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Abstract

The class of 3-connected (i. e., 3-vertex-connected) graphs has been studied inten-
sively for many reasons in the past 50 years. One algorithmic reason is that graph
problems can often be reduced to handle only 3-connected graphs; applications in-
clude problems in graph drawing, problems related to planarity and online problems
on planar graphs.

It is possible to test a graph on being 3-connected in linear time. However, the
linear-time algorithms known are complicated and difficult to implement. For that
reason, it is essential to check implementations of these algorithms to be correct.
A way to check the correctness of an algorithm for every instance is to make it
certifying, i. e., to enhance its output by an easy-to-verify certificate of correctness
for that output. However, surprisingly few work has been devoted to find certifying
algorithms that test 3-connectivity; in fact, the currently fastest algorithms need
quadratic time.

Two classic results in graph theory due to Barnette, Grünbaum and Tutte show
that 3-connected graphs can be characterized by the existence of certain inductively
defined constructions. We give new variants of these constructions, relate these to
already existing ones and show how they can be exploited algorithmically. Our main
result is a linear-time certifying algorithm for testing 3-connectivity, which is based
on these constructions. This yields also simple certifying algorithms in linear time
for 2-connectivity, 2-edge-connectivity and 3-edge-connectivity. We conclude this
thesis by a structural result that shows that one of the constructions is preserved
when being applied to depth-first trees of the graph only.



viii



Zusammenfassung

Die Klasse der 3-zusammenhängenden Graphen ist aus vielen Gründen seit 50 Jahren
Gegenstand aktiver Forschung. Ein algorithmisch geprägter Grund ist, dass viele
Graphenprobleme auf 3-zusammenhängende Graphen reduziert werden können. An-
wendungen finden sich beispielsweise bei Graphzeichnungsproblemen und Problemen
auf planaren Graphen.

Ein Graph kann in Linearzeit auf 3-Zusammenhang überprüft werden. Allerdings
sind die bekannten Linearzeitalgorithmen kompliziert und schwierig zu implemen-
tieren. Aus diesem Grund ist es unabdingbar, Implementationen dieser Algorithmen
auf Korrektheit zu überprüfen. Eine Möglichkeit, die Korrektheit jeder Problem-
instanz zu überprüfen, ist, den Algorithmus zertifizierend zu machen. Ein zerti-
fizierender Algorithmus ist ein Algorithmus, der neben der Ausgabe zusätzlich ein
leicht zu verifizierendes Korrektheitszertifikat dieser Ausgabe liefert. Trotz zahlre-
icher Anwendungen 3-zusammenhängender Graphen wurden zertifizierende Algorith-
men, die 3-Zusammenhang testen, bisher kaum untersucht; die schnellsten bekannten
Algorithmen benötigen quadratische Laufzeit.

Zwei klassische Resultate aus der Graphentheorie von Barnette, Grünbaum und
Tutte charakterisieren 3-zusammenhängende Graphen durch die Existenz induktiv
definierter Konstruktionen. Wir untersuchen neue Varianten dieser Konstruktio-
nen, stellen diese zu den klassischen Resultaten in Beziehung und zeigen, wie die
Konstruktionen algorithmisch genutzt werden können. Der Hauptbeitrag dieser Ar-
beit ist ein auf diesen Konstruktionen basierender, zertifizierender Algorithmus, der
Graphen auf 3-Zusammenhang in Linearzeit testet. Dieser kann auf k-Zusammen-
hang und k-Kantenzusammenhang für k ≤ 3 erweitert werden. Abschließend zeigen
wir als Strukturresultat, dass eine der vorgestellten Konstruktionen erhalten bleibt,
wenn sie nur auf einen Teil des Graphen, nämlich einen Tiefensuchbaum, angewendet
wird.
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Chapter 1

Introduction

The class of 3-connected (i. e., 3-vertex-connected) graphs has been studied inten-
sively for many reasons in the past 50 years. One algorithmic reason is that graph
problems can often be reduced to handle 3-connected graphs; applications include
problems in graph drawing (see [51] for a survey), problems related to planarity [8, 28]
and online problems on planar graphs (see [14] for a survey). From a complexity point
of view, 3-connectivity is in particular important for problems dealing with longest
paths, because it lies, somewhat surprisingly, on the borderline of NP-hardness:
Finding a Hamiltonian cycle is NP-hard for 3-connected planar graphs [24] but be-
comes solvable in linear running time [12] for higher connectivity, as 4-connected
planar graphs have been proven to be Hamiltonian [75].

Outside the algorithmic world, the interest in planar 3-connected graphs stems
mainly from the fact that they are precisely the graphs that form the 1-skeletons of
3-dimensional convex polytopes [61] and that they admit a unique embedding in the
plane (up to flipping) [82]. Also, some of the most intriguing and long-standing open
problems in graph theory as the cycle double cover conjecture [59, 62] and Barnette’s
conjecture [4] can be reduced to 3-connected graphs.

We want to design efficient algorithms from inductively defined constructions of
graph classes. For a given graph class C, such constructions start with a set of base
graphs and apply iteratively operations from a finite set of operations such that pre-
cisely the members of C are constructed. This does not only give a computational
approach to test graphs on membership in C, it can also be exploited to prove prop-
erties of C using just arguments on the base graphs and the finitely many operations.
Graph theory provides inductively defined constructions for many graph classes, in-
cluding planar graphs, triangulations, k-connected graphs for k ≤ 4, regular graphs
and various intersections of these classes [6, 7, 36]. Most of these constructions have
not been exploited computationally, although this might give new algorithms for the
corresponding recognition problems.

For an inductively defined construction of C and a graph G ∈ C, we call the
sequence of operations that is applied to a specified base graph to construct G a
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construction sequence of G. We will also identify a construction sequence with the
sequence of graphs it constructs, provided that this determines the construction
sequence uniquely. Sometimes, it is more convenient to describe a construction
sequence by giving the inverse operations from G to a specified base graph; in such
cases we refer to top-down variants of construction sequences, as opposed to bottom-
up variants.

For the class of 3-connected graphs, one of the most noted constructions is due
to Tutte [76], based on the following fact: Every 3-connected graph G on more
than 4 vertices contains a contractible edge, i. e., an edge that preserves the graph
to be 3-connected upon contraction. Iteratively contracting such an edge yields a
top-down construction sequence from G to a K4-multigraph (i. e., a K4 with pos-
sible additional parallel edges and self-loops), in which all intermediate graphs are
3-connected. Unfortunately, also non-3-connected graphs can contain contractible
edges, but adding a side condition establishes a full characterization: A graph G on
more than 4 vertices is 3-connected if and only if there is a construction sequence
from G to a K4-multigraph that uses only contractions on edges with both end ver-
tices having at least 3 neighbors (see Section 3.1.1 or [17, 57]); we will call this a
sequence of contractions.

It is also possible to describe the construction sequence bottom-up by using the
inverse operations edge addition and vertex splitting; in fact, this is the original form
as stated in Tutte’s famous wheel theorem [76].

Barnette and Grünbaum [5] and Tutte (implicitly shown in Theorems 12.64
and 12.65 of [77]) give a different construction of 3-connected graphs that is based
on the following argument: Every 3-connected graph G on more than 4 vertices
contains a removable edge. Removing this edge leads, similar as in the sequence of
contractions, to a top-down construction sequence from G to K4. We will define
removals and removable edges and show how to add a side condition to fully charac-
terize 3-connected graphs in Section 3.2.2. Again, the original proposed construction
is given bottom-up from K4 to G, using three operations.

Although both existence theorems on contractible and removable edges are used
frequently in graph theory [68, 69, 77], the first non-trivial computational result to
create the corresponding construction sequences was published more than 45 years
afterwards: In 2006, Albroscheit [1] gave an algorithm that computes a construction
sequence for 3-connected graphs in O(|V |2). However, in this algorithm, contractions
and removals are allowed to intermix.

In 2010, two algorithms of the same running time O(|V |2) were given [48, 57] that
both compute a sequence of contractions. The latter is part of this thesis and is given
in Section 3.5. This algorithm can additionally compute a construction sequence
that uses only removals in O(|V |2). One of its building blocks is a straight-forward
transformation from the sequence of removals to the sequence of contractions in time
O(|E|) (see Section 3.2.3). It is important to note that all mentioned algorithms do
not rely on the 3-connectivity test of Hopcroft and Tarjan [34], which runs in linear
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time but is rather involved. Until now, we are not aware of any algorithm that
computes any of these sequences in subquadratic time.

We will show in Chapter 4 how to improve the quadratic-time algorithm to linear
time. One of the main contributions is therefore an optimal algorithm that computes
the construction sequence of Barnette and Grünbaum bottom-up in time and space
O(|E|). The key idea is based on a careful classification and grouping of the paths
of a simple decomposition such that these groups of paths can be decomposed later
into the desired operations for Barnette’s and Grünbaum’s construction. This has a
number of consequences.

Top-down and bottom-up variants of both constructions. One can imme-
diately obtain the sequence of removals from Barnette’s and Grünbaum’s bottom-up
construction sequence by replacing every operation with its inverse removal oper-
ation. Applying the transformation of Section 3.2.3 will imply optimal time and
space algorithms for the sequence of contractions, its bottom-up variant and related
sequences as well.

Certifying 3-connectivity in linear time. Blum and Kannan [9] initiated the
concept of programs that check their work. Mehlhorn and Näher [39, 46, 47] (see [44]
for an extensive survey) introduced the concept of certifying algorithms, which give
an easy-to-verify certificate of correctness along with their output. Achieving certi-
fying algorithms is a major goal for problems where the fastest solutions known are
complicated and difficult to implement. Testing a graph on 3-connectivity is such
a problem, but surprisingly few work has been devoted to certify 3-connectivity, al-
though sophisticated linear-time recognition algorithms (not giving an easy-to-verify
certificate) are known for over 35 years [34, 79, 80].

The currently fastest algorithms that certify 3-connectivity need O(|V |2) time
and use construction sequences as certificates [1, 48, 57] (see Section 3.5 for the
latter algorithm). Recently, based on the results in Chapter 5 of this thesis, a
linear time certifying algorithm for 3-connectivity has been given for the subclass of
Hamiltonian graphs, when a Hamiltonian cycle is given as part of the input [17]. In
general, finding a certifying algorithm for 3-connectivity in subquadratic time is an
open problem [44, Chapter 5.4, p. 26] [17].

We solve this problem by giving a linear-time certifying algorithm for 3-connectivity
that uses Barnette’s and Grünbaum’s construction sequence as certificate. The cer-
tificate can be easily verified in time O(|E|), as shown in Section 3.6.2. This implies
a new, path-based and certifying test on 3-connectivity in linear time and space,
which is simple-to-implement and uses two passes over the graph (the first one being
a depth-first search).

In contrast to the non-certifying algorithms in [34, 79, 80], the test does nei-
ther assume the graph to be 2-connected nor needs to compute low-points (see [34]
for a definition of low-points); instead, it uses the structure of 3-connected graphs
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implicitly by applying simple path-generating rules. We also give a linear-time de-
composition of graphs that is closely related to ear decompositions [42, 83] in Sec-
tion 4.1, which unifies existing tests on 2-connectivity [11, 16, 18, 19, 21, 64, 66] and
2-edge-connectivity [65, 71, 74].

Certifying 3-edge-connectivity in linear time. We are not aware of any test
for 3-edge-connectivity that is certifying and runs in linear time, although many
non-certifying linear-time algorithms for this problem are known [22, 52, 63, 72, 73].
The first (non-certifying) one due to Galil and Italiano [22] uses the fact that testing
a graph G on k-edge-connectivity can be reduced to test k-vertex-connectivity on
a slightly modified graph. Based on this reduction, we give a linear-time test on
3-edge-connectivity that is certifying (see Section 3.6.3).

We additionally strengthen Tutte’s result that every 3-connected graph G on
more than 4 vertices contains a contractible edge; Chapter 5 shows that every depth-
first search tree of G contains a contractible edge. Generalizing this statement to
spanning trees instead of depth-first search trees is not possible, as counterexamples
show. However, we prove that if G is 3-regular or does not contain two disjoint pairs
of adjacent degree-3 vertices, every spanning tree of G contains a contractible edge.

Preliminaries for this thesis are given in Chapter 2. We recapitulate old and
develop new results about construction sequences in Chapter 3, including a com-
putational approach in O(n2) time. In addition, easy-to-verify certificates are dis-
cussed. Using these results, Chapter 4 describes a linear-time certifying algorithm for
3-connectivity, which yields also linear-time certifying algorithms for 2-connectivity
and k-edge-connectivity with k ≤ 3. Chapter 5 gives structural results about con-
tractible edges in spanning trees of 3-connected graphs.



Chapter 2

Preliminaries

A graph G is an ordered pair (V (G), E(G)) that consists of a set V (G) of vertices
and a set E(G) of edges that is disjoint from V (G), together with a mapping that
maps each edge to a pair of not necessarily distinct vertices. Let a graph G be finite
if both V (G) and E(G) are finite. A graph G is directed if every edge is mapped
to an ordered vertex pair and undirected if every edge is mapped to an unordered
vertex pair. We consider only graphs that are finite and undirected.

For a graph G, we denote the number of its vertices by n = |V (G)| and the
number of its edges by m = |E(G)|. For an edge e, the elements of the vertex pair
to which e is mapped are the end vertices of e. For convenience, we denote an edge
with end vertices v and w by vw. Let an edge e = vw in a graph G be a self-loop
if v = w and let e be parallel if e is no self-loop and G contains an edge with end
vertices v and w different from e. A graph is simple if it contains neither a self-loop
nor a parallel edge. The underlying simple graph of a graph G is the graph generated
from G by deleting all self-loops and replacing, for every two vertices v and w, the
set A of all edges vw in G by the edge vw if A 6= ∅.

Two graphs G and H are isomorphic if there are bijections φ : V (G)→ V (H) and
θ : E(G)→ E(H) such that e = vw is an edge in G if and only if θ(e) = φ(v)φ(w) is
an edge in H. Note that, for simple graphs, the bijection θ is completely determined
by φ and can therefore be omitted in the definition. Unless stated otherwise, we will
not distinguish between two isomorphic graphs G and H, i. e., we will write G = H

in these cases.
Two vertices v and w in a graph G are adjacent vertices (or, equivalently, neigh-

bors) if G contains an edge vw. A vertex v is incident to an edge e if v is an end
vertex of e. A graph G is complete if every two distinct vertices in G are adjacent.
Let a Kn-multigraph be a complete graph on n vertices and let Kn be the com-
plete simple graph on n vertices. The graph K0 is also called the empty graph, as it
does not contain any vertex and, thus, does not contain any edge. Let Km

2 be the
K2-multigraph that contains exactly m parallel edges and no self-loop.

Let the degree of a vertex v in a graph G, denoted by deg(v), be the number of
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edges that are incident with v, each self-loop counting as two edges. For a vertex v
in a graph G, let N(v) = {w | vw ∈ E(G)} denote its set of neighbors in G. Note
that in simple graphs deg(v) = |N(v)| for every vertex v. For a graph G 6= K0, let
δ(G) be the minimum degree of all vertices in G; for the empty graph K0, we define
δ(K0) = 0. A graph G is k-regular if every vertex in G has degree k. Graphs that
are 3-regular are also called cubic.

For a graph G, a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a
subgraph of G, denoted by H ⊆ G. Note that V (H) is not an arbitrary subset of
V (G), since defining H as graph implies that V (H) contains the end vertices of every
edge in E(H). For H ⊆ G, we also say that G contains H. If H ⊆ G and H 6= G, H
is called a proper subgraph, denoted by H ⊂ G. For a given graph class C, a graph
G ∈ C is minimal (respectively, maximal) with respect to some property if C does
not contain another graph H with that property such that H ⊂ G (respectively,
G ⊂ H). A subgraph H of a graph G is spanning if V (H) = V (G). A decomposition
of a graph G is a set of subgraphs of G whose edge-sets partition E(G).

