥ 1, a graph is k-vertex-connected if n > k and
deleting every k−1 vertices leaves a connected graph. We will write k-connected
throughout the paper when referring to k-vertex-connectivity. A vertex (resp.
a pair of vertices) that leaves a disconnected graph upon deletion is called a
cut vertex (resp. a separation pair). Note that k-connectivity does not depend
on parallel edges or self-loops. From now on, we assume for simplicity that
our input graph G = (V,E) is simple, although all results can be extended to
multigraphs. A path leading from vertex v to vertex w is denoted by v → w.
For a vertex v in a graph, let N(v) = {w | vw ∈ E} denote its set of neighbors
and deg(v) its degree. For a graph G, let δ(G) be the minimum degree of its
vertices.

A subdivision of a graph G is a graph that replaces each edge in E(G) by
a path of length at least one. Conversely, we want a function that returns the

2

original graph without subdivided edges. If deg(v) = 2 for a vertex v in a
graph G, let smoothv(G) be the graph obtained from G by deleting v followed
by adding an edge between its neighbors; we say v is smoothed. Otherwise, let
smoothv(G) = G. Let smooth(G) be the graph obtained by smoothing every
vertex in G. For an edge e ∈ E, let G \ e denote the graph obtained from G by
deleting e. Let Kn be the complete graph on n vertices.

The following are well-known corollaries of Menger’s theorem [9].

Lemma 1. (Fan Lemma) Let v be a vertex in a graph G that is k-connected
with k ≥ 1 and let A be a set of at least k vertices in G with v /∈ A. There are k
internally vertex-disjoint paths P1, . . . , Pk from v to distinct vertices a1, . . . , ak ∈
A such that for each of these paths V (Pi) ∩A = ai.

Lemma 2. (Expansion Lemma [19]) Let G be a k-connected graph. The graph
obtained by adding a new vertex v joined to at least k vertices in G is still
k-connected.

2.1 Tutte’s Characterization and its Inverse
Although G is simple, contractions cannot always avoid parallel edges in inter-
mediate graphs. E. g., consider a cycle with an additional vertex connected to
all cycle vertices by an edge. This is a wheel graph, and the edges adjacent to
the non-cycle vertex are called spokes. The contraction of any edge that is not
a spoke in a wheel graph will create a parallel edge. That is why we define
contractions to preserve graphs to be simple. Contracting an edge e = xy in a
graph deletes e, merges vertices x and y, and replaces every set of parallel edges
by a single edge. An edge e is called contractible if contracting e results in a
3-connected graph.

A vertex splitting takes a vertex v of a 3-connected graph, replaces v by two
vertices x and y with an edge between them and replaces every former edge uv
that was incident to v with either the edge ux, uy or both such that |N(x)| ≥ 3
and |N(y)| ≥ 3 in the new graph. Vertex splitting as defined here is therefore
the exact inverse of contracting a contractible edge that has end vertices of
degree ≥ 3.

Theorem 3. (Corollary of Tutte [15]) The following statements are equivalent:

A simple graph G is 3-connected
⇔ There exists a sequence of contractions from G to K4 on contractible (1)

edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3
⇔ There exists a construction sequence from K4 to G using vertex (2)

splittings

We describe next a straightforward O(n2) algorithm to compute (1) for a
graph G on more than 4 vertices. First, we decrease the number of edges to
O(n) in G by applying the following algorithm due to Nagamochi and Ibaraki.

Theorem 4 (Nagamochi, Ibaraki [10]). Let G be a connected graph and k ∈ N.
There is an O(m) time algorithm computing a spanning subgraph of G that has
at most k(n−1) edges and is k-connected (resp. k-edge-connected) if and only if
G is k-connected (resp. k-edge-connected). Moreover, if G is k-connected (resp.
k-edge-connected), the spanning subgraph contains a vertex of degree k.

3

This algorithm preserves the 3-connectivity or respectively, that G is not 3-
connected. Moreover, if G is 3-connected, the resulting graph contains a vertex
of degree 3 and by a result of Halin [5], every vertex of degree 3 is incident to
a contractible edge e. We get e by subsequently contracting each of the three
incident edges and testing the resulting graph with the algorithm of Hopcroft
and Tarjan [6] on 3-connectivity. Iteration of both subroutines gives us the
whole contraction sequence in O(n2) time. However, the Hopcroft-Tarjan test
is difficult to implement and we will give a much simpler algorithm that is
capable of computing both characterizations later. In both approaches, we use
the algorithm of Theorem 4 to preprocess the input graph G in advance.