(a) K3
2 , the unique

graph (up to isomor-
phisms) on two ver-
tices with three parallel
edges and no self-loop.

f
e

b

d

ca

(b) A K4-multigraph
G with n = 4, m = 9,
two self-loops, two par-
allel edges, deg(a) =
8, N(a) = V (G) and
δ(G) = 3. As G

is complete, G has no
vertex cut; it however
has edge-cuts, e. g.,
{ca, cb, cd}.

y

x

r

v

(c) A tree T with root
r and a child x of
r. T (x) is the sub-
tree of T that con-
sists of black vertices.
A traversal of the
(unique) path x →T y

visits the vertices x, r,
v and y in that order.

Figure 2.1: Three undirected and connected graphs.

We define fundamental operations on graphs. Let G = (V,E) and G′ = (V ′, E′)
be two graphs. Whenever two or more graphs are mentioned, we follow the conven-
tion that the union of all vertex sets and the union of all edge sets is disjoint, i. e.,
in this case (V ∪ V ′) ∩ (E ∪ E′) = ∅. This ensures in particular that the follow-
ing union-operation generates a graph. We define G ∪ G′ = (V ∪ V ′, E ∪ E′) and
G ∩G′ = (V ∩ V ′, E ∩ E′).

For any edge e and a graph G, deleting e is the operation of subtracting e from
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E(G). Conversely, adding e adds e to E(G). For any vertex v and a graph G,
deleting v is the operation of deleting every edge in G that is incident to v followed
by subtracting v from V (G); adding v adds v to V (G). Note that deleting a vertex
without deleting its incident edges does not always yield a graph. For a graph G and
any set X of either vertices or edges, let G \X denote the graph that is generated
from G by deleting all elements of X in G. If X consists of just one element x, we
also write G \ x instead of G \ {x}. Identifying two vertices x and y in a graph G
deletes y and adds for every edge yz that was incident to y in G an edge xz if y 6= z

and an edge xx, otherwise.
A path P is a graph with vertex set V (P ) = {v0, v1 . . . , vk} and the edge set

E(P ) = {v0v1, v1v2, . . . , vk−1vk} such that k ≥ 0 (the edge set is empty if k = 0).
Let a vertex vi in P be an end vertex of P if vi ∈ {v0, vk} and an inner vertex
of P otherwise. Although a path is an undirected graph, we will often impose a
direction on it, e. g., in order to state the direction in which the path is traversed in
an algorithm. Let v →G w denote a path from vertex v to vertex w that is contained
in a graph G and let s(P ) = v and t(P ) = w be the source vertex and the target
vertex of P , respectively. Two or more paths are vertex-disjoint if their vertex sets
are pairwise disjoint. Two or more paths are internally vertex-disjoint if none of
them contains an inner vertex of another.

A graph G is connected if there is a path between every two vertices in G and
disconnected otherwise. The connected components of a graph G are its maximal
connected subgraphs. Note that a graph has more than one connected component
if and only if it is disconnected. A cycle is a simple 2-regular connected graph. The
length of paths and cycles is the number of edges they consist of. A cycle that is a
spanning subgraph of a graph G is called a Hamiltonian cycle of G.

A cycle with an additional vertex v that is adjacent to all cycle vertices is called
a wheel graph; the edges incident to v are called spokes. Let Wn be the wheel graph
on n vertices, i. e., the wheel graph with n − 1 spokes. A graph is acyclic if it does
not contain a cycle. A simple acyclic graph is a forest. A connected forest is called
a tree. Let a subtree of a tree T be a connected subgraph of T . Note that a subtree
is again a tree. A tree T is rooted if n = 0 or one vertex of T is specified as the root.

For two not necessarily distinct vertices v and w in a tree T that is rooted at r, let
v be an ancestor of w and w be a descendant of v if v ∈ V (w →T r). If additionally
v 6= w holds, v is called a proper ancestor and w is called a proper descendant. For
two vertices v and w in a rooted tree T , let v be the parent of w and w be a child
of v if v is an ancestor of w and the length of v →T w is one. A vertex in a rooted
tree that has no child is called leaf .

Let T be a tree with root r, let v be a vertex in T different from r and let A be
the connected component of T \ v that contains r. We define T (v) = T \ V (A), i. e.,
T (v) is the maximal rooted subtree of T with root v. Let F be a forest that consists
of rooted trees. Let a strict total order ≺ on V (F ) be a pre-order if, for every vertex
v ∈ V (F ), all proper ancestors of v in F precede v in ≺.
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A vertex cut in a graph G is a subset X of V (G) such that G\X is disconnected.
Similarly, an edge cut in a graph G is a subset X of E(G) such that G \ X is
disconnected. Vertex cuts of size one, two and three are called cut vertices, separation
pairs and separation triples, respectively. Edge cuts of size one are called bridges.
Note that ∅ is a vertex and edge cut in a graph if and only if the graph is disconnected.
The complete graphs are the only graphs that do not have vertex cuts, whereas the
complete graphs with n ≤ 1 (i. e., K0 and the K1-multigraphs) are the only graphs
that do not have edge cuts.

2.1 Notions of Vertex-Connectivity

The notion of k-connectivity (sometimes referred to as k-vertex-connectivity, k-
connectedness or k-tuply-connectivity) is used inconsistently in literature, in partic-
ular for complete graphs and for small graphs. For three representative definitions
that are not equivalent, but well-established, see the excellent text books of Bondy
and Murty [10, p. 207], Diestel [15, p. 11] and Tutte [78, p. 70]. We first give a short
comparison of these definitions and then state which one we will use.

The definition of k-connectivity in [10] is based on internally vertex-disjoint paths,
whereas the one in [15] is based on the existence of special vertex cuts, as introduced
by Whitney [82]. For a graph G, the given definitions differ if and only if n < 2
or G is a complete graph that contains at least two parallel edges vw for every two
vertices v and w. The reason is that, besides different conventions for small graphs,
additional parallel edges can increase the number of internally vertex-disjoint paths
between each two vertices for complete graphs. Although this leads to a higher
vertex-connectivity of some complete graphs for the definition of [10], the vertex
cuts of G are preserved (there is none). If desired, both definitions can be made
equivalent for general graphs by considering complete graphs separately. For simple
graphs on at least two vertices, both definitions are equivalent.

The definition of k-connectivity due to Tutte [78] is conceptually different from
the first two, as it is motivated by its generalization to matroids and the attempt to
remain invariant under taking dual graphs (see also [56, pp. 271]). It characterizes
k-connectivity not only by the size of vertex cuts but also by the number of edges
in each of the two disjoint subgraphs induced by such vertex cuts. This leads to a
considerably different characterization of k-connectivity in general. Contrary to the
first two definitions, deleting edges can increase the vertex-connectivity of a graph.
However, for simple connected graphs with n > 2 and k ∈ {2, 3}, all three definitions
of k-connectivity are equivalent [78, Theorem IV.10, p. 74].

Choosing the right definition is dependent on the application. If complete graphs
occur and parallel edges should make a difference in vertex-connectivity, the defini-
tion based on internally vertex-disjoint paths may be used. If only simple graphs are
considered or the vertex-connectivity should be independent on parallel edges and
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self-loops, the definition based on vertex cuts may be used. Finally, if a generaliza-
tion to matroids is important or the vertex-connectivity should be invariant under
taking dual graphs, the definition in [78, p. 70] is appropriate.

We use the definition that is based on vertex cuts, as, for our purposes, vertex-
connectivity should be independent from self-loops and parallel edges. This is no
limitation; we can adapt all algorithms and theorems given in this thesis to the
other definitions as follows. The above comparison lists the graphs for which the
given definitions of k-connectivity may differ for k ≤ 3 (we do not deal with higher
vertex-connectivity). These graphs are the non-simple graphs and the complete
graphs. Both can be detected along with their edge multiplicities in time O(n+m)
by applying two bucket sorts on the end vertices of edges in E(G). For each definition,
the k-connectivity of such graphs for k ≤ 3 is only dependent on the multiplicity of
parallel edges and self-loops. This preserves the (at least linear) asymptotic running
time of all algorithms in this thesis when a different definition of k-connectivity is
used.

(a) A graph G with
κ(G) = 2, as G con-
tains no cut vertex but
the separation pair de-
picted with black ver-
tices. Moreover, κ′(G) =
δ(G) = 3.

(b) A vertex cut in G

of size n − 2 that con-
tains the separation pair
of Figure (a).

(c) A graph H with κ(H) =
2, κ′(H) = 3 (as the red
edge cut is of minimal size
3) and δ(H) = 4.

Figure 2.2: Examples of graphs that are not 3-connected.

We define every graph to be 0-connected and 0-edge-connected. For k ≥ 1, let a
graph G be k-connected if n > k and there is no vertex cut X in G with |X| < k.
A graph is therefore 1-connected if and only if it is connected and n > 1. Note that
k-connectivity does neither depend on parallel edges nor on self-loops. Complete
graphs have no vertex cuts and so their vertex-connectivity is only limited by the
side condition k < n, implying that they are (n−1)-connected, but not n-connected.
The side condition k < n allows also to replace the condition |X| < k by |X| = k−1 in
the definition of vertex-connectivity, as every vertex cut X of size |X| ≤ k−2 < n−2
can be augmented to contain n− 2 vertices (see Figure 2.2(b)).

Let the connectivity κ(G) of a graph G be the largest integer k for which G

is k-connected. Thus, for n ≥ 1, κ(G) = n − 1 if and only if G is a non-empty
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Kn-multigraph and κ(G) = 0 if and only if n ≤ 1 or G is disconnected.
For k ≥ 1, let a graph G be k-edge-connected if n > 1 and there is no edge

cut X in G with |X| < k. Let the edge-connectivity κ′(G) of a graph G be the
largest integer k for which G is k-edge-connected. The following fundamental lemma
links the connectivity, edge-connectivity and minimum degree of every graph (see also
Harary [31] for a proof in modern graph theory notation).

Lemma 1 (Whitney [82]). For every graph G holds κ(G) ≤ κ′(G) ≤ δ(G).

Lemma 1 implies that every k-connected graph is k-edge-connected and has min-
imum degree k. Note that K1 does not contain an edge and therefore must have con-
nectivity and edge-connectivity 0. This is the motivation for definingK1-multigraphs
as 0-connected and 0-edge-connected, although they are connected.

The following theorem characterizes vertex-connectivity in terms of internally
vertex-disjoint paths and is usually ascribed to Menger. Many different variants
exist [58]. We state a variant for (global) vertex-connectivity in undirected graphs
due to Whitney.

Theorem 2 (Menger [49], in the variant of Whitney [82]). A graph G is k-connected
for k ≥ 1 if and only if n > k and G contains at least k internally vertex-disjoint
paths between every two vertices.

The following three results are well-known corollaries of Theorem 2 and will be
used throughout this thesis.

Lemma 3 (Fan Lemma [10, Proposition 9.5]). Let v be a vertex in a graph G that is
k-connected and let A be a set of at least k vertices in G with v /∈ A. Then there are
k internally vertex-disjoint paths P1, . . . , Pk from v to distinct vertices a1, . . . , ak ∈ A
such that V (Pi) ∩A = ai for each 1 ≤ i ≤ k.

Lemma 4 ([10, Proposition 9.5]). Let A and B be two sets of at least k vertices in
a k-connected graph G. Then there are k vertex-disjoint paths P1, . . . , Pk in G with
s(Pi) ∈ A and t(Pi) ∈ B for each 1 ≤ i ≤ k.

Lemma 5 (Expansion Lemma, Lemma 4.2.3 in [81]). Let G be a k-connected graph.
Then the graph that is generated from G by adding a new vertex v and adding edges
such that v is adjacent to at least k vertices in V (G) is k-connected.



Chapter 3

Construction Sequences

...you first have to divide the
graph into pieces.

Robert E. Tarjan [20]

We recapitulate old and develop new results about construction sequences. We
show how these results can be used to compute the sequence of contractions and
the sequence of removals in quadratic time. Based on these sequences, certificates
for the 3-connectivity and 3-edge-connectivity of graphs are given that can be easily
verified.

3.1 Tutte’s Construction Sequence

The operation of contracting an edge e = xy, x 6= y, in a graph deletes e and identifies
(merges) x and y. Let an edge e = xy, x 6= y, in a graph be contractible if contracting
e generates a 3-connected graph (see Figure 3.1). Note that contractions in a graph
G can generate parallel edges and self-loops, even if G is simple.

Figure 3.1: A graph that contains exactly two contractible edges, which are depicted
in red.

The operation of vertex splitting in a graph G replaces a vertex v ∈ V (G) of
degree at least 4 (not counting self-loops) by two vertices x and y, inserts the edge
xy and replaces every former edge uv in G, u 6= v, with either the edge ux or uy
such that |N(x)| ≥ 3 and |N(y)| ≥ 3 in the new graph (not counting self-loops). In
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addition, every self-loop in G that is incident to v is replaced by either the parallel
edge xy or one of the self-loops xx and yy. As proven by Tutte, vertex splittings
preserve 3-connectivity.

Lemma 6 (Tutte [76]). Applying a vertex splitting on a 3-connected graph generates
a 3-connected graph.

It is easy to see that every vertex splitting can be inversed by contracting the
edge xy between the two new vertices x and y.

Lemma 7. Every vertex splitting on a 3-connected graph G can be inversed by con-
tracting a contractible edge.

Every wheel graph is 3-connected. In particular, K4 = W4 is the unique smallest
3-connected graph (with respect to the number of edges). A variant of the famous
Wheel Theorem of Tutte [76] uses wheel graphs to give the following characterization
of simple 3-connected graphs.

Theorem 8 (Tutte [76], [26, Theorem 7.19, p. 152]). A simple graph is 3-connected if
and only if it can be generated from a wheel graph by repeatedly adding edges between
non-adjacent vertices and applying vertex splittings.

We can easily extend Theorem 8 to deal with non-simple graphs G by allowing
to add parallel edges and self-loops. Moreover, at the expense of using parallel edges
in intermediate graphs, every wheel graph on more than 4 vertices can be generated
from aK4-multigraph by vertex splittings. This allows us to restrict the construction
sequence of Theorem 8 (in the variant allowing parallel edges and self-loops) to use
only one operation, namely vertex splitting, by takingK4-multigraphs as base graphs
instead of wheel graphs.

All edge-additions of the former construction sequence can be replaced by ap-
propriate parallel edges and self-loops in the K4-multigraph (see Figure 3.2 for an
example how these edges can be constructed). We obtain the following theorem.

Theorem 9. (Corollary of Theorem 8) A graph G is 3-connected if and only if there
is a construction sequence from a K4-multigraph to G using vertex splittings.

Theorem 9 implies in particular the following classic result due to Tutte when
combined with Lemma 7.

Corollary 10 (Tutte [76]). Every 3-connected graph on more than 4 vertices con-
tains a contractible edge.

3.1.1 Contractions

According to Lemma 7, every vertex splitting on a 3-connected graph can be in-
versed by contracting a contractible edge. The converse is not true in general, as
Figure 3.3 exemplifies. We show in which cases the inverse operation of contracting
a contractible edge is a vertex splitting.
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(a) A 3-connected graph G con-
taining a red contractible edge.

(b) Contracting the red con-
tractible edge in (b) generates
a non-simple but 3-connected
graph.

(c) The result of con-
tracting the red con-
tractible edge in Fig-
ure (b).

(d) The K4-multigraph
after contracting the red
contractible edge in Fig-
ure (c).

Figure 3.2: Contractions and vertex splittings. Figures (a)–(d) depict a sequence of
contractions from a 3-connected graph G to a K4-multigraph on contractible edges
whose end vertices have both at least 3 neighbors. Each contraction can be inversed
by a vertex splitting.

Lemma 11. The inverse operation O of contracting a contractible edge e = xy in a
graph G is a vertex splitting if and only if |N(x)| ≥ 3 and |N(y)| ≥ 3 (not counting
self-loops).

Proof. Let G′ be the 3-connected graph that is generated from G by contracting e
and let v be the vertex in G′ to which e is contracted. If O is a vertex splitting, G
is 3-connected with Lemma 6 and |N(x)| ≥ 3 and |N(y)| ≥ 3 follows.

If O is not a vertex splitting, assume to the contrary that |N(x)| ≥ 3 and |N(y)| ≥
3 in G (we do not count self-loops for degrees and neighbors in this proof). Then,
according to the definition of vertex splittings, deg(v) < 4 must hold, as otherwise
O would be a vertex splitting. Since G′ is 3-connected, v has at least 3 neighbors in
G′, which implies deg(v) = 3. However, due to the contraction operation, the degree
of v is the number of the edges in G that are incident to exactly one of x and y.
Because of |N(x)| ≥ 3 and |N(y)| ≥ 3, there are at least 4 such edges in G, which
contradicts deg(v) = 3.

Combining Lemma 11 with Lemma 7 and Theorem 9 gives the following result.
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x

y

Figure 3.3: The edge xy in this graph G is contractible, since contracting xy results
in a wheel graph with an additional parallel edge. However, the inverse operation of
contracting xy is not a vertex splitting, because |N(y)| = 2 in G.

Theorem 12 (see also [17, 57]). A graph G is 3-connected if and only if there is
a sequence of contractions from G to a K4-multigraph on contractible edges e = xy

with |N(x)| ≥ 3 and |N(y)| ≥ 3.

For 3-connected graphs, we call the sequences of Theorems 9 and 12 Tutte’s con-
struction sequence in the bottom-up variant and the top-down variant, respectively.
The top-down variant is also called a sequence of contractions. We remark that both
construction sequences can be transformed efficiently to each other (in linear time
for suitable representations of the construction sequences) by simply replacing vertex
splittings with contractions and vice versa.

We show that the equivalence of Theorem 12 still holds when the condition that
contracted edges have to be contractible is omitted.

Theorem 13. A graph G is 3-connected if and only if there is a sequence of contrac-
tions from G to a K4-multigraph on edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3.

Proof. If G is 3-connected, the claimed construction sequence exists due to Theo-
rem 12.

Otherwise, let Q be a sequence of contractions from G to a K4-multigraph on
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3. Assume to the contrary that G is not
3-connected. Then, as every K4-multigraph is 3-connected, there is a contraction in
Q that is applied on a non-3-connected graphGi+1 and generates a 3-connected graph
Gi. Let e = xy be the edge in Gi+1 that is contracted by Q. Then e is contractible
and satisfies |N(x)| ≥ 3 and |N(y)| ≥ 3 in Gi+1. According to Lemma 11, the inverse
operation of contracting e is a vertex splitting. This implies with Lemma 6 that Gi+1
is 3-connected, which contradicts the choice of Gi+1.

3.1.2 Computation in Quadratic Time

We describe next a straight-forward O(n2) algorithm that computes a sequence of
contractions for an input graph G in the case when G is 3-connected. The algo-
rithm uses the linear-time test on 3-connectivity of Hopcroft and Tarjan [34]; for a
quadratic-time algorithm that does not use this test see [48]. We can assume that
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G contains more than 4 vertices, as otherwise |V (G)| = 4 holds and the sequence is
empty. We first decrease the number of edges in G to O(n) by applying the following
algorithm due to Nagamochi and Ibaraki.

Theorem 14 (Nagamochi and Ibaraki [53]). Let G be a connected graph and k ∈ N.
Then there is an O(m) time algorithm that computes a spanning subgraph of G with
at most k(n−1) edges such that this spanning subgraph is k-connected (resp. k-edge-
connected) if and only if G is k-connected (resp. k-edge-connected). Moreover, if G
is k-connected (resp. k-edge-connected), the spanning subgraph contains a vertex of
degree k.

Applying this algorithm on a graph G preserves it to be 3-connected, or respec-
tively, to be not 3-connected. If the input graph is 3-connected, the resulting graph
contains a vertex of degree 3. By a result of Halin [30], every vertex v of degree 3 in
a 3-connected graph on more than 4 vertices is incident to a contractible edge e.

We can compute e in time O(n) by contracting each of the three edges that are
incident to v and testing each generated graph with the algorithm of Hopcroft and
Tarjan on 3-connectivity. After contracting e, repeatedly applying both steps in time
O(n), the one of Nagamochi-Ibaraki and the contracting step, generates the whole
sequence of contractions in O(n2) time. Note that edges may be omitted in every
step due to the algorithm of Nagamochi and Ibaraki. By applying the sequence of
contractions to G, these edges will result in additional parallel edges and self-loops
in the K4-multigraph. This shows that also the generated K4-multigraph can be
computed in time O(m) if needed.

We will give a more general approach for computing this and several other con-
struction sequences in Section 3.5.

3.2 Barnette’s and Grünbaum’s Construction Sequence

A subdivision of a graph G is a graph that is generated from G by replacing each edge
in E(G) by a path of length at least one. Conversely, we want a notation to get back
to the graph without subdivided edges. Let smoothing a vertex v in a graph G be the
operation that, if deg(v) = 2 and |N(v)| = 2 (both not counting self-loops), deletes
v followed by adding an edge between its neighbors. For a graph G, let smooth(G)
be the graph that is generated from G by smoothing every vertex.

We define the operations of Barnette and Grünbaum.

Definition 15. An operation on a graph is called a Barnette-Grünbaum-operation
(BG-operation) if it is one of the following three operations (see Figures 3.4(a)–(c)).

(a) add an edge xy with x 6= y (possibly a parallel edge)

(b) subdivide an edge ab that is not a self-loop by a vertex x and add the edge xy
for a vertex y /∈ {a, b}
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(c) for two distinct and non-parallel edges e and f that are not self-loops, subdivide
e by the vertex x, subdivide f by the vertex y and add the edge xy

In all three cases, let xy be the edge that was added by the BG-operation.

x

y

x

y

(a) The added edge xy
may be a parallel edge.

a b a b

y y

x

(b) The vertices y, a and b are pairwise
distinct.

e
a

f
v

b

w

a

v

b

w

x

y

(c) The edges e and f are neither iden-
tical nor parallel. However, they may
have one common end vertex.

Figure 3.4: The three BG-operations.

BG-operations do not only preserve 3-connectivity when applied to a 3-connected
graph, they also lead to a complete characterization of the class of 3-connected
graphs. The following classical results were proven in this notation by Barnette and
Grünbaum [5], but also described implicitly in theorems of Tutte about nodal con-
nectivity [77, Theorems 12.64 and 12.65] and constructions of 3-connected graphs [78,
Theorems IV.14 – IV.18].

Lemma 16 (Barnette and Grünbaum [5], Theorems IV.14 – IV.18 in Tutte [78]).
Applying a BG-operation on a 3-connected graph generates a 3-connected graph.

Theorem 17 (Barnette and Grünbaum [5], Theorems 12.64 and 12.65 in Tutte [77]).
A graph G without self-loops is 3-connected if and only if G can be constructed from
K4 using BG-operations.

For 3-connected graphs without self-loops, we call the sequence of Theorem 17
Barnette’s and Grünbaum’s construction sequence (in the bottom-up variant) or
a construction sequence using BG-operations. As an immediate consequence of
Lemma 16, all intermediate graphs in a construction sequence using BG-operations
are 3-connected.

Let a k-connected graph G be minimally k-connected if the deletion of every edge
in G generates a graph that is not k-connected. Theorem 17 implies that the last
BG-operation to construct a minimally 3-connected graph is either operation 15b
or 15c. This gives the following corollary, which is also a corollary of Halin’s work
in [29].
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Corollary 18 (Halin [29]). Every minimally 3-connected graph contains a vertex of
degree 3.

3.2.1 Basic Sequences

Let an operation that is applied on a graph be basic if it creates neither a new
parallel edge nor a new self-loop. Let a construction sequence be basic if it uses only
basic operations. Of course, we cannot expect all BG-operations in Barnette’s and
Grünbaum’s construction sequence to be basic when G itself contains parallel edges.
However, for simple graphs G, the proof of Theorem 17, as given in [5], implicitly
shows that basic BG-operations suffice.

Theorem 19 (Barnette and Grünbaum [5]). A simple graph G is 3-connected if and
only if G can be constructed from K4 using basic BG-operations.

For simple graphs on more than 4 vertices, Theorem 19 is in sharp contrast to
Tutte’s construction sequence, as vertex splittings need parallel edges in intermediate
graphs, whereas BG-operations do not (see Figure 3.5).

(a) K4 = W4 (b) W5 (c) W6

Figure 3.5: Constructing wheel graphs from K4 using basic BG-operations. The
edges and vertices that are added by BG-operations are depicted in red.

In general, construction sequences using BG-operations are not bound to start
with K4. Titov and Kelmans [38, 70] extended Theorem 19 by proving the existence
of a basic construction sequence even when starting with an arbitrary 3-connected
graph G0 instead of K4, as long as a subdivision of G0 is contained in G (this is a
more general statement, as every 3-connected graph contains a subdivision of K4;
we will prove this in Section 3.3).

Theorem 20 (Kelmans [38], Titov [70]). Let G0 be a 3-connected graph. A simple
graph G is 3-connected and contains a subdivision of G0 if and only if G can be
constructed from G0 using basic BG-operations.

3.2.2 Removals

We characterized Tutte’s construction sequence by using certain contractions instead
of vertex splittings, as those were exactly the inverse operations of vertex splittings
(see Theorem 12). Analogously, we want the inverse counterpart of a BG-operation
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on a 3-connected graph. Let removing an edge e = xy, x 6= y, in a graph be the
operation that deletes e followed by smoothing x and y. An edge e = xy, x 6= y,
in a graph G is called removable if removing e generates a 3-connected graph. It
is easy to see that BG-operations on 3-connected graphs can always be inversed by
removing a removable edge.

Lemma 21. Every BG-operation on a 3-connected graph G can be inversed by re-
moving a removable edge.

Proof. Let e = xy be the edge that is added by the BG-operation on G and let G′
be the graph that is generated by applying it. At most two new vertices, namely x
and y, are created by the BG-operation, each of which has degree 3 in G′. Therefore,
the removal of e will inverse the BG-operation by smoothing x and y after deleting
e. Clearly, e is removable, as G is 3-connected.

Lemma 21 and Theorem 17 imply the following classic result.

Corollary 22 (Barnette and Grünbaum [5], Tutte [77]). Every 3-connected graph
on more than 6 edges (not counting self-loops) contains a removable edge.

The converse of Lemma 21 is not true in general, even if every vertex has at least
3 neighbors, as Figure 3.6 shows.

x y

Figure 3.6: The edge xy is removable, since removing xy results in the 3-connected
graph K4. However, the inverse operation of removing xy is not a BG-operation,
because it subdivides two parallel edges, inducing the black separation pair.

We show under which conditions the inverse operation of removing a removable
edge is a BG-operation.

Lemma 23. The inverse operation O of removing a removable edge e = xy in a
graph G is a BG-operation if and only if |V (G)| = 4 or |N(x)| ≥ 3, |N(y)| ≥ 3 and
|N(x)∪N(y)| ≥ 5 (not counting self-loops). If G is simple, the condition |V (G)| = 4
is not needed.

Proof. Let G′ be the 3-connected graph that is generated from G by removing e.
Assume first that O is a BG-operation and assume further that |V (G)| > 4. With
Lemma 16, G is 3-connected, which implies |N(x)| ≥ 3 and |N(y)| ≥ 3 in G. It
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e

x y

(a) A graph with
|N(x)| = 2 and a black
separation pair. Only the
vertex x is deleted when
removing e.

e

yx

(b) A graph with |N(x)| =
|N(y)| = 2, |N(x) ∪ N(y)| < 5
and a black separation pair. Both
vertices x and y are deleted when
removing e.

f
2 f2

e

f
1f1

y

x

(c) A graph with |N(x) ∪
N(y)| < 5 and a black sep-
aration pair. Two parallel
edges f1 and f2 are gener-
ated when removing e.

Figure 3.7: Cases in which removing a removable edge e is not a BG-operation.

remains to show that |N(x) ∪ |N(y)| ≥ 5 (we do not count self-loops for neighbors
in this proof). Assume the contrary. Then |N(x)| = |N(y)| = 3, as |N(x)| ≥ 4 or
|N(y)| ≥ 4 would imply |N(x) ∪ |N(y)| ≥ 5, as x and y are adjacent. For the same
reason, |N(x) ∩ N(y)| = 2. Since |V (G)| > 4, a vertex in N(x) ∩ N(y) must be
adjacent to a vertex that is neither adjacent to x nor to y. Then N(x) ∩ N(y) is
a separation pair, which contradicts the 3-connectivity of G. This proves |N(x) ∪
|N(y)| ≥ 5 in G.

Assume that O is not a BG-operation. It suffices to show that |V (G)| 6= 4 and
that |N(x)| < 3, |N(y)| < 3 or |N(x)∪N(y)| < 5. We distinguish cases by the number
of end vertices of e that are deleted in the process of removing e. This number must
be either 0, 1 or 2. It cannot be 0, as in that case the removal just deletes e, implying
that O just adds an edge, which would be a BG-operation. Therefore, G contains
more vertices than the 3-connected graph G′. Since K4 is the smallest 3-connected
graph, |V (G)| 6= 4.

If exactly one vertex, say x, is deleted by the removal of e, let a and b be the two
neighbors of x in G that are different from y. Then y ∈ {a, b} must hold, as otherwise
O would be a BG-operation and it follows that |N(x)| < 3 in G (see Figure 3.7(a)).
The case that both vertices x and y are deleted by the removal remains. If x and
y are still adjacent after deleting e during its removal, |N(x)| < 3, |N(y)| < 3 and
|N(x)∪N(y)| < 5 holds (see Figure 3.7(b)); this case corresponds to a BG-operation
that subdivides identical edges e and f in 15c. Otherwise, let f1 and f2 be the
distinct edges in which x and y are smoothed, respectively. Then f1 and f2 have
to be parallel (see Figure 3.7(c)), as otherwise O would be a BG-operation. This
implies that |N(x) ∪N(y)| < 5.

Combining Lemmas 21 and 23 with Theorem 17 implies the following theorem.

Theorem 24. A graph G without self-loops is 3-connected if and only if there is
a sequence of removals from G to K4 on removable edges e = xy with |N(x)| ≥ 3,
|N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5.



20 CHAPTER 3. CONSTRUCTION SEQUENCES

For 3-connected graphs without self-loops, we call the sequence of Theorem 24 a
sequence of removals or a top-down variant of Barnette’s and Grünbaum’s construc-
tion sequence. We remark that the construction sequences of Theorems 17 and 24 can
be transformed efficiently into each other (in linear time for suitable representations
of the construction sequences) by simply replacing BG-operations with removals and
vice versa. If G contains additionally no parallel edges, i. e., if G is simple, combining
Lemmas 21 and 23 with Theorem 19 instead of Theorem 17 implies that there is even
a sequence of removals from G to K4 with every intermediate graph being simple,
i. e., a basic sequence of removals.