2.2 Barnette’s and Grünbaum’s Characterization and its
Inverse

The Barnette and Grünbaum operations (BG-operations) consist of the follow-
ing operations on a 3-connected graph (see Figures 1(a)-1(c)).

(a) add an edge xy (possibly a parallel edge)

(b) subdivide an edge ab by vertex x and add the edge xy for y /∈ {a, b}

(c) subdivide two distinct, non-parallel edges by vertices x and y, respectively,
and add the edge xy

In all three cases, let xy be the edge that was added by the BG-operation.

(a) parallel
edges allowed

(b) y, a, b distinct (c) e 6= f , e and f not parallel

Figure 1: The three operations of Barnette and Grünbaum.

Theorem 5. (Barnette and Grünbaum [2], Tutte [16]) A graph G is 3-connected
if and only if G can be constructed from K4 using BG-operations.

Theorem 5 was proven in this notation by Barnette and Grünbaum [2], but
also described in results about nodal connectivity by Tutte [16, Theorems 12.64
and 12.65]. If not stated otherwise, every construction sequence uses only BG-
operations. Let a BG-operation be basic, if it does not create parallel edges and
let a construction sequence be basic, if it only uses basic BG-operations.

Like in Theorem 3, we want the inverse of a BG-operation. Let removing
the edge e = xy of a graph be the operation of deleting e followed by smoothing
x and y. An edge e = xy in G is called removable, if removing e yields a
3-connected graph. We show that removing a removable edge e = xy with
|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5 is exactly the inverse of a
BG-operation.

4

(a) The vertices x
and y are neigh-
bored.

(b) The vertices x and y
are both neighbored and of
degree 2.

(c) Case in which
|N(x) ∪N(y)| < 5.

Figure 2: Cases that would fail when undoing a removal.

Theorem 6. The following statements are equivalent:

A simple graph G is 3-connected (3)
⇔ There exists a sequence of removals from G to K4 on removable (4)

edges e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5
⇔ There exists a construction sequence from K4 to G using (5)

BG-operations
⇔ There exists a basic construction sequence from K4 to G using (6)

BG-operations

Proof. Theorem 5 establishes (3)⇔ (5). Moreover, the proof of Theorem 5 in [2]
implicitly shows that on simple graphs basic operations suffice. Thus, only the
equivalence for (4) remains. We first prove (6)⇒ (4) and then (4)⇒ (5).

BG-operations operate by definition on 3-connected graphs, this holds in
particular for the ones in sequence (6). Let G′ be the graph obtained by a basic
BG-operation in (6) that adds the edge e = xy. The operation can clearly be
undone by removing e in G′. Since BG-operations preserve 3-connectivity with
Theorem 5, |N(x)| ≥ 3 and |N(y)| ≥ 3 hold in G′.

It remains to show that |N(x) ∪N(y)| ≥ 5 in G′. If |N(x)| ≥ 4 or |N(y)| ≥
4, |N(x) ∪ N(y)| ≥ 5 follows, since x and y are neighbors and no self-loops
exist. Thus, let |N(x)| = |N(y)| = 3. Having N(x) \ {y} 6= N(y) \ {x} yields
|N(x) ∪N(y)| ≥ 5 as well, so let N(x) \ {y} and N(y) \ {x} contain the same
two vertices a and b. If |V (G′)| > 4, a or b must be adjacent to a vertex c that is
neither adjacent to x nor y. But then {a, b} is a separation pair, contradicting
the 3-connectivity of G′. On the other hand, |V (G′)| = 4 is only possible when
operation (a) was performed as BG-operation, since operations (b) and (c) create
new vertices. This gives a contradiction, as (a) is not a basic operation on K4.

We prove (4) ⇒ (5). Let G′ be the graph containing a removable edge
e = xy that is removed in (4). Note that G′ can have parallel edges due to
previous removals but no self-loops. The removal can be undone by one of the
three BG-operations. On smoothing of e, we count how many end vertices are
deleted. This is either 0, 1, or 2. If no end vertex is deleted, removing e just
deletes e which is inverted by operation (a). If exactly one end vertex, say
x ∈ V (G′), is deleted, let f be the edge in which x was smoothed. Then (b) can
be applied, because y /∈ f (see Figure 2(a)) since otherwise x would have had
only 2 neighbors in G′, contradicting the assumption |N(x)| ≥ 3.