Theorem 24 characterizes the class of 3-connected graphs without self-loops by
the existence of a sequence of removals. We show that the same characterization
holds if we omit the condition that removed edges have to be removable.

Theorem 25. A graph G without self-loops is 3-connected if and only if there is a
sequence of removals from G to K4 on edges e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and
|N(x) ∪N(y)| ≥ 5.

Proof. Clearly, if G is 3-connected, the sequence of removals of the claim exists due
to Theorem 24.

Otherwise, let Q be a sequence of removals from G to K4 on edges e = xy with
|N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x)∪N(y)| ≥ 5. Assume to the contrary that G is not
3-connected. Then, as K4 is 3-connected, there is a removal in Q that is applied on
a non-3-connected graph Gi+1 and generates a 3-connected graph Gi. Let e = xy be
the edge in Gi+1 that is removed by Q. Then e is removable and satisfies |N(x)| ≥ 3,
|N(y)| ≥ 3 and |N(x) ∪ N(y)| ≥ 5 in Gi+1. According to Lemma 23, the inverse
operation of removing e is a BG-operation. This implies with Lemma 16 that Gi+1
is 3-connected, which contradicts the choice of Gi+1.

3.2.3 Transformation to Tutte’s Sequence

We show that Barnette’s and Grünbaum’s construction is algorithmically at least
as powerful as Tutte’s by giving a simple transformation. This transformation can
be computed in linear time, assuming a suitable representation of the construction
sequences. A suitable representation in linear space O(m) for Tutte’s sequence of
contractions is just the sequence of the edges that are contracted. Note that the end
vertices of an edge may change because of contractions; algorithmically, we can still
pinpoint each edge by its unique label. We will discuss suitable representations for
Barnette’s and Grünbaum’s construction sequence in Section 3.3.2.

Lemma 26. Every construction sequence using BG-operations can be transformed
in linear time to a sequence of contractions.

Proof. We transform every BG-operation in reverse order of the given construction
sequence to 0, 1 or 2 contractions each. The transformation of each BG-operation
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can be done in constant time. Let G′ be the 3-connected graph on which a BG-
operation of the construction sequence is applied and let xy be the edge that is
added to G′ by this operation. An operation 15a does not induce any contraction.
For an operation 15b, we contract exactly one of the two edges that are incident to
x but not to y (i. e., either xa or xb in Figure 3.4(b)).

If the operation 15c is applied, let e = ab and f = vw be the edges that are
subdivided by x and y, respectively. Both edges share at most one vertex; w. l. o. g.
let a = v be that vertex if it exists. We contract the edges xb and yw in arbitrary
order (see Figure 3.4(c)).

In all cases, the given contractions inverse the BG-operation except for the edge
xy that was added by the BG-operation on G′ and which is left over. But addi-
tional edges neither harm the 3-connectivity of intermediate graphs nor subsequent
contractions. They however generate additional parallel edges and self-loops in the
final graph K4 of the sequence, such that the base graph K4 has to be replaced by
a K4-multigraph.

By definition of Barnette’s and Grünbaum’s construction sequence in Theo-
rem 17, the edge that is contracted for an operation 15b is contractible and has
end vertices with at least three neighbors each. The last of the two edges that are
contracted for an operation 15c has the same properties for the same reason.

Thus, we have found a sequence of contractions from G to a K4-multigraph,
unless the first contraction in the case of an operation 15c generates a graph H that
is not 3-connected. We show that this cannot happen. Let H ′ be the 3-connected
graph after the second contraction of the same operation 15c. Then H can be
generated from H ′ by applying operation 15b. According to Lemma 16, H must be
3-connected.

Lemma 26 will allow us to focus on computing BG-operations only.

3.2.4 Computation in Cubic Time

A straight-forward algorithm to compute a sequence of removals on an input graph
G in the case when G is 3-connected is to search and remove iteratively remov-
able edges. But in contrast to the computation of Tutte’s construction sequence in
Section 3.1.2, this direct approach leads only to a running time of O(n3) without
additional arguments. The reason for the additional factor of n is that vertices of
degree 3 in 3-connected graphs are not necessarily incident to a removable edge (see
Figure 3.8 for a proof), implying that we cannot bound the number of tested edges
until we find a removable one by a constant.

Assume that G is 3-connected. For a simple cubic-time algorithm, we can assume
G to contain more than 4 vertices, as otherwise finding a sequence of removals
amounts to removing all parallel edges in a K4-multigraph. We will remove only
removable edges. Therefore, the three neighborhood constraints of Theorem 24 are
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x

Figure 3.8: A 3-connected graph that contains a vertex x of degree 3 for which no
incident edge is removable. Removing each incident edge of x results in the same
separation pair, which is depicted in black (although the connected components in
which this separation pair splits the graph are different for each edge).

always satisfied until we stop at a K4-multigraph.
First, the algorithm of Nagamochi and Ibaraki of Theorem 14 is applied to gen-

erate a spanning subgraph of G that preserves the graph to be 3-connected or not 3-
connected, respectively. If the generated graph is 3-connected, which can be checked
efficiently with the algorithm Hopcroft and Tarjan in O(n) time, each edge that is
omitted in this step must be removable and can therefore be removed.

For searching the next removable edge, we iterate over all remaining edges and
check for each such edge e in O(n) time whether the graph that is generated by
removing e is again 3-connected. Removing the first such edge and iterating this
process until a K4-multigraph is generated yields a sequence of removals in time
O(n3).

To the best of our knowledge, there is no faster algorithm known for computing
a sequence of removals; we will give a quadratic-time algorithm in this chapter and
an optimal linear-time algorithm in Chapter 4.

3.3 BG-Paths

Let G be a 3-connected graph without self-loops. According to Theorem 17, there is
a construction sequence Q from K4 to G using BG-operations. Let G4, G5, . . . , Gz

with G4 = K4 and Gz = G be the sequence of 3-connected graphs that is generated
by Q and let Bi, 4 ≤ i ≤ z − 1, be the BG-operation that Q applies on Gi.

Due to Lemmas 21 and 23, we can reverse Q to a sequence of removals by starting
with G and removing the added edges of BG-operations in reverse order. Suppose
we would delete the added edge of every BG-operation Bi instead of removing it
and treat emerging paths containing inner vertices of degree 2 as (topological) edges
in Gi (see Figure 3.9). Then iteratively paths are deleted instead of edges being
removed and we obtain the sequence of subgraphs Sz, . . . , S4 of G in which every Si
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is a subdivision of Gi, Sz = G and S4 is a K4-subdivision in G. This leads to the
following proposition.

(a) K4 =
G4 = smooth(S4)

(b)
G5 = smooth(S5)

(c)
G6 = smooth(S6)

e

f

a

h

g

d
b

c

(d) G7 = G

(e) S4 (f) S5 (g) S6

e

f

a

h

g

d
b

c

(h) S7 = G

Figure 3.9: The graphs G4, . . . , Gz and S4, . . . , Sz of a basic construction sequence of
G using BG-operations. On graphs Si, the dashed edges and vertices are contained
in G but not in Si and vertices depicted in black are real vertices. For example, the
path B4 = e→ h→ g is a BG-path for S4, which generates S5. The links in S5 are
the paths B4, a→ b→ c and the single edges ae, ef , fc, cd, da, fg and gd.

Proposition 27. Let Q be a construction sequence from a graph H to G using
BG-operations. Then G contains a subdivision of H.

In particular, Proposition 27 implies with Theorem 17 the following result, which
was shown by J. Isbell [5].

Lemma 28 (Isbell [5]). Every 3-connected graph contains a subdivision of K4.

Each Si is a subdivision of Gi that is contained in G. Conversely, Gi = smooth(Si)
for all 4 ≤ i ≤ z, since smoothing a graph is precisely the inverse operation of
subdividing a graph in which every vertex has at least 3 neighbors.

From now on, we assume the input graph G to be simple, although all results
can easily be extended to non-simple graphs. Note that every Si must be simple, as
Si ⊆ G, while Gi can still contain parallel edges if the construction sequence is not
basic (however, Gi does not contain self-loops).

The vertices in Si that have at least 3 neighbors are special in the sense that they
correspond to vertices in Gi. To allow later construction sequences to start with a
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S

P

x

y

(a) P is a BG-path for
the K4-subdivision S.

S

P

x

y

(b) P is not a BG-path
for S, as a link contains
x and y with y being no
end vertex of that link
(see Property 30b).

S P

x

y

(c) P is not a BG-path
for the K4-multigraph S,
as x and y are inner ver-
tices of two links, respec-
tively, that are parallel
(see Property 30c).

Figure 3.10: BG-paths

K3
2 -subdivision instead of a K4-subdivision, we define these vertices as follows. Let

S be a subgraph of G that is a subdivision of either a 3-connected graph or of K3
2 .

We say that a vertex v in S is real if N(v) ≥ 3. Let Vreal(S) be the set of real vertices
in S.

Definition 29. Let the links of S be the unique paths in S that have real end
vertices but contain no other real vertices. Let two links be parallel if they share the
same end vertices.

The links of S are in one-to-one correspondence to the edges of smooth(S).
Clearly, the links of a K3

2 -subdivision partition the edge set of the K3
2 -subdivision.

If S ⊆ G is a subdivision of a 3-connected graph, the links of S partition E(S) as
well, as S is 2-connected, has therefore minimum degree 2 and is not a cycle.

Definition 30. A BG-path for S is a path P = x→G y with the following properties
(see Figures 3.10(a)-(c)):

(a) V (P ) ∩ V (S) = {x, y}

(b) Every link in S that contains both, x and y, contains them as end vertices.

(c) If x and y are inner vertices of distinct links Lx and Ly of S, respectively, and
|Vreal(S)| ≥ 4, then Lx and Ly are not parallel.

Recall that a construction sequence of G using BG-operations generates the
graphs G4, . . . , Gz and that each Gi corresponds to a subgraph Si of G with Si

being a subdivision of Gi. It is easy to see that δ(Sz) ≥ 3 and that every BG-
operation on Gi, 4 ≤ i ≤ z−1, corresponds to a BG-path for Si and vice versa. This
gives the following result, which is also implicitly proven in [5].
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Theorem 31 (implicitly in [5]). A graph G without self-loops is 3-connected if and
only if δ(G) ≥ 3 and G can be constructed from a K4-subdivision in G by adding
BG-paths.

Proof. Assume that G is 3-connected. According to Lemma 1, δ(G) ≥ 3 holds. Due
to Theorem 17, there is a construction sequence using BG-operations from K4 to G.
Thus, there is also a construction sequence using BG-paths from a K4-subdivision
that is in G to a G-subdivision that is in G. The latter must be G itself.

Assume that δ(G) ≥ 3 holds and thatG can be constructed from aK4-subdivision
inG by adding BG-paths. Thus, there is a construction sequence using BG-operations
fromK4 to smooth(G). Due to Lemma 16, smooth(G) is 3-connected. Since δ(G) ≥ 3,
smooth(G) = G and it follows that G is 3-connected.

We can therefore try to compute Barnette’s and Grünbaum’s construction se-
quence of a 3-connected graph by taking a suitable K4-subdivision in G and adding
iteratively BG-paths. Note that adding a BG-path P to a subgraph Si implies that
the end vertices of P are real in Si+1. Compared to BG-operations, the BG-path
construction has the advantage that every Si is a subgraph of G. This allows to see
a construction sequence of G as decomposition of G.

We call the sequence of Theorem 31 for 3-connected graphs without self-loops a
construction sequence using BG-paths. To establish consistency with BG-operations,
we define the addition of a BG-path to be basic if it does not create a new parallel
link.

3.3.1 Prescribing a Base Graph

Theorem 31 does not specify on whichK4-subdivision in G the construction sequence
starts. The more general Theorem 20, rephrased to BG-paths, does also not state on
which G0-subdivision in G we have to start for a given 3-connected graph G0. We
want to find these base graphs in order to compute the corresponding construction
sequences bottom-up.

However, the proof of Theorem 20 in [38] and the implicit proof of Theorem 31
in [5] show only for a very special subdivision H in G that a construction sequence
from H to G using BG-paths exists. In fact, both proofs choose H as a subdivision
that contains the maximum number of edges in G. The construction sequence is
then generated by iteratively adding longest BG-paths. Unfortunately, computing
these depends heavily on solving the longest paths problem, which is known to be
NP-hard even for 3-connected graphs [24].

Suppose we choose some subdivision H (of K4 or, more general, of a 3-connected
graph G0) in advance; we say that H is prescribed. Is it possible to strengthen
Theorems 20 and 31 to a construction sequence using BG-paths that starts with
H? Such a result would provide an efficient computational approach to construction
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sequences, since it would allow to search the neighborhood of H in G for BG-paths,
yielding a new prescribed subdivision of a 3-connected graph.

x

Figure 3.11: Every possible BG-path adds a parallel link to the black subgraph.

However, when restricted to basic operations, it is not possible to prescribe H, as
the following minimal counterexample shows: Consider the graph G in Figure 3.11,
which consists of a K4-subdivision H (here just a K4) that is depicted in black and
an additional vertex x that is adjacent to three vertices of H. Then every BG-path
for H will create a parallel link, namely a path of length two with x as inner vertex.

What happens if we drop the condition that construction sequences have to be
basic? The following theorem shows that at this expense we can indeed start a
construction sequence using BG-paths from any prescribed subdivision.

...

H

W

..
.

G

x’

..
.

L

b

a

x

...

y'

Figure 3.12: The case H 6= smooth(H) with H being a subdivision of a 3-connected
graph. Dashed edges are contained in E(G) \E(H), while arrows depict a BG-path
x′ →G\V (H\{x′,y′}) y

′.
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Theorem 32. Let G be a simple 3-connected graph and H ⊂ G such that H is a
subdivision of either K3

2 or of a 3-connected graph. Then there is a BG-path for H
in G. If H is a K3

2 -subdivision, there is a BG-path for H in G that generates a
K4-subdivision. Moreover, for every link L in H of length at least 2, L or a parallel
link of L contains an inner vertex on which a BG-path for H starts.

Proof. We distinguish two cases.

• H 6= smooth(H).
Then H contains a link of length at least 2 and we pick an arbitrary such link,
say L = a→H b. Let x be an inner vertex of L and let I be the union of inner
vertices of all parallel links of L. We show that there is a vertex in I on which
a BG-path for H starts. By the 3-connectivity of G, the graph G \ {a, b} is
connected.

Assume that H is a subdivision of a 3-connected graph. Since H contains at
least four real vertices, there exists a path P = x→G\{a,b} y with y ∈ V (H)\ I
(see Figure 3.12). The path P has Property 30b. Let x′ be the last vertex in
P that is contained in I and let y′ be the first vertex in P that is contained in
V (H) \ I. Then the path x′ →P y′ has Properties 30a–c and is a BG-path for
H.

Assume otherwise that H is a K3
2 -subdivision. Then at least one other parallel

link of L in H has length at least 2, as G is simple. Therefore, a path P =
x →G\{a,b} y with y ∈ I \ V (L) exists. Let x′ be the last vertex in P that is
contained in L and let y′ be the first vertex in P that is contained in I \V (L).
Then the path x′ →P y′ has Properties 30a–c, as |Vreal(H)| < 4, and is a
BG-path for H that generates a 3-connected K4-subdivision.

• H = smooth(H).
Then H consists only of real vertices and contains no link of length at least
2. Because G is simple, H is simple and cannot be a K3

2 -subdivision. Since
H ⊂ G, there must be a vertex in V (G)\V (H) or an edge in E(G)\E(H). First,
assume that there is a vertex x ∈ V (G)\V (H). Then, by the 2-connectivity of
G and Fan Lemma 3, we can find a path P = y1 →G y2 with P ∩H = {y1, y2}
that contains x as an inner vertex. The path P has Properties 30a–c, because
every link in H is an edge. Now suppose that V (G) = V (H) and let e be an
edge in E(G)\E(H). Then e must be a BG-path for H, since both end vertices
are real.

Therefore, we can start a construction sequence using BG-paths from every K4-
subdivision in G and, more generally, from every subgraph in G that is a subdivision
of either a 3-connected graph or of K3

2 . As BG-operations preserve 3-connectivity
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due to Lemma 16 (and, thus, BG-paths preserve subgraphs to be subdivisions of
3-connected graphs), Theorem 32 implies the following result.

Theorem 33. A simple graph G is 3-connected if and only if δ(G) ≥ 3 and G can
be constructed from each K4-subdivision in G by adding BG-paths.

Note that Theorem 33 is stronger than Theorem 31 for simple 3-connected graphs
G, as the construction can start at any K4-subdivision in G.

We showed that construction sequences that start at prescribed base graphs are
in general not basic. However, at the expense of augmenting our set of allowed
operations, we can establish all operations to be basic. In Theorem 32, non-basic
BG-paths occur only in the case H = smooth(H), as in the other case a BG-path is
found that starts at an inner vertex of a link. Let H = smooth(H). If additionally
V (H) = V (G), every BG-path must be an edge and is basic, as G is simple. We
conclude that non-basic BG-paths are only needed for the subcase V (H) ⊂ V (G)
of H = smooth(H) in Theorem 32, in which we picked a BG-path that contains an
inner vertex x in V (G) \ V (H).

In this case, we know by the Fan Lemma 3 and the 3-connectivity of G that
there are three internally vertex-disjoint paths from x to real vertices in H such that
only the three end vertices are in H. Adding these paths to H is called an expand
operation. Clearly, the expand operation is basic, because each new link ends on the
new real vertex. We state the corresponding basic operation for BG-operations.

(15d) create a new vertex that is adjacent to exactly 3 distinct old vertices

Note that the Operation 15d can be interpreted as concatenation of the BG-
operations 15a and 15b. We obtain the following theorem to avoid non-basic opera-
tions.

Theorem 34. Let G be a simple graph and let H be a subdivision of a 3-connected
graph. Then

G is 3-connected and H ⊆ G
⇔ δ(G) ≥ 3 and there is a construction sequence from (*)

H to G using BG-paths
⇔ δ(G) ≥ 3 and there is a basic construction sequence from (**)

H to G using BG-paths and the expand operation

Proof. Let G be 3-connected and H ⊆ G. Then δ(G) ≥ 3 holds with Lemma 1
and if H = G, the desired construction sequences (*) and (**) are empty and exist.
If H ⊂ G, Theorem 32 can be iteratively applied to generate a sequence (*). We
do the same to generate a sequence (**) with the exception that for every subcase
V (H) ⊂ V (G) of H = smooth(H) of Theorem 32 an expand operation is inserted.
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For the sufficiency part, both construction sequences (*) and (**) imply H ⊆ G,
since only paths are added to construct G. With Lemma 5, Operation 15d preserves
3-connectivity. Thus, the expand operation preserves generated subgraphs to be
subdivisions of 3-connected graphs, as do BG-path additions. Thus, G is for both
sequences (*) and (**) a subdivision of a 3-connected graph and therefore 3-connected
because of δ(G) ≥ 3.

For the linear-time algorithm in Chapter 4, we need the fact that it is possible
to start with a K3

2 -subdivision instead of a K4-subdivision.

Theorem 35. A simple graph G is 3-connected if and only if δ(G) ≥ 3 and G can
be constructed from a K3

2 -subdivision in G by adding BG-paths such that the first
BG-path generates a K4-subdivision.

Proof. Let G be 3-connected. According to Lemma 1, δ(G) ≥ 3 holds. With
Lemma 28, G contains a K4-subdivision and therefore also a K3

2 -subdivision S3.
Adding iteratively BG-paths to S3 with Theorem 32 gives the desired sequence.

Let δ(G) ≥ 3 and let S3 be the K3
2 -subdivision on which the given construction

sequence Q of the claim starts. Since G is simple and δ(G) ≥ 3, S3 6= G and Q is
not empty. Let S4 be the K4-subdivision that is generated by the first BG-path in
Q by assumption. According to Lemma 31, the remaining BG-paths in Q prove that
G is 3-connected.

Note that we can replace “a K3
2 -subdivision” in Theorem 35 by “each K3

2 -
subdivision”, as done for Theorem 33.

3.3.2 Representations

We discuss representations of the previously mentioned construction sequences. In
the following, graphs are represented with adjacency lists. We will often identify the
vertices and edges of a graph by their labels; these labels have to be unique in the
graph. Unless a vertex or an edge is explicitly relabeled, its label does not change;
this holds in particular for the label of an edge whose end vertices are replaced due
to, say, contractions.

Recall that a sequence of contractions can be represented by just giving the labels
of the contracted edges in the right order. However, the sequence of removals does
not have a similar representation, as removing an edge may create new edges for
which we have to specify labels.

We discuss representations of Barnette’s and Grünbaum’s construction sequence
in the bottom-up variant. Lemmas 21 and 23 ensure analogue representations for the
top-down variant (i. e., the sequence of removals). We can either use BG-operations
or BG-paths. Let Q be a construction sequence using BG-operations. We can
represent Q by storing the base graph G4 = K4 and the sequence B4, . . . , Bz−1
of BG-operations that Q applies. Unfortunately, the graphs G4, . . . , Gz−1 are not
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necessarily subgraphs of G, so we have to take care of relabeling vertices and edges
in every BG-operation.

For the BG-operation Bi on Gi, we specify the label of every edge e that is
subdivided by Bi, followed by the new labels that are assigned to the new vertex
of degree 2 and to one of the two new edges in Gi+1; the other new edge in Gi+1
keeps the label of the deleted edge e. Note that this is only needed if Bi is either an
operation 15b or 15c.

If Bi is an operation 15a or 15b, we specify the labels of all end vertices of its
added edge in Gi+1 that have been already contained in Gi. Additionally and in
every case, we assign a new label to the added edge in Gi+1. Finally, we have to
impose the constraint that all labels are chosen such that Gz is not only isomorphic
but also identical to G, meaning that corresponding vertices and (for convenience)
edges of Gz and G have the same label. Otherwise, we would have to solve the graph
isomorphism problem to check that Q really constructs G.

While this representation allows to check the validity of the sequence (i. e., every
operation on being a BG-operation) very easily, the relabeling issues make it cumber-
some. On the other hand, BG-paths allow to represent Q without relabeling issues,
as every intermediate graph Si and every BG-path is a subgraph of G. We just store
S4 ⊂ G and the iteratively added BG-paths P4, . . . , Pz−1. Hence, we can represent
Barnette’s and Grünbaum’s construction sequence of a graph G in the following two
ways.

• Edge representation: Store G4 and the sequence B4, . . . , Bz−1 of BG-operations
and specify new and old labels for every Bi such that Gz and G are labeled
the same.

• Path representation: Store S4 and the sequence P4, . . . , Pz−1 of BG-paths as
subgraphs of G.

Both representations refer to the same sequence of graphs Gi = smooth(Si) and
need space linearly dependent on the graph size, i. e., Θ(m) space in the uniform cost
model, as G is connected. We will show in Section 3.6.2 how the validity of path
representations can be checked in a simple way. The next lemma states that it does
not matter which of the two representations we use.

Lemma 36. The edge and path representations of Barnette’s and Grünbaum’s con-
struction sequence can be transformed into each other in O(m) time.

Proof. Let Q be an edge representation of the construction sequence. If an operation
Bi subdivides an edge e, we define β(e,Bi) to be the edge that gets a new label. Let e
be the added edge of an operation Bi in Q. Exploiting the duality of BG-operations
and BG-paths, the edge e corresponds to the BG-path Pi, which will be subdivided
by inserting exactly |Pi|−1 real vertices in the path representation. To compute the
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BG-path Pi from e, we have to keep track of the at most |Pi| − 1 operations that
subdivide e and glue the subdivided parts back together.

Whenever an operation Bj in Q subdivides e, we store a pointer at β(e,Bj) to e.
Moreover, for every edge f that points to e and is subdivided by an operation Bk,
we store a pointer at β(f,Bk) to e. In both cases, we append β(e,Bj) (respective
β(f,Bk)) to a list stored on the edge e. Therefore, we keep track of all edges β(e,Bj)
and β(f,Bk) that correspond to BG-paths that subdivide Pi by inserting a new real
vertex. Eventually, we get all the edges in which Pi got subdivided by augmenting
the list that is stored on e with e itself. Hence, we have computed the set of edges
that Pi consists of. Since Gz has the same labeling as G, the computed set of edges
and E(Pi) have the same labels.

The list of edges is not necessarily in the order of appearance in Pi, but this can
be easily fixed in time O(|Pi|) by temporarily storing the incidence information of
every vertex in Pi and extracting the BG-path Pi from a vertex with degree one. In
order to compute S4, we analogously maintain pointers for each edge of G4 and get
the links of S4. Since the links of S4 together with P4, . . . , Pz−1 partition E(G), the
running time is O(m).

Let the path representation, i. e., S4 and the sequence P4, . . . , Pz−1 of BG-paths
be given. We remove BG-paths in reversed order from G. Note that the first removal
is well-defined, as Pz−1 is an edge. If an end vertex x in the removal of a BG-path is
deleted due to smoothing, we also smooth x in the BG-path (or the link of S4) that
contains x as inner vertex. This way, every Pi will be an edge immediately before
removing it. Note that we can find the BG-path (and, analogously, the link of S4)
that contains x as an inner vertex in O(1) time by storing a pointer from each inner
vertex of Pi to Pi in advance.

This procedure passes through the graph sequence Gz, . . . , G4. We use the labels
of G for Gz. If both end vertices x and y of Pi are still real after the removal of Pi,
we can keep their labels and construct the inverse BG-operation 15a. Otherwise, at
least one end vertex of Pi, say x, was deleted during the removal, as it was smoothed
into an edge e. For the inverse BG-operation 15b or 15c, it remains to assign a label
to e. Let f1 and f2 be the incident edges of x before the removal. We assign the label
of f1 to e. Thus, each of the BG-operations 15a–c can be constructed in constant
time.

3.4 Transformations

We summarize the given characterizations of simple 3-connected graphs by construc-
tion sequences and group similar ones. Whenever not otherwise possible, we will refer
to a construction sequence of a certain type A as (the) sequence A, although there
might be more than one sequence of that type.
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Theorem 37. The following statements are equivalent.

A simple graph G is 3-connected (3.0)

⇔ There is a sequence of vertex splittings from a K4-multigraph to G (3.1)
(see Theorem 9)

⇔ There is a sequence of contractions from G to a K4-multigraph on (3.2)
contractible edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see Theorem 12)

⇔ There is a sequence of contractions from G to a K4-multigraph on (3.3)
edges e = xy with |N(x)| ≥ 3 and |N(y)| ≥ 3 (see Theorem 13)

⇔ There is a sequence of BG-operations from K4 to G (3.4)
(see Theorem 17)

⇔ There is a sequence of basic BG-operations from K4 to G (3.5)
(see Theorem 19)

⇔ There is a sequence of removals from G to K4 on removable edges (3.6)
e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see Theorem 24)

⇔ There is a sequence of removals from G to K4 on edges (3.7)
e = xy with |N(x)| ≥ 3, |N(y)| ≥ 3 and |N(x) ∪N(y)| ≥ 5 (see Theorem 25)

⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from a K3
2 -subdivision (3.8)

in G to G such that the first BG-path generates a K4-subdivision
(see Theorem 35)

⇔ δ(G) ≥ 3 and there is a basic construction sequence from a (resp. each) (3.9)
K4-subdivision in G to G using BG-paths and the expand operation
(see Theorem 34)

⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from a (3.10)
K4-subdivision in G to G (see Theorem 31)

⇔ δ(G) ≥ 3 and there is a sequence of BG-paths from each (3.11)
K4-subdivision in G to G (see Theorem 33)

We give several efficient transformations between these construction sequences.

Lemma 38. The sequences (3.9) and (3.10) can be transformed into each other in
O(m) time.

Proof. If a sequence (3.9) is given, the three internally vertex-disjoint paths of each
expand operation can be easily split into two subsequent BG-paths, the first of which
is possibly a non-basic BG-operation.
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Figure 3.13: No expand operation can be formed.

Let a sequence (3.10) be given. With Lemma 36, we can assume that this se-
quence is given in the path representationQ. We will rearrange the order of BG-paths
in Q to generate pairs of subsequent BG-paths that can be concatenated to expand
operations. For each BG-path (or link of S4) P , its position in Q and a pointer to
the first BG-path F (P ) in Q that ends at an inner vertex of P (if that path exists)
is stored. We define the position of each link in S4 as 0. Note that F (P ) for all P
can be precomputed in O(m) by simulating Q once.

Performing a bucket sort on the lower end vertices of each BG-path and link of
S4 (lower in any given total order on V (G)) followed by a stable bucket sort on the
remaining end vertices gives a list of paths sorted in lexicographic order of their end
vertices. This list can be used to efficiently group paths that have the same end
vertices.

Let Rab be the set of all BG-paths and links in S4 having end vertices a and b.
We apply the following rule: If a path P ∈ Rab has length one and does not have the
first position of all paths in Rab, we append it to the end of the construction sequence
and delete it from Rab. This does not harm the construction sequence, since a and
b must already be real vertices and P has no inner vertices.

Now the path with the first position in Rab cannot lead to a non-basic operation
and causes a and b to be real. We consider every other path P ∈ Rab, which is
possibly non-basic, but must contain an inner vertex w that is an end vertex of the
BG-path F (P ). Without harming the construction sequence, P can be moved to
the position of F (P ), since a and b are real and no inner vertex of P is part of a
BG-path before F (P ) is added.

Let v be the end vertex of F (P ) different from w. If v is real immediately
before F (P ) is added, we can glue P and F (P ) together to an expand operation,
which is basic due to its new vertex w. Otherwise, v is an inner vertex of a link (see
Figure 3.13) and P and F (P ) can be replaced with either the BG-paths v →P∪F (P ) a

and b→P∪F (P ) w or the BG-paths v →P∪F (P ) b and a→P∪F (P ) w. Both BG-paths
are basic, since they contain end vertices of degree 2.

Lemma 39. Let Q be one of the sequences (3.4)–(3.7) and (3.10). There are algo-
rithms that transform Q to each of the sequences (3.1)–(3.4) and (3.6)–(3.10) in time
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O(m). The transformations to sequence (3.4), (3.6), (3.7) and (3.10), respectively,
preserve the number of operations.

Proof. According to Lemmas 7 and 11, the sequences (3.1), (3.2) and (3.3) can be
transformed to each other in time O(m) (note that (3.2) and (3.3) represent the same
sequence). Analogously, the sequences (3.4), (3.6) and (3.7) can be transformed to
each other in time O(m) with Lemmas 21 and 23. A sequence (3.5) is a special
sequence (3.4) and can therefore be transformed to the sequences (3.6) and (3.7)
as well. With Lemma 36, we can transform the sequences (3.4) and (3.10) to each
other in time O(m). All these transformations preserve the number of operations by
construction.