If both end vertices, x and y, are deleted, let f1 and f2 be the edges in which
x and y were smoothed, respectively. Operation (c) can only be applied if f1
and f2 are neither identical nor parallel. But f1 = f2 would again contradict

5

|N(x)| ≥ 3 in G′ (see Figure 2(b)), and f1 being parallel to f2 would contradict
|N(x)∪N(y)| ≥ 5 in G (see Figure 2(c)), since in that case N(x)∪N(y) consists
only of x, y and the two vertices f1 ∩ f2.

We show that Barnette’s and Grünbaum’s characterization is algorithmically
at least as powerful as Tutte’s by giving a simple linear time transformation.
Lemma 7 allows us to focus on computing BG-operations only.

Lemma 7. Every construction sequence using BG-operations can be trans-
formed in linear time to the sequence (1) of contractions.

Proof. We transform every BG-operation in reverse order of the construction
sequence to 0, 1 or 2 contractions each. Operation (a) yields no contraction
while operation (b) yields the contraction of exactly one part of the subdivided
edge (either xa or xb in Figure 1). For an operation (c), let e = ab and f = vw
be the edges that are subdivided with x and y. Both edges share at most one
vertex; w. l. o. g. let a = v be that vertex if it exists. We contraction the edges
xb and yw in arbitrary order. In all cases, contractions inverse BG-operations
except for the added edge xy, which is left over. But additional edges do not
harm the 3-connectivity of the graph nor subsequent contractions. Thus, we
have found a contraction sequence to K4 unless the first contraction in the
case of an operation (c) yields a graph H that is not 3-connected. Let H ′ be
the 3-connected graph after the second contraction of the same operation (c).
Then H can be obtained from H ′ by applying operation (b) and therefore is
3-connected.

2.3 Identifying Intermediate Graphs with Subdivisions in
G

Let K4 = G0, G1, . . . , Gz = G be the 3-connected graphs obtained in a construc-
tion sequence Q to a simple 3-connected graph G using the basic BG-operations
C0, . . . , Cz−1. We can reverse Q by starting with G and removing the added
edges of BG-operations in reverse order. Suppose we would delete the added
edge of every Ci instead of removing it and treat emerging paths containing
interior vertices of degree 2 as (topological) edges in Gi (see Figure 3). Then
iteratively paths are deleted instead of edges being removed and we obtain the
sequence of subdivisions G = Sz, . . . , S0 in G with S0 being a K4-subdivision.
This leads to the following proposition.

Proposition 8. Let Q be a construction sequence from a graph G0 to G using
BG-operations. Then G contains a subdivision of G0 that is specified by Q.

In particular, Proposition 8 yields with Theorem 5 that every 3-connected
graph contains a subdivision of K4 (Theorem of J. Isbell [2]). Each Si is a sub-
division of Gi. Conversely, Gi = smooth(Si) for all 0 ≤ i ≤ z, since smoothing a
graph is precisely the inverse operation of subdividing a graph without vertices
of degree two. The vertices x in Si with deg(x) ≥ 3 are called real vertices, be-
cause they correspond to vertices in Gi. Real vertices have at least 3 neighbors
in Gi, because Gi is 3-connected.

Note that in non-basic construction sequences Gi can have parallel edges,
although Si is always simple.

6

(a) K4 =
G0 = smooth(S0)

(b)
G1 = smooth(S1)

(c)
G2 = smooth(S2)

(d) G3 = G

(e) S0 (f) S1 (g) S2 (h) S3 = G

Figure 3: The graphs G0, . . . , Gz and S0, . . . , Sz of a construction sequence of G.
On graphs Si, the dashed edges and vertices are in G but not in Si and vertices
depicted in black are real vertices. For example, the path C0 = e→ h→ g is a
BG-path for S0, yielding S1. The links of S1 are the paths C0, a → b → c and
the single edges ae, ef , fc, cd, da, fg, gd.

Definition 9. Let the links of each Si be the unique paths in Si with only their
end vertices being real. Let two links be parallel if they share the same end
vertices. Then a BG-path for Si is a path P = x → y in G with the following
properties:

1. Si ∩ P = {x, y}

2. If a link of Si contains x and y, the end vertices of that link are x and y.

3. If x and y are inner vertices of links Lx and Ly of Si, respectively, Lx and
Ly are not parallel.

The links of Si partition E(Si) because Si is 2-connected, has therefore
minimum degree two and is not a cycle. It is easy to see that every BG-path
for Si corresponds to a BG-operation on Gi and vice versa. We will exploit this
duality in the next section.

In general, construction sequences are not bound to start withK4. Titov and
Kelmans [14, 7] extended Theorem 5 by proving the existence of a construction
sequence even when starting with an arbitrary 3-connected graph G0 instead
of K4, as long as a subdivision of G0 is contained in G. This is a generaliza-
tion of Theorem 5, since every 3-connected graph contains a K4-subdivision by
Proposition 8.