It remains to show how sequences (3.2), (3.8) and (3.9) can be computed. Ac-
cording to Lemma 26, sequence (3.4) can be transformed to a sequence (3.2) in time
O(m). With Lemma 38, sequence (3.10) can be transformed to a sequence (3.9) in
time O(m). To obtain a sequence (3.8) from sequence (3.10), we just decompose the
K4-subdivision of sequence (3.10) in time O(m) into a K3

2 -subdivision S3 and a path
P that connects inner vertices of two parallel links of S3. Since |Vreal(S3)| < 4, P is
a BG-path for S3, whose addition generates a K4-subdivision.

For simple graphs G, there is always a basic construction sequence (3.5) using
BG-operations (see Theorem 19). However, we want to start from a prescribed K4-
subdivision, for which non-basic operations are in general unavoidable due to the
counterexample in Figure 3.11. We show that this is not a limitation: For simple
graphs, a non-basic construction sequence can be transformed to a basic one in linear
time.

Lemma 40. Every sequence (3.10) can be transformed to a sequence (3.5) in O(m)
time such that the number of operations is preserved.

Proof. Let Q be the given sequence (3.10) in the path representation. We will re-
arrange the order of BG-paths in Q and modify S4 in linear time to avoid parallel
links. This prevents the number of BG-paths. The algorithm of Lemma 36 can then
be used for an efficient transformation to a sequence of BG-operations in which every
intermediate graph is simple.

As for Lemma 38, we use the following notation. For each BG-path (or link of
S4) P , its position in Q and a pointer to the first BG-path F (P ) in Q that ends at
an inner vertex of P (if that path exists) is stored. We define the position of each
link in S4 as 0. Note that F (P ) for all P can be precomputed in O(m) by simulating
Q once.

Let X be the union of the links of S4 and the BG-paths in Q. We define the
relation ≺ on X such that, for the paths P1 ∈ X and P2 ∈ X, P1 ≺ P2 if the position
of P1 strictly precedes the position of P2. Let W be any linear extension of ≺.

Performing a bucket sort on the lower end vertices of each path in W (lower
in any given total order on V (G)) followed by a bucket sort on the remaining end
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vertices gives a list of paths R sorted in lexicographic order of their end vertices.
This list can be used to efficiently group paths that have the same end vertices. Let
Ra,b = P1, . . . , Pk be the list of paths in R with end vertices a and b. Since bucket
sort is stable, P1 ≺ · · · ≺ Pk holds.

We want to avoid parallel links between each two vertices a and b. It is sufficient
to consider a list Ra,b only if it contains more than one chain, as otherwise no parallel
link a→G b can occur in the sequence. For every list Ra,b = P1, . . . , Pk, we compute
the path Pmin ∈ Ra,b, for which F (Pmin) exists and is minimal with respect to ≺.
This can be done in time O(k) by passing once through the list Ra,b. If Pmin 6= P1,
we swap Pmin and P1 in W . If additionally P1 is a link in S4, we replace P1 in S4
with Pmin. Both does not harm the construction sequence, as P1 ≺ Pmin ≺ F (Pmin)
and all paths in W remain BG-paths (except for the possible new path in S4).

For each remaining path P ∈ Ra,b \ {Pmin}, for which F (P ) exists, we move
P to the position immediately before F (P ). This does not harm BG-paths in the
construction sequence, as Pmin inW implies that a and b are real and every BG-path
containing an inner vertex of P does not precede F (P ) in W .

If there is a path in Ra,b, for which no F (P ) exists, it must be a unique path of
length one, as Q does not subdivide it and G is simple. Such paths can be safely
moved to the end of W , as Ra,b contains more than one path. We conclude that
W is still a construction sequence when starting with the modified subgraph S4 and
that W avoids any parallel link, as each link L of length at least two is subdivided
by a BG-path before a parallel link of L is added.

We combine the previous lemmas in the following theorem.

Theorem 41. Every sequence of (3.4)–(3.10) can be transformed to each of the
sequences (3.1)–(3.10) in O(m) time.

Proof. According to Lemmas 39 and 40, it suffices to show that every sequence (3.8)
and (3.9) can be transformed to a sequence (3.10) in time O(m). As G cannot
be a K3

2 -subdivision, every sequence (3.8) adds at least one BG-path. By defini-
tion, the first added BG-path generates a K4-subdivision S4; the remaining part of
sequence (3.8) applied on S4 is a sequence (3.10). Note that the transformed se-
quence will have one operation less. Due to Lemma 38, every sequence (3.9) can be
transformed to a sequence (3.10) in time O(m).

Theorem 41 allows us to focus only on the computation of a special sequence,
e. g., on a sequence (3.8) or a sequence (3.10).

3.4.1 Size of Sequences

Let the size of a construction sequence be the number of operations it applies. Every
sequence of (3.1)–(3.3) has size n−4, as it must contain exactly n−4 contractions to
a K4-multigraph (respectively, vertex splittings from a K4-multigraph). This implies
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that the K4-multigraph in every such sequence contains exactly m− n+ 4 edges, as
every contraction reduces the number of edges by one. We show a complementary
result for the size of Barnette’s and Grünbaum’s construction sequence.

Lemma 42. Every sequence of (3.4)–(3.7) and (3.10) contains exactly m − n − 2
operations. Every sequence (3.8) contains exactly m− n− 1 operations.

Proof. It suffices to show the first claim for each sequence (3.4), as Lemmas 39
and 40 preserve the number of operations, respectively. The second claim follows
directly from the fact that the transformation of a sequence (3.10) to a sequence (3.8)
adds exactly one BG-path. Let a, b and c denote the number of BG-operations in
a sequence (3.4) that create zero, one and two new vertices, respectively. Then
b+2c = n−4 and a+2b+3c = m−6 hold, since K4 consists of four vertices and six
edges. Subtracting the first from the second equation gives a+b+c = m−n−2.

3.5 A General Approach in Quadratic Time

We show how to compute a sequence (3.10) in time O(n2). This extends to an algo-
rithm that tests a graph on being 3-connected in the same time. We will make this
algorithm certifying in the next section; as certificate we will use the construction
sequence. The running time is dominated by the time needed for finding the con-
struction sequence and every improvement made there will automatically result in a
faster 3-connectivity test. Assume that G′ is a simple connected input graph with n
vertices (G′ does not necessarily have to be 2-connected). We follow the steps:

• Apply the linear-time algorithm of Nagamochi and Ibaraki (see Theorem 14)
to G′ in order to generate a graph G with O(n) edges (n = |V (G′)|).

• Try to compute a K4-subdivision in G in O(n) time.

– Success: Let S4 be the K4-subdivision.
– Failure: Return a separation pair or cut vertex.

• Try to compute a sequence from the prescribed subgraph S4 to G using BG-
paths in O(n2) time.

– Success: Return the construction sequence.
– Failure: Return a separation pair or cut vertex.

According to Theorem 14, the graph G has only O(n) edges and is 3-connected
if and only if the input graph G′ is 3-connected. We first describe how to find a
K4-subdivision in G by one depth-first search (DFS) [43, 64, 67]. As a byproduct,
the DFS can sort out graphs G′ with δ(G′) < 3 (as this implies δ(G) < 3) and return
a cut vertex or separation pair in that case. Note that the algorithm generalizes
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Figure 3.14: Finding a K4-subdivision. Dashed edges depict (possibly empty) paths,
arcs depict backedges.

easily to non-simple and non-connected input graphs, as the DFS can also be used
to eliminate self-loops and parallel edges and to test the graph on being connected.

Definition 43. Let T be a DFS-forest of a simple graph G. An edge in E(G)\E(T )
is called a backedge. For a backedge e, let s(e) and t(e) be the two end vertices of e
such that s(e) is a proper ancestor of t(e) in T . Let a backedge e enter a subtree T ′
of a tree if s(e) /∈ V (T ′) but t(e) ∈ V (T ′).

In cases where no orientation is given but needed, we assume e to be oriented
from s(e) to t(e). Note that this orientation differs from standard graph theory
notation.

Lemma 44. Let G be a simple connected graph on at least 4 vertices. There is
a DFS-based algorithm that computes either a K4-subdivision, a cut vertex or a
separation pair in G in time O(n+m).

Proof. Let T be a DFS-tree of G and let a (respectively, b) be the vertex in T that is
visited first (respectively, second). If a has more than one child, {a} must be a cut
vertex, as T is a DFS-tree. If a has exactly one child and b has more than one child,
{a, b} must be a separation pair for the same reason. In both cases, we output the
cut vertex respective the separation pair.

Otherwise, both, a and b, have exactly one child. We choose two arbitrary
neighbors c and d of a that are different from b (see Figure 3.14). W.l.o.g., let d be
visited later by the DFS than c. Let i be the least common ancestor of c and d in
T . Then i 6= b, as b has exactly one child in T . Since G is simple, d 6= i holds. Let j
be the child of i that is contained in the path d→T i.

If G is 3-connected, there must be a backedge e that starts on an inner vertex z′
of a →T i and enters T (j), as otherwise a and i would form a separation pair that
separates b and d. Clearly, such an edge e can be found in time O(n+m); if it does
not exist, we output the separation pair {a, i}. Otherwise, let z be the end vertex of
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e in T (j) and let k be the first vertex of the path z →T j that is contained in d→T j.
Each of the three backedges ac, ad and e close a cycle when added to T , resulting in
six internally vertex-disjoint paths connecting the vertices in {a, z′}, {z′, i}, {i, k},
{k, a}, {z′, k} and {a, i}, respectively. Thus, we have found a K4-subdivision in G
with real vertices a, z′, i and k.

Assume that we have found a K4-subdivision H in G. We now show how to carry
out the last step of the algorithm. In order to find the construction sequence, we
use the path representation and try to find iteratively BG-paths along the lines of
Theorem 32.

Lemma 45. Let H be a subdivision of a 3-connected graph that is contained in a
simple 3-connected graph G. There is a algorithm that computes a BG-path for H
in time O(n+m).

Proof. We compute the links of H in O(n+m). For every link L, we store a pointer
to L on each inner vertex of L in O(n + m) total time. Moreover, we maintain a
pointer on each link that points to its end vertices. It remains to show how to find
a BG-path along the lines of Theorem 32. We can easily test in O(n + m) whether
H 6= smooth(H) by checking whether there is a vertex x of degree 2 in H.

In case H 6= smooth(H), we pinpoint the link L = a →H b of H that contains
x in constant time. We compute the path P = x → y′ by temporarily deleting a
and b and performing a DFS on x that stops on the first vertex y′ ∈ V (H) that
is not contained in a parallel link of L (including L). We can check whether y′ is
contained in a parallel link of L in constant time by comparing the end vertices of
its containing link (if exists) with a and b. Thus, the path x′ →P y′ with x′ being
the last vertex contained in a parallel link of L is a BG-path and can be found in
O(n+m).

In case H = smooth(H), we delete temporarily all edges in E(H) and start a
DFS on a vertex x ∈ V (H) that has an incident edge in the remaining graph. The
traversal is stopped on the first vertex y ∈ V (H)\x. Let T be the created DFS-tree.
Then the path x→T y is the desired BG-path.

By iterating the algorithm of Lemma 45 on G, sequence (3.10) can be found in
time O(n2), as G contains only O(n) edges. This assumes G to be 3-connected. If
G is not 3-connected, a sequence (3.10) cannot exist due to Theorem 37.

In that case, it remains to show that we can always find a separation pair or a
cut vertex. For some subgraph H ⊂ G, the DFS starting at vertex x in Lemma 45
fails to find a new BG-path for H. If H 6= smooth(H), the end vertices of the link
that contains x form a separation pair. Otherwise, H = smooth(H) and the vertex
on which we started a DFS must be a cut vertex. Thus, if G is not 3-connected, the
algorithm returns either a separation pair or a cut vertex. Using Theorem 41, we
obtain the following theorem.
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Theorem 46. There is an algorithm that tests the 3-connectivity of a simple graph
G in time O(n2), returns each of the sequences (3.1)–(3.10) if G is 3-connected and
returns a cut vertex or a separation pair otherwise.

3.6 Certifying Algorithms

A certifying algorithm is an algorithm that produces, with each output, a certificate
that the particular output has not been compromised by a bug [44]. Certifying
algorithms therefore give a certificate of correctness for every instance along with
their output. A user or program that attempts to check the correctness of such an
output is called a checker . A checker gets the unmodified input data and the output
and certificate of the certifying algorithm. We list key properties of certificates and
checkers that are mentioned in [44].

• A checker must detect possible false certificates, as not only the output but
also the certificate may have been compromised by a bug.

• The checker has to be as simple as possible, since a complicated checker could
itself have bugs. Conversely, the certifying algorithm and its proof of correct-
ness can be complicated and even error-prone.

• To have confidence in the output of a certifying algorithm, it is important for
the user to understand why the certificate proves what it claims to.

• The certificate must always exist, but the proof of this is of no concern to the
checker.

Achieving certifying algorithms is a major goal for problems where the fastest
solutions known are complicated and difficult to implement. Testing graphs on 3-
connectivity is such a problem, but no certifying linear-time algorithms are known.
As a first step towards a linear-time certifying algorithm, we want to make the
algorithm of Theorem 46 certifying.

If the input graph is 3-connected, we use the construction sequence (3.10) as a
certificate; we will give a detailed description of its verification in Section 3.6.2. If
the input graph is not 3-connected, the algorithm of Theorem 46 returns either a
cut vertex or a separation pair. Cut vertices and separation pairs prove that the
input graph is not 3-connected. Although they are not difficult to check, using them
would not satisfy the need for checkers to be as easy as possible. We will instead use
slightly simpler certificates for vertex cuts and edge cuts in the next section.

Note that the first step of the algorithm, i. e., the application of the algorithm
of Nagamochi and Ibaraki to generate G from G′, does not increase the complexity
of the checker: According to Lemma 2.1 in [53], every cut vertex and separation
pair in G must also be a cut vertex and separation pair in G′, respectively. As G
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is a spanning subgraph of G′, every certificate for the 3-connectivity of G can be
augmented to a certificate for the 3-connectivity of G′ by checking that G′ differs
from G only in additional edges.

3.6.1 Verifying Vertex and Edge Cuts

Suppose there is a vertex or edge cut X of size k−1, k ≥ 1, in a graph G with n > 1
(for vertex-connectivity, let n > k). Then X would be a straight-forward certificate
for G being not k-connected respective not k-edge-connected. However, as checkers
must be very simple, we apply the paradigm of shifting as much as possible of the
checker’s work to the computation of the certificate.

Instead of usingX as certificate, we color the vertices of one connected component
of G \X red and the vertices of all other connected components of G \X green. A
checker for G being not k-connected then just needs to check that at most k − 1
vertices are uncolored, there is at least one red and one green vertex and that no
edge has a red and a green end vertex.

For G being not k-edge-connected, it suffices to check that there is at least one
red, one green and no uncolored vertex and that the end vertices of at most k − 1
edges differ in color. In particular, this certifies a graph to be disconnected for k = 1.
We will always use these certificates instead of using X itself. The certificates can
be easily computed from gives vertex and edge cuts by the certifying algorithm and
need space O(n). They can be checked in time O(m), as the condition n > m + 1
can be checked in advance and, if true, proves G to be disconnected.

For certifying algorithms that test a graph G on being k-connected or k-edge-
connected for k ≤ 3, it remains to show how vertex and edge cuts X for the red-green
coloring can be computed and which certificates are used if G is k-connected or k-
edge-connected for 1 ≤ k ≤ 3. Performing a depth-first search [43, 64, 67] or any
other suited graph traversal gives the connected components of G in linear time. A
certificate for these connected components and, thus, for the (1-)connectivity of G, is
given in [44], using an easy numbering scheme on the vertices. For testing a graph on
2-connectivity and 2-edge-connectivity, we defer to Section 4.1.1. The next sections
discuss certificates for 3-connectivity and 3-edge-connectivity.

3.6.2 Verifying 3-Connectivity

Let G be the input graph and let Q be a sequence (3.10) of G. We use Q in the path
representation as certificate for 3-connectivity. A checker for this certificate has to
check the following properties.

• Q is correct

• Q constructs G

• δ(G) ≥ 3 (according to Theorem 37)
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Figure 3.15: Cases in which Properties 30b (see Figures (a) and (b)) and 30c (see
Figure (c)) are violated before smoothing a and b.

We first check that every vertex in G has degree at least 3 in time O(n). The path
representation requires S4 and all (BG-)paths P4, . . . , Pz−1 to be stored as subgraphs
of G. It can be checked in O(m) time that S4 is a subgraph of G and that every Pi,
4 ≤ i ≤ z − 1, is a path in G. To ensure that Q constructs G, it suffices to check
that the paths Pi partition E(G) \E(S4) in time O(m). It remains to check that Q
is correct.

We could validate this by transforming the path representation to the edge rep-
resentation with Lemma 36 and checking the validity of each BG-operation by com-
paring labels, but this is too complicated for a checker.

Instead, we remove the paths Pi in reversed order from G. This is only well-
defined if each Pi is an edge. If we encounter a path Pi that contains more than one
edge immediately before deleting it (this can occur, e. g., when BG-paths are given
in the wrong order), every inner vertex x of Pi must have degree 2 in the current
subgraph, as otherwise Pi would violate Property 30a. However, this contradicts
that x would have been deleted by a previous smoothing due to deg(x) ≥ 3 in G.
We conclude that Q can only be correct if every path Pi contains exactly one edge
before removing it.

In that case the procedure passes through the graph sequence Gz, . . . , G4. It
remains to verify that every removed edge Pi = ab corresponds to a BG-path. We go
along the Definition 30 of BG-paths (alternatively, the definition of BG-operations
may be used). For Property 30a, it suffices to check that a and b are contained in
the current subgraph.

Properties 30b and 30c can now be checked in constant time: Consider the situ-
ation immediately after the deletion of ab, but before smoothing a and b. Then all
links in our subgraph are single edges, except possibly the ones containing a and b
as inner vertices.
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Therefore, 30b is not met for Pi if and only if a is adjacent to b and (deg(a) = 2
or deg(b) = 2) (see Figures 3.15(a) and (b) for the two possible cases). Prop-
erty 30c is not met if and only if deg(a) = deg(b) = 2 and N(a) = N(b) (see
Figure 3.15(c)). Both conditions can be checked in constant time. Note that en-
countering BG-paths Pz−1, Pz−2, . . . , Pi does not necessarily imply that the current
subgraph is 3-connected, since a path Pj , j < i, that is no BG-path might occur
later.

It remains to validate that the graph after removing all BG-paths equals K4.
This can done in constant time by checking it on being simple and having exactly 4
vertices of degree three.

We can verify a sequence (3.8) in exactly the same way, except that we addi-
tionally check that at least one path Pi is given and the first path is an edge of the
K4.

Lemma 47. The sequences (3.8) and (3.10) can be verified in time O(m).

From the algorithm of Theorem 46, the verification of vertex cuts in Section 3.6.1
and Lemma 47, we obtain a certifying algorithm.

Corollary 48. There is a certifying algorithm with running time O(n2) that tests
a simple graph G on 3-connectivity.

3.6.3 3-Edge-Connectivity

Galil and Italiano [22] showed that the problem of testing a graph on k-edge-
connectivity can be reduced to the problem of testing a slightly modified graph
on k-connectivity. We want to certify this reduction for k = 3 in order to deduce
a certifying algorithm for 3-edge-connectivity from every certifying algorithm for
3-connectivity, without increasing the asymptotic running time.

For k = 3, the reduction modifies the simple input graph G in linear time to a
graph with m+ 3n vertices and 3m edges. First, a graph G′ is generated from G by
subdividing each edge with one vertex; these vertices are called arc-vertices. For each
non-arc-vertex w in G′ we do the following: Let v1, . . . , vdeg(w) be the arc-vertices
that are incident to w. Then the edges (v1v2, v2v3, . . . , vdeg(w)v1) are added to G′ if
they do not already exist. Note that the reduction blows up each vertex v ∈ V (G)
to a wheel graph with as many spokes as v has neighbors.

The graph G is 3-edge-connected if and only if G′ is 3-connected [22]. Moreover,
every vertex cut of minimal size in G′ contains only arc-vertices (Lemma 2.2 in
[22]). We apply a certifying 3-connectivity test on G′ to obtain a certifying 3-edge-
connectivity test for G in the same time and space. If G′ is not 3-connected, the
test on 3-connectivity returns a vertex cut of minimal size in G′, which corresponds
to an edge cut X of size at most two in G. The certificate then consists just of the
red-green coloring of the connected components of G\X as described in Section 3.6.1.
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Otherwise, G′ is 3-connected and we get a sequence (3.8) for G′. The certificate
consists of this sequence, G′ and the injective mapping φ from each vertex in G′ to
its corresponding vertex or edge in G to certify the construction of G′. For a checker,
it suffices to verify that G′ is 3-connected using the given sequence, every vertex in
G has a unique preimage in V (G′) under φ, every non-arc-vertex v in G′ is the hub
of a wheel graph with v + 1 vertices that are all arc-vertices except for v, every two
wheels in G′ share at most one arc-vertex and every arc-vertex u in G′ is incident to
exactly two non-arc-vertices v and w such that φ(u) = φ(v)φ(w) and φ(u) ∈ E(G).

Note that this checker may fail in detecting additional edges (but not in detecting
additional vertices) in G and that this does not harm the 3-edge-connectivity of G.
The certificate needs linear space and can be checked in time O(m).

Corollary 49. There is a certifying algorithm that tests a simple graph G on 3-
edge-connectivity in time O(n2).





Chapter 4

Certifying 3-Connectivity in
Linear Time

At the end, we had something
complete that made everything
obvious, that made us realize
how we should have attacked the
problem. It takes a long time to
realize the right form.

John E. Hopcroft [20]

We show that all construction sequences of the last chapter can be computed in
optimal time O(m). This gives linear-time certifying algorithms that test graphs on
k-connectivity and k-edge-connectivity for k ≤ 3.

Section 4.1 introduces a decomposition of the input graph that partitions the edge
set of the graph into cycles and paths, called chains. On a high level view, chains
provide a structure that will allow us to compute the next step of the construction
efficiently. In Section 4.2, a certifying linear-time algorithm is given that computes
a construction sequence if the input graph is 3-connected and a separation pair or
cut vertex if the input graph is not 3-connected.

4.1 Chain Decompositions

We introduce a very simple decomposition of graphs into cycles and paths, which
links DFS-trees, ear decompositions and open ear decompositions [42, 83] with-
out needing to compute low-points in advance (see [35] for a definition of low-
points). This decomposition does not only unify existing linear-time tests on 2-
connectivity [11, 16, 18, 19, 21, 64, 66] and 2-edge-connectivity [65, 71, 74], it will
also be the base structure that allows to compute a construction sequence of a 3-
connected graph efficiently. We define the decomposition algorithmically.
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Let G be a simple but not necessarily connected graph and let T be a depth-first
search forest of G. The DFS assigns a depth-first index (DFI) to every vertex. Recall
that, for every backedge e, s(e) and t(e) are the two end vertices of e such that s(e)
is a proper ancestor of t(e) in T .

We decompose G into a set C = {C1, . . . , C|C|} of cycles and paths, called chains,
by applying the following procedure for each vertex v in ascending DFI-order: Let
T ′ be the tree in the DFS-forest T that contains v and let r be the root of T ′. For
every backedge vw with s(vw) = v, we traverse the path w →T ′ r until a vertex x
is found that is either r or already contained in a chain. The traversed subgraph
vw ∪ (w →T ′ x) forms a new chain Ci with s(Ci) = v and t(Ci) = x.

We call C a chain decomposition (although it does not partition E(G) when G
is not 2-edge-connected). Let < be the strict total order on C in which the chains
were found, i. e., C1 < · · · < C|C|. Processing the vertices in ascending DFI-order is
not crucial; any pre-order on V (T ) can be used instead. Clearly, the decomposition
into chains can be computed in time O(n+m).

4.1.1 Testing 2-(Edge-)Connectivity

We show that the connectivity, 2-connectivity and 2-edge-connectivity of simple
graphs G can be deduced from any chain decomposition of G by testing very simple
conditions.

Lemma 50. Let C be a chain decomposition of a simple graph G. Then G is
connected if and only if |C| = m− n+ 1.

Proof. Let G be connected. Then G contains exactly m − n + 1 backedges. Since
every chain in C contains exactly one backedge, |C| = m− n+ 1 holds.

Let |C| = m − n + 1. Assume to the contrary that G is not connected and
let T1, . . . , Tj with j > 1 be the trees in the DFS-forest T . For every Ti holds
|E(Ti)| = |V (Ti)| − 1. Thus,

∑
1≤i≤j |E(Ti)| =

∑
1≤i≤j |V (Ti)| − j = n− j. It follows

from |C| = m−
∑

1≤i≤j |E(Ti)| that |C| = m−n+j. This contradicts the assumption,
because j > 1.

Lemma 51. Let C be a chain decomposition of a simple graph G. Then G is 2-
connected if and only if δ(G) ≥ 2 and C1 is the only cycle in C.

Proof. Let G be 2-connected. Then G contains at least 3 vertices, the DFS-forest
T is a tree and the root r of T has exactly one child, as otherwise r would be a
cut vertex. Additionally, G cannot contain a vertex of degree one, as otherwise its
neighbor would be a cut vertex. It follows that r is adjacent to a backedge, implying
that C1 is a cycle. Assume to the contrary that another chain Ci 6= C1 is a cycle. Let
v be the vertex in Ci of minimal DFI and let w be the child of v in T that is also in
Ci. Then no backedge that starts on a proper ancestor of v can enter T (w), as this
backedge would have been processed before in the chain decomposition, contradicting
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that Ci is a chain. By construction, v 6= r and it follows that v is a cut vertex, which
contradicts the assumption.

Now let every vertex in G have degree at least two and let C1 be the only cycle in
C. Then n > 2 holds and G must be connected, as every connected component of G
contains a cycle. Thus, T is a tree. Assume to the contrary that G is not 2-connected
and consider the decomposition of G into maximal 2-connected components (we say
2-components), where K2 is regarded as 2-connected. It is well-known that repre-
senting each 2-component by a vertex that is adjacent to every cut vertex contained
in that 2-component gives a tree [23, 32], called the block-cut-tree (BC-tree). Every
cycle in G must be contained in a 2-component, as a cycle is 2-connected. Let X be
the 2-component that contains C1, let r be the root of T and let Y be a leaf of the
BC-tree that is different from X. Then Y is not a K2, as otherwise it would contain
a vertex with degree one. It follows that Y contains a cycle. Let a be the last cut
vertex on a path from r to an arbitrary vertex in Y (it may happen that a = r).
Then the chain decomposition must find a cycle in Y when processing a. This cycle
is different from C1 ⊆ X, which contradicts the assumption.

Note that it is necessary for 2-connected and 2-edge-connected graphs that the
minimum degree δ(G) of G is at least two, as otherwise G would either be discon-
nected or contain a cut vertex. Lemma 52 will cover this necessity implicitly.

Lemma 52. Let C be a chain decomposition of a simple graph G with n > 1. Then
G is 2-edge-connected if and only if |C| = m − n + 1 and the chains in C partition
E(G).

Proof. Let G be 2-edge-connected. In particular, G is connected and the DFS-forest
T is a tree. With Lemma 50, |C| = m − n + 1. By construction, the edge-sets of
chains in C are disjoint and every backedge is contained in a chain. We show that
every edge e = xy in T (say, x is an ancestor of y) is also contained in a chain of
C. There must be a cycle in G that contains e, as otherwise e would be a bridge.
It follows that there is a backedge that enters T (y). The chain in C containing the
first such backedge that is traversed in the chain decomposition contains e.

Let |C| = m − n + 1 and let the chains in C partition E(G). According to
Lemma 50, G is connected and T must be a tree. By assumption, n > 1. Assume
to the contrary that G is not 2-edge-connected. Then G must contain a bridge. Let
e = xy be that bridge with x being an ancestor of y in T . As no backedge enters
T (y), e cannot be contained in any chain of C. This contradicts the assumption that
C partitions E(G).

With computing one chain decomposition of G, we can easily check whether G is
disconnected, connected, 2-connected and 2-edge-connected in linear time by using
Lemmas 50, 51 and 52. If G is not 2-connected, we extract a cut vertex as follows: If
a vertex with degree one exists, its neighbor is a cut vertex. Otherwise, C contains
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at least one cycle Ci 6= C1, according to Lemma 51. Then the vertex with minimal
DFI in every such cycle Ci 6= C1 is a cut vertex. If G is not 2-edge-connected, every
edge that is not contained in a chain of C is a bridge. Once a cut vertex or bridge is
computed, we can use the red-green coloring of Section 3.6.1 as certificate; the same
holds when G is disconnected.

If G is 2-connected and 2-edge-connected, C will be an open ear decomposition
and an ear decomposition [83], respectively. It is well-known that these decompo-
sitions witness the 2-connectivity respective 2-edge-connectivity of a graph [42, 83].
Therefore, we can use the decomposition into chains in both cases as a certificate
that can be verified by going along the definition of (open) ear decompositions in
time O(m). Note that C is not an arbitrary (open) ear decomposition; it depends
on the DFS-tree.

4.2 A Certifying Algorithm in Linear Time

For convenience, we will assume that the input graph G is simple throughout this
chapter. As shown in Section 2.1, vertex connectivity is neither dependent on parallel
edges nor on self-loops. However, if needed, all results can be extended to non-simple
graphs G by applying them to the underlying simple graph of G; the underlying
simple graph of G can be computed in time O(n+m) by using two bucket sorts on
E(G).

We do not impose any other restrictions on G; in particular, we neither assume
G to be 2-connected nor connected. The certifying algorithm that we will describe
tests a graph actually on having connectivity k for k = 0, 1, 2 and k ≥ 3 and gives
a certificate for each case. Its running time is O(n + m). In the case that G is 3-
connected, we will use a sequence (3.8) as certificate and show how to compute it in
linear time. According to Theorem 41, this implies that every sequence (3.1)–(3.10)
of a 3-connected graph can be computed in time O(n+m).

4.2.1 Using the Chain Decomposition

If n ≤ 1, G has connectivity 0 and the number of vertices certifies that fact. Oth-
erwise, we perform a DFS on G in time O(n + m) and obtain a DFS-forest T . In
particular, the DFS detects the connected components of G. If there is more than
one connected component, we use the red-green coloring of Section 3.6.1 on the con-
nected components as certificate that G is disconnected and, thus, has connectivity 0,
as n > 1. For upcoming tests, we will assume that every vertex cut is certified by a
red-green coloring.

In the remaining case, G is connected and T is a tree. If n = 2, G has connec-
tivity 1. Otherwise, we compute a chain decomposition C on T in O(m) and obtain
the chains C1 < · · · < C|C|. Additionally, we compute the minimum degree δ(G)
of G during the chain decomposition and store a vertex x that attains this degree.
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Moreover, by comparing the end vertices of each chain on identity, the number y of
cycles in C is computed.

If deg(x) = 1, G is not 2-connected and the neighbor of x must be a cut vertex,
yielding that G has connectivity 1. Let deg(x) > 1. If y > 1, the vertex with minimal
DFI in a cycle Ci 6= C1 is a cut vertex and can be computed directly from C in linear
time; thus, G has connectivity 1. Otherwise, y = 1 and it follows that the root of
T can have only one child. We conclude with δ(G) ≥ 2 that the only cycle in C is
C1. According to Lemma 51, G is 2-connected and C is an open ear decomposition,
which is a certificate for the 2-connectivity of G.