Theorem 10. [7, 14] Let G0 be a 3-connected graph. A simple graph G is
3-connected and contains a subdivision of G0 if and only if G can be constructed
from G0 using basic BG-operations.

7

Figure 4: Every possible BG-operation adds a parallel edge to the black sub-
graph.

3 Prescribing Subdivisions
If G is 3-connected, the 3-connected base graph G0 of the construction sequences
of Theorem 5 and 10 corresponds to a subdivisionH ⊂ G ofG0 by Proposition 8.
The proofs of Theorems 5 and 10 show only for a very special subdivision H in
G that a construction sequence from H to G using BG-paths exists. In fact, the
G0-subdivision containing the maximum number of edges in G is chosen for both
theorems. The construction sequence is then obtained by adding longest BG-
paths. Unfortunately, computing these depends heavily on solving the longest
paths problem, which is known to be NP-hard even for 3-connected graphs [4].

Suppose we choose some subdivision H of G0 in advance; we say that H is
prescribed. Is it possible to strengthen Theorems 5 and 10 to start a construction
sequence using BG-paths with H? Such a result would provide an efficient
computational approach to construction sequences, since it allows us to search
the neighborhood of H in G for BG-paths, yielding a new prescribed subdivision
of a 3-connected graph.

However, when restricted to basic operations it is not possible to prescribe
H, as the minimal counterexample in Figure 4 shows: Consider the graph G
consisting of H := K4 depicted in black with an additional vertex x connected
to three vertices of H. Then every BG-path for H will create a parallel link,
which is a path of length two having x as its middle vertex, although G is
simple. But what if we drop the condition that construction sequences have to
be basic? The following theorem shows that at this expense we can indeed start
a construction sequence from any prescribed subdivision.

Theorem 11. Let G be a 3-connected graph and H ⊂ G with H being a subdi-
vision of a 3-connected graph. There is a BG-path for H in G. Moreover, for
every link L of H of length at least 2 there is a parallel link (maybe L itself)
that contains an inner vertex on which a BG-path for H starts.

Proof. We distinguish two cases.

• H 6= smooth(H).
Then links of length at least 2 exist in H and we pick an arbitrary one of
them, say T = a→ b. Let x be an inner vertex of T and let I be the union
of inner vertices of all parallel links of T . We show that there is a vertex
in I on which a BG-path for H starts. By the 3-connectivity of G, the
graph G\{a, b} is connected. Since H contains at least four vertices, there
exists a path P = x → y in G \ {a, b} with y ∈ V (H) \ I (see Figure 5).
The path P has the Property 9.2. Let x′ be the last vertex in P that
is contained in I and let y′ be the first vertex in P that is contained in
V (H) \ I. Then the subpath x′ → y′ of P has Properties 9.1–9.3 and is a
BG-path for H.

8

Figure 5: The case H 6= smooth(H). Dashed edges are in E(G) \E(H), arrows
depict the BG-path x′ → y′.

• H = smooth(H).
Then H consists only of real vertices and since H 6= G, there is a vertex
in V (G) \ V (H) or an edge in E(G) \ E(H). At first, assume that there
is a vertex x ∈ V (G) \ V (H). Then, by the 2-connectivity of G and Fan
Lemma 1 we can find a path P = y1 → x → y2 with no other vertices in
H than y1 and y2. For P the Properties 9.1-9.3 hold, because every link
in H is an edge. Now suppose that V (G) = V (H) and let e be an edge in
E(G) \ E(H). Then e must be a BG-path for H, since both end vertices
are real.

In Theorem 11, non-basic operations can only occur in the caseH = smooth(H)
when a path through a vertex of V (G) \ V (H) is chosen. Although we cannot
avoid that, it is possible to obtain a basic construction by augmenting the BG-
operations with a fourth operation (d), which can be seen as combination of
operations (a) and (b):

(d) connect a new vertex to three distinct vertices

Operation (d) preserves 3-connectivity with Lemma 2 and is basic, because
each new edge ends on the new vertex. Whenever we encounter a vertex in
V (G) \ V (H) in Theorem 11, we know by Fan Lemma 1 and the 3-connectivity
of G that there are three internally vertex-disjoint paths to real vertices in H
with all inner vertices being in V (G) \V (H). Adding these paths to H is called
an expand operation and corresponds to operation (d) in the smoothed graph.
This gives the following result.

Theorem 12. Let G be a simple graph and let H be a subdivision of a 3-

9

Figure 6: A 3-connected graph having a vertex x of degree 3 with no incident
edge being removable. Removing each incident edge of x results in the black
separation pair.

connected graph. Then

G is 3-connected and H ⊆ G
⇔ δ(G) ≥ 3 and there exists a construction sequence from H to G (7)

using BG-paths
⇔ δ(G) ≥ 3 and there exists a basic construction sequence from H to G (8)

using BG-paths and the expand operation

Proof. Let G be 3-connected and H ⊆ G. Then δ(G) ≥ 3 holds and if H = G,
the desired construction sequences are empty and exist. If H ⊂ G, we can
apply Theorem 11 iteratively with or without the additional expand operation
and the construction sequences exist as well. For the sufficiency part, both
construction sequences imply H ⊆ G, since only paths are added to construct G.
Additionally, G must be 3-connected, as adding BG-paths to each Si preserves
Si+1 to be a subdivision of a 3-connected graph with Theorem 5, and δ(G) ≥
3 ensures that the last subdivision G of a 3-connected graph is 3-connected
itself.

A straightforward algorithm to compute Barnette’s and Grünbaum’s con-
struction sequence of a 3-connected graph is to search iteratively for removable
edges. But in contrast to the algorithm in Section 2.1 that computes con-
tractible edges, this approach only leads to an O(n3) algorithm. The reason for
the additional factor of n is that not all vertices with degree 3 must have an
incident removable edge (see Figure 6 for a counterexample on 9 vertices) and
we have to try every edge in the worst case. Computing BG-paths instead of
BG-operations allows us to obtain better running times. For this aim, we need
to represent construction sequences.

An obvious representation of a construction sequence Q would be to store
the graph G0 = smooth(H) and in addition every BG-operation, which gives
the sequence G0, . . . , Gz = G. Unfortunately, the graphs Gi are not necessarily
subgraphs of Gi+1, so we have to take care of relabeled edges when specifying
each operation.

Whenever an edge e is subdivided as part of an operation (b) or (c), we
specify it by its index in Gi followed by assigning new indices to the new degree-
two vertex and one of the two new separated edge parts in Gi+1. The other
edge part keeps the index of e.

Similarly, on operations (a) and (b), real end vertices of the added edge
are specified by their indices in Gi. We assign a new index to the added edge

10

in Gi+1, too. Finally, we have to impose the constraint that Gz is not just
isomorphic but identical to G, meaning that vertices and edges of Gz and G are
labeled by exactly the same indices, since otherwise we would have to solve the
graph isomorphism problem to check that Q really constructs G.

On the other hand, the identification of Gi with a subdivision Si in G allows
us to represent Q without indexing issues: We just store S0 ⊂ G and the BG-
paths C0, . . . , Cz−1. Hence, we can represent each construction sequence Q of
G in the following two ways.

• Edge representation: Represent Q byG0 and a sequence of BG-operations,
along with specifying new and old indices for each operation, such that
Gz and G are labeled the same.

• Path representation: Represent Q by S0 and BG-paths C0, . . . , Cz−1.

Both representations refer to the same sequence of graphs G0, . . . , Gz and
are linear in the graph size. Assuming the uniform cost model, this size is Θ(m),
as the uniform cost model is independent on the size of the numbers processed;
in particular, the space amount of each index is 1 instead of O(logn). The
next lemma states that it does not matter which of the two representations we
compute.

Lemma 13. The edge and path representations of a construction sequence Q
can be transformed into each other in O(m) time. Moreover, the representation
computed is a unique representation of Q.

Proof. Let G0 and a sequence of BG-operations along with their specified indices
on edges and vertices be given. If an operation O′ subdivides an edge e′, we
define β(e′, O′) to be the edge that gets a new index. Let e be the added edge
of an operation in Q. Exploiting the duality of BG-paths and BG-operations,
the edge e corresponds to a BG-path C, which will be subdivided by inserting
|C| − 1 vertices in the construction sequence. To compute the BG-path C from
e, we have to keep track of the at most |C| − 1 operations that subdivide e and
glue the subdivided parts back together.

Whenever an operation O ∈ Q subdivides e, we store a pointer at β(e,O) to
e. Moreover, on all edges f that point to e and are subdivided by an operation
O′′, we store a pointer at β(f,O′′) to e. In both cases, we append β(e,O) (resp.
β(f,O′′)) to a list stored on the edge e. Therefore, we keep track of all new
edges β(e,O) and β(f,O′′) that subdivided C. Eventually, we get all the edges
in which C got subdivided by augmenting the list of e with e itself. Hence,
we have computed the set of edges that C consists of. Since Gz has the same
labeling as G, the indices of e and all other edges in C are still contained in G.

The set of edges is not necessarily in the order of appearance in C, but this
can be easily fixed in time O(|C|) by temporarily storing the incidence infor-
mation of every vertex in C and extracting the BG-path C from a degree-one
vertex. In order to compute S0, we analogously maintain pointers for each edge
of G0 and get the links of S0. Since the links of S0 together with C0, . . . , Cz−1
partition E(G) \ E(S0), the running time is O(m).

Conversely, let S0 and the sequence C0, . . . , Cz−1 of BG-paths be given.
We remove BG-paths in reversed order from G by deleting their edge (there is
only one edge left this way, the one added in the corresponding BG-operation)

11

Figure 7: No expand operation can be formed.

followed by smoothing their end vertices. Therefore, we pass through the graph
sequence Gz, . . . , G0 and get G0. If both end vertices of the BG-path Ci =
a → b are real after deleting ab, we can keep their index and construct the
corresponding BG-operation (a).

Otherwise, let a have degree 2 after deleting ab and let e and f be its incident
edges. When a is smoothed, we can assign the lowest index of e and f to the new
edge. Thus, all indices that are necessary for constructing the operation (b) can
be found in constant time. If additionally b has degree 2, the same procedure
constructs operation (c). It remains to show that always unique representations
of Q are computed. The path representation with BG-paths is by definition
unique. In contrast, edge representations can vary in their indices. However,
picking the incident edge with lowest index before smoothing a vertex creates a
unique representation, since all edge indices of G are given.

If G is simple, the construction sequences (7) and (8) can be transformed
into each other efficiently.

Lemma 14. For simple graphs G, the construction sequences (7) and (8) can
be transformed into each other in O(m).

Proof. With Lemma 13, we can assume that the construction sequence (7) is
given in the path representation. We will rearrange the order of BG-paths to
generate basic operations. For each BG-path P , its position in the construction
sequence and a pointer to the first BG-path F (P) that ends at an inner vertex
of P (if that path exists) is stored. We define the position of each link of S0 as 0.
Performing a bucket sort on the lower end vertices of each BG-path (lower in any
given total order on V (G)) followed by a stable bucket sort on the remaining
end vertices gives a list of BG-paths sorted in lexicographic order of the end
vertex. This list can be used to efficiently group paths that have the same end
vertices.

Let Rab be the set of all BG-paths and links of S0 having end vertices a
and b. We apply the following rule: If a path P ∈ Rab has length one and
does not have the first position of all paths in Rab, we append it to the end
of the construction sequence and remove it from Rab. This does not harm
the construction sequence, since a and b were already real and P has no inner
vertices.

The path with the first position in Rab cannot lead to a non-basic operation.
We look at all other paths P ∈ Rab, which are possibly non-basic, but must
contain an inner vertex w that is an end vertex of the subsequent BG-path
F (P) = v → w. Without harming the construction sequence, P can be moved
to the position of F (P), since a and b were already real and no inner vertex
of P is part of a BG-path before F (P) is applied. If v is real at the point in

12

time when F (P) is applied, we can glue P and F (P) together to an expand
operation, which is basic due to its new vertex w. Otherwise, v is an inner
vertex of a link (see Figure 7) and P and F (P) can be replaced with the two
BG-paths v → a and b → w. Both BG-paths are basic, since they contain end
vertices of degree 2.

Conversely, the three internally vertex-disjoint paths of each expand opera-
tion can be easily split into two BG-paths, possibly inducing non-basic opera-
tions.

4 Certifying and Testing 3-Connectivity in O(n2)
We use construction sequences in the path representation as a certificate for
the 3-connectivity of graphs. This leads to a new, certifying method for test-
ing graphs on being 3-connected. The total running time of this method is
O(n2). This is dominated by the time needed for finding the construction se-
quence and every improvement made there will automatically result in a faster
3-connectivity test. The input graph is a multigraph and does not have to be
biconnected nor connected. We follow the steps:

• Apply the linear-time algorithm of Nagamochi and Ibaraki to the input
graph G′ in order to get a graph G = (V,E) where the number of edges
is in O(n).

• Try to compute a K4-subdivision in G in O(n).

– Success: Let S0 be the K4-subdivision.
– Failure: Return a separation pair or cut vertex.

• Try to compute a construction sequence from prescribed S0 to G in O(n2).

– Success: Return the construction sequence.
– Failure: Return a separation pair or cut vertex.

The graph G output by Nagamochi and Ibaraki is 3-connected if and only if
the input graph G′ is 3-connected. Note that this first algorithmic step from G′

toG does not have to be certifying: Cut vertices and separation pairs inG can be
checked efficiently to be cut vertices and separation pairs in G′, respectively. As
G is a spanning subgraph of G′, every certificate for the 3-connectivity of G can
augmented to a certificate for the 3-connectivity of G′ by checking that G′ differs
from G only in additional edges. We first describe how to find a K4-subdivision
in G by one Depth First Search (DFS), which as a byproduct eliminates self-
loops and parallel edges and sorts out graphs that are not connected or have
vertices with degree less than 3.

Lemma 15. Let G be a graph on at least 4 vertices. There is a simple DFS-
based algorithm that computes either a K4-subdivision or a separation pair in G
in time O(n+m).

Proof. Let T be a DFS-tree of G and let a (resp. b) be the vertex in T that is
visited first (resp. second). We can assume that both a and b have exactly one
child in T , respectively, as otherwise a and b form a separation pair. We choose

13

e

a

i

b

c

d

j

z‘

z
k

Figure 8: Finding a K4-subdivision. Dashed edges depict (possibly empty)
paths, arcs depict backedges.

two arbitrary neighbors c and d of a that are different from b (see Figure 8).
W.l.o.g., let d be visited later by the DFS than c. Let i be the least common
ancestor of c and d in T . Then i 6= b, as b has exactly one child in T . Since
d 6= i holds, let j be the child of i that is contained in the path i→ d in T .

If G is 3-connected, we can find a backedge e that starts on a vertex z in the
subtree rooted at j and ends on an inner vertex z′ of a → i in time O(n). If e
does not exist, a and i form a separation pair. Otherwise, let k be the nearest
ancestor of z contained in the path j → d in T . Each of the three backedges ac,
ad and e close a cycle when added to T , resulting in six internally vertex-disjoint
paths connecting the vertices in {a, z′}, {z′, i}, {i, k}, {k, a}, {z′, k} and {a, i},
respectively. Thus, we have found a K4-subdivision with real vertices a, z′, i
and k.

We now show how to carry out the last step of the algorithm. Let H be the
computed K4-subdivision. In order to find the construction sequence, we use
the path representation and try to find iteratively BG-paths along the lines of
Theorem 11.

Lemma 16. Let H be a subdivision of a 3-connected graph that is contained in
a 3-connected graph G with m = O(n). There is a algorithm that computes a
BG-path for H in time O(n).

Proof. We compute the links of H, assign an index to every link and store this
index on each of the inner vertices of that link in O(n) total time. Moreover,
we maintain a pointer on that index that points to the end vertices of the link.
It remains to show how to find a BG-path along the lines of Theorem 11.

In caseH 6= smooth(H), we pick an arbitrary vertex x of degree two. Let T =
a→ b be the link that contains x and let W be the set of vertices V (H) \ V (T)
minus all vertices in parallel links of T . We compute the path P = x → y′ by
temporarily deleting a and b and performing a DFS from x that stops on the
first vertex y′ ∈ W . We can check whether a vertex lies in a parallel link of T
in constant time by comparing the end vertices of its containing link with a and
b. Thus, the subpath x′ → y′ with x′ being the last vertex contained in T or
in a parallel link of T is a BG-path and can be found efficiently. Similarly, in
case H = smooth(H) we delete temporarily all edges in E(H) and start a DFS
from a vertex x ∈ V (H) that has an incident edge in the remaining graph. The

14

(a) Either a
or b has de-
gree 2 (here
deg(b) = 2).

(b) Both, a
and b, have
degree 2.

Figure 9: Cases where Condition 9.2 fails when a ∈ N(b).

traversal is stopped on the first vertex y ∈ V (H) \ {x} and the path x → y is
then the desired BG-path.

Each time we have found a BG-path, a new index is assigned to it and stored
on each of its inner vertices. We also store a pointer on this index that points
to both end vertices of the BG-path. These update operations can be carried
out in O(n) time as well. Iterating the procedure, a construction sequence can
be found in time O(n2) if the input graph G is 3-connected.

By Theorem 12, if G is not 3-connected, no construction sequence can exist.
In that case, it remains to show that we can always find a separation pair or
cut vertex. For some subdivision H ⊂ G of a 3-connected graph, the DFS
starting at vertex x must fail to find a new BG-path. If H 6= smooth(H), the
end vertices of the link that contains x must form a separation pair. Otherwise,
H = smooth(H) and x must be a cut vertex due to Theorem 11. Thus, if G is
not 3-connected, the algorithm returns either a separation pair or a cut vertex.

Theorem 17. The construction sequences (7) and (8) can be computed in O(n2)
and establish a certifying 3-connectivity test with the same running time.

This raises the following open question.

Question 18. Is there a certifying algorithm with running time o(n2) that
computes a certificate for 3-connectivity of at most linear size?

4.1 Verifying the Construction Sequence
We could validate the certificate by transforming the path representation to
the edge representation using Lemma 13 and checking the validity of the BG-
operations by comparing indices, but there is a more direct way. First, it
can be checked in linear time that all BG-paths C0, . . . , Cz−1 are paths in
G and that these paths partition E(G) \ E(S0). We try to remove the BG-
paths Cz−1, . . . , C0 from G in that order (i. e., we delete the paths followed by
smoothing its end vertices). If the certificate is valid, this is well defined since
all removed BG-paths are edges. On the other hand, we can detect longer BG-
paths |Ci| ≥ 2 before their removal. In that case, the certificate is not valid,
since the inner vertices of Ci are not attached to BG-paths Cj , j > i.

15

We verify that every removed Ci = ab corresponds to a BG-operation by
using Definition 9 of BG-paths, and start with checking that a and b lie in our
current subgraph for Condition 9.1.

Conditions 9.2 and 9.3 can now be checked in constant time: Consider the
situation immediately after the deletion of ab, but before smoothing a and b.
Then all links in our subgraph are single edges, except possibly the ones con-
taining a and b as inner vertices.

Therefore, 9.2 is not met for Ci if a is a neighbor of b and at least one of
the vertices a and b has degree two (see Figures 9 for possible configurations).
Condition 9.3 is not met if N(a) = N(b) and both a and b have degree two.
Both conditions can be checked in constant time. Note that encountering BG-
paths Cz−1, Cz−2, . . . , Ci does not necessarily imply that the current subgraph
is 3-connected, since a path Cj with j < i and being no BG-path might occur
later.

It remains to validate that the graph after removing all BG-paths equals
K4. This can done in constant time by checking it on being simple and having
exactly 4 vertices of degree three.

Theorem 19. The sequences (4)–(8) can be checked on validity in time linearly
dependent on their length.

5 Acknowledgment
We want to thank the anonymous reviewers for their detailed and helpful com-
ments on the original version of this paper.

References
[1] S. Albroscheit. Ein Algorithmus zur Konstruktion gegebener 3-

zusammenhängender Graphen. Diploma thesis, Freie Universität Berlin,
2006.

[2] D. W. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-
polytopes and on some properties of 3-connected planar graphs. In Many Facets
of Graph Theory, pages 27–40, 1969.

[3] M. Blum and S. Kannan. Designing programs that check their work. In Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing (STOC’89),
pages 86–97, New York, 1989.

[4] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[5] R. Halin. Zur Theorie der n-fach zusammenhängenden Graphen. Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, 33(3):133–164, 1969.

[6] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

[7] A. K. Kelmans. Graph expansion and reduction. Algebraic methods in graph
theory, Szeged, Hungary, 1:317–343, 1978.

[8] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algo-
rithms. Computer Science Review, 5(2):119–161, 2011.

[9] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math., 10:96–115, 1927.

16

[10] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(1-6):583–
596, 1992.

[11] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Pro-
ceedings of the 27th Symposium on Theoretical Aspects of Computer Science
(STACS’10), pages 633–644, 2010.

[12] C. Thomassen. Kuratowski’s theorem. J. Graph Theory, 5(3):225–241, 1981.
[13] C. Thomassen. Reflections on graph theory. J. Graph Theory, 10(3):309–324,

2006.
[14] V. K. Titov. A constructive description of some classes of graphs. PhD thesis,

Moscow, 1975.
[15] W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441–455, 1961.
[16] W. T. Tutte. Connectivity in graphs. In Mathematical Expositions, volume 15.

University of Toronto Press, 1966.
[17] K.-P. Vo. Finding triconnected components of graphs. Linear and Multilinear

Algebra, 13:143–165, 1983.
[18] K.-P. Vo. Segment graphs, depth-first cycle bases, 3-connectivity, and planarity

of graphs. Linear and Multilinear Algebra, 13:119–141, 1983.
[19] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.

17

	Introduction
	Construction Sequences
	Tutte's Characterization and its Inverse
	Barnette's and Grünbaum's Characterization and its Inverse
	Identifying Intermediate Graphs with Subdivisions in G

	Prescribing Subdivisions
	Certifying and Testing 3-Connectivity in O(n2)
	Verifying the Construction Sequence

	Acknowledgment