If n = 3, G has connectivity 2. The same holds, if deg(x) = 2, as then the two
neighbors of x form a separation pair. In the remaining case, G satisfies the following
Property A.

Property A: n ≥ 4, δ(G) ≥ 3 and G is 2-connected

From now on, we will assume Property A, as we dealt with all other cases. We
summarize some implications.

Lemma 53. The chains in C partition E(G) and the last chain is Cm−n+1. The
root r of T has exactly one child.

Proof. According to Property A, G is 2-connected. As every 2-connected graph is
2-edge-connected with Lemma 1, Lemma 52 implies that the chains in C partition
E(G). Since G is in particular connected, |C| = m− n+ 1 holds with Lemma 50. If
r would have more than one child, the DFS-tree would imply that r is a cut vertex,
contradicting the 2-connectivity of G.

4.2.2 Computing a K3
2 -Subdivision

Assume for a moment that G is 3-connected. According to Lemma 32, it suffices
to add iteratively BG-paths to an arbitrary prescribed K3

2 -subdivision S3 in G to
get a construction sequence (3.8) from S3 to Sz = G. Note that we cannot make
wrong decisions when choosing a BG-path, except for the first BG-path that has
to generate a K4-subdivision. The reason is that Lemma 32 can always be applied
on the new generated subgraph and therefore ensures a completion of the sequence.
With Lemma 42, Sz = Sm−n+2 = G. Unfortunately, we do not know whether G is
3-connected. However, we can already compute a K3

2 -subdivision.
Let r be the root of T . Because of Property A, deg(r) ≥ 3 in G but r has exactly

one child in T . Therefore, at least two chains exist and the chains C1 and C2 must
both start at r. According to Lemma 51, C1 is a cycle and all other chains are paths.
By construction of the chains, C1 ∪C2 is a K3

2 -subdivision and we set S3 = C1 ∪C2.
Recall that for a path P = v →G w, we defined s(P ) = v and t(P ) = w. To keep

further explanations as simple as possible, we split the cycle C1 into the two different
paths from r to t(C2), i. e., we set C0 = t(C2) →T r and C1 = r →C1\E(C0) t(C2).
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Note that s(C0) = t(C2) and s(C1) = r. From now on, we will represent the chain
decomposition as this list C = C0, . . . , Cm−n+1 of paths. Sometimes, we will regard
C as a set. By construction, the following holds.

Proposition 54. Let Ci be a chain in C \ {C0}. Then s(Ci) is a proper ancestor of
t(Ci). Additionally, Ci contains exactly one backedge, namely its first edge.

According to Lemma 52, every edge in G is contained in exactly one chain. We
define parents and children of chains.

Definition 55. Let the parent of a chain Ci 6= C0 be the chain Ck that contains
the edge from t(Ci) to the parent of t(Ci) in T . Conversely, let Ci be a child of the
chain Ck.

The children of C0 are exactly the chains Ci with t(Ci) ∈ V (C0). The children
of a chain Ck 6= C0 are exactly the chains Ci for which t(Ci) is an inner vertex of
Ck. The following two lemmas reveal much of the structure of chains and are often
used in subsequent theorems.

Lemma 56. Let Ck 6= C0 be a chain with child Ci. Then Ck < Ci, s(Ci) is a
descendant of s(Ck) in T and t(Ci) is a proper descendant of t(Ck) in T .

Proof. By the definition of the parent relation, t(Ci) must be an inner vertex of
Ck and the last claim follows. As the traversal of Ci stopped at Ck in the chain
decomposition, Ck < Ci must hold. Therefore, s(Ci) cannot be a proper ancestor of
s(Ck) in T . As T is a DFS-tree, s(Ci) must be a descendant of s(Ck) in T .

We show that chains admit a tree structure.

Lemma 57. The parent relation on C defines a tree U with V (U) = C and root C0.

Proof. Let D0 6= C0 be a chain in C and let D1, . . . , Dk be the sequence of chains
containing the edges of t(D0) →T r in that order, omitting double occurrences. By
definition of the parent relation, each Di, 0 ≤ i < k, has parent Di+1. It follows with
Dk = C0 that U is connected. Moreover, U is acyclic, as parent chains are always
smaller in < than their children due to the chain decomposition.

For convenience, U will always denote the tree that is defined by the parent
relation on C.

It remains to show how we can efficiently compute either a next BG-path for
the current subgraph Sl, starting with l = 3, or a cut vertex or separation pair.
For this purpose, we classify the chains into different types in Section 4.2.3. We
will eventually consider the chains Ci ∈ C in the total order < and focus on the
chains that have a non-empty intersection with Ci in every step. Certain types
of these chains will be BG-paths and therefore lead to the next subgraph in the
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construction sequence. The remaining ones will be grouped into bigger structures,
called caterpillars, that can be decomposed into BG-paths later if the input graph
is 3-connected (see Section 4.2.4).

To make the computation efficient, Section 4.2.5 restricts the desired construction
sequence, which we try to compute, to a more special sequence. It is not clear that
this restricted construction sequence for 3-connected input graphs exists; its existence
is shown in Section 4.2.6. Section 4.2.7 deals with the computation of the restricted
construction sequence in linear time by a reduction to interval overlaps.

4.2.3 Classification of Chains

We assign one of the Types 1, 2a, 2b, 3a and 3b to each chain Ci ∈ C \ {C0} in
ascending order of <. The types are defined by Algorithm 1 and dependent on the
parent Ck of Ci: E. g., Ci is of Type 1 if (t(Ci) →T s(Ci)) ⊆ Ck and of Type 2 if
it is not of Type 1 and s(Ci) = s(Ck). All chains are unmarked at the beginning of
Algorithm 1. Note that chains that are backedges, in particular chains of Type 2a,
cannot have children. We illustrate the different types in Figures 4.1, 4.2 and 4.9(b).

Algorithm 1 classify(Ci ∈ C \ {C0},DFS-tree T )
1: Ck := parent(Ci) . the parent of Ci in U : Ck < Ci

2: if t(Ci)→T s(Ci) is contained in Ck then . Type 1
3: assign Type 1 to Ci

4: else if s(Ci) = s(Ck) then . Type 2: Ck 6= C0, t(Ci) is inner vertex of Ck

5: if Ci is a backedge then
6: assign Type 2a to Ci . Type 2a
7: else
8: assign Type 2b to Ci; mark Ci . Type 2b
9: else . Type 3: s(Ci) 6= s(Ck), Ck 6= C0, t(Ci) is inner vertex of Ck

10: if Ck is not marked then
11: assign Type 3a to Ci . Type 3a
12: else . Ck is marked
13: assign Type 3b to Ci; create a list Li = {Ci}; Cj := Ck . Type 3b
14: while Cj is marked do . Li is called a caterpillar
15: unmark Cj ; append Cj to Li; Cj := parent(Cj)

We first prove a basic property of chains of Types 2 and 3 and then show that
the classification of chains can be carried out in linear time.

Lemma 58. Let Ci 6= C0 be a chain of Type 2 or 3 and let Ck be the parent of Ci.
Then Ck 6= C0 and t(Ci) is an inner vertex of Ck.

Proof. Assume to the contrary that Ck = C0. Because t(Ci) is contained in C0, s(Ci)
must be in C0 as well. But then Ci would be of Type 1, since t(Ci)→T s(Ci) ⊆ C0.
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Type 2a, as it is
a backedge.

Ci

D2

D1

Ck

..
.

D4

D3

..
.

..
.

(c) Ci and D1 − D4 are of
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Type 3a.
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(e) Ci is of Type 3b, as Ck is
marked. The chain classifica-
tion traverses the marked an-
cestors Ck, D0, D1 and D2 of
Ci, unmarks them and builds
the list Ci, Ck, D0, D1, D2 (the
caterpillar Li).

Figure 4.1: Different types of chains. Light solid (blue) chains are of Type 1, (red)
dashed ones of Type 2 and black solid ones of Type 3.
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Therefore, Ck 6= C0 holds and Ck must start with a backedge. Then the definition
of the parent relation implies that t(Ci) is an inner vertex of Ck.

Lemma 59. Classifying each chain with Algorithm 1 takes running time O(m).

Proof. In order to obtain a fast classification, we store the following information for
each chain Ci: A pointer to its parent Ck (for Ci 6= C0), pointers to s(Ci) and t(Ci)
and the information whether Ci is a backedge. In addition, we store on each inner
vertex of Ci a pointer to Ci. That allows us to check vertices on being contained as
inner vertices or end vertices in arbitrary chains in O(1). If Ck = C0, Ci is of Type 1,
as in that case t(Ci) and s(Ci) are contained in C0. If Ck 6= C0, Ci is of Type 1
if s(Ci) is contained in Ck \ s(Ck), which can be checked in constant time. The
conditions for Type 2a and 2b need constant time as well. Every chain is marked at
most once, therefore unmarked as most once in Line 15 of Algorithm 1, which gives
a total running time of O(m).

Note that the classification with Algorithm 1 can be easily integrated into the
chain decomposition. From now on, we assume that we have classified all chains.

We remark that the chains of Types 1 and 3 are identical to the paths that the
path-finding procedure in the algorithm of Hopcroft and Tarjan [34] computes by
using low-points, although the order is different. However, this does not hold for the
chains of Types 2a and 2b.

We next define a necessary property for G to be 3-connected.

Property B: For every chain Ci ∈ C \ {C0} that is not a backedge and for its last
inner vertex x, G contains a backedge e that enters T (x) such that s(e) is an
inner vertex of t(Ci)→T s(Ci).

We say that a chain Ci has Property B if Ci does not violate Property B (thus,
C0 and every chain that is a backedge has Property B).

Lemma 60. If a chain Ci violates Property B, {s(Ci), t(Ci)} is a separation pair in
G.

Proof. The chain Ci can neither be C0 nor a backedge. Let x be the last inner vertex
of Ci. We first show that G contains a vertex y that is neither in {s(Ci), t(Ci)} nor
in T (x). Assume otherwise. Then s(Ci) must be the root of T , C0 is the tree edge
s(Ci)t(Ci) in T and Ci is either C1 or C2, say C1. As C2 cannot contain inner
vertices, C2 must be the backedge s(Ci)t(Ci), which contradicts the simpleness of G.

We show the claim. Every backedge that enters T (x) must start at a vertex in
t(Ci)→T s(Ci), as otherwise either the DFS structure or the traversal of Ci by the
chain decomposition would be violated. As Property B does not hold for Ci, all
backedges that enter T (x) start either at s(Ci) or t(Ci). This causes {s(Ci), t(Ci)}
to be a separation pair in G, because its deletion separates the vertices y and x.



54 CHAPTER 4. CERTIFYING 3-CONNECTIVITY IN LINEAR TIME

Thus, Property B is necessary for G being 3-connected. The reader that is mainly
interested in the computation of a construction sequence for a given 3-connected
graph can therefore safely take Property B as granted. For the case that G is not
known to be 3-connected, we show how to check Property B in linear time as part
of the chain decomposition.

Lemma 61. Property B can be checked in time O(n + m) as part of the chain
decomposition.

Proof. We mark every chain that has Property B with a special marker during the
chain decomposition. This gives a test on Property B in O(n+m) time. Clearly, C0
has Property B and we mark it in advance. Every chain that is a backedge has also
Property B and we mark those chains as well (note that these are leaves in U , as they
have no child). Whenever a chain D0 6= C0 is found in the chain decomposition that
is not of Type 2 (in fact, it suffices to deal only with Type 3 chains, but we omit the
proof for the sake of a clearer presentation), we traverse the path P = D0 →U C0
until a chain Cj 6= D0 is reached that is already marked or contains s(D0). We
mark every chain in V (P ) \ {D0, Cj}. The total running time for this procedure is
O(n+m), as no chain is marked twice.

It remains to show correctness. Let Ci be a chain that has Property B and
assume to the contrary that Ci was not marked by the procedure. Then Ci 6= C0
and Ci is not a backedge. Let x be the last inner vertex of Ci. Let e be the backedge
that enters T (x) with s(e) being an inner vertex of t(Ci) →T s(Ci) such that e
was traversed first by the chain decomposition. Let D0 be the chain that contains
e and let D0, . . . , Dk, Ci be the vertices on the path D0 →U Ci. As e is the first
traversed backedge entering T (x) such that s(e) is an inner vertex of t(Ci)→T s(Ci),
Lemma 56 implies s(D1) = s(D2) = · · · = s(Dk) = s(Ci). In particular, D0 cannot
be of Type 2. It follows that D0 was traversed by our procedure and that s(D0) is not
contained in any of the chains D1, . . . , Dk, Ci. As Ci is not marked by assumption, no
chain in D0, . . . , Dk can be marked at this point in time in the chain decomposition.
Thus, the procedure marks all chains D1, . . . , Dk, Ci, which gives a contradiction.

Let Ci be a chain that has not Property B. Then Ci 6= C0 and Ci is not a
backedge. Let x be the last inner vertex of Ci. Assume to the contrary that Ci

was marked by the procedure and let e be the backedge that initiated the traversal
that marked Ci. We denote the chain that contains e with D0. With Lemma 56
and Ci < D0, s(e) must be a descendant of s(Ci). As D0 is by assumption not of
Type 2 and s(e) is not an inner vertex of t(Ci)→T s(Ci), s(e) must be a descendant
of t(Ci). But this contradicts that the traversal of e in the procedure marks Ci, as
Ci contains s(e).

We check Property B by applying the algorithm of Lemma 61. If Property B is
violated by a chain Ci, G has connectivity 2 due to Lemma 60 and the algorithm



4.2. A CERTIFYING ALGORITHM IN LINEAR TIME 55

efficiently computes the separation pair {s(Ci), t(Ci)}. Otherwise, Property B is
true; from now on, we will assume Property B.

We conclude this section with two direct consequences of Property B. Let a chain
Ci 6= C0 enter a subtree T ′ of a tree if the backedge in Ci enters T ′. A chain in a
subset of C is minimal if it is minimal with respect to < in that subset.

Lemma 62. The chain C0 contains an inner vertex.

Proof. At least one of the chains C1 and C2, say C1, is not a backedge, as G is simple
and both chains have the same end vertices as C0. Since C1 has Property B, there
is an inner vertex in C0 = t(C1)→T s(C1).

Lemma 63. Let Ci 6= C0 be a chain that is not a backedge and let x be the last inner
vertex in Ci. Then there is a chain Cj of Type 3 that enters T (x) with s(Cj) being
an inner vertex of t(Ci)→T s(Ci).

Proof. According to Property B, there is a non-empty set X of backedges that enter
T (x) and start at an inner vertex of t(Ci) →T s(Ci). Due to Lemma 53, every
backedge in X is contained in exactly one chain. Let Cj be the minimal chain that
contains a backedge in X. By definition of types of chains, Cj must be of Type 3.

4.2.4 Caterpillars

Whenever a chain Ci of Type 3b is found in Algorithm 1, the path Ci →U C0
is traversed until a chain Cj is found whose parent is not marked. The chains in
Ci →U Cj are stored in a list Li and unmarked (see Line 15 of Algorithm 1 and
Figure 4.1(e)). This way, every chain Ci of Type 3b is associated with a list Li;
we call each Li a caterpillar (sometimes, we will regard Li as a set instead of a
list). Caterpillars group chains in order to handle them more easily. We give basic
properties of caterpillars.

Lemma 64. Every caterpillar Li consists of exactly one chain of Type 3b, namely
the chain Ci, and one or more chains of Type 2b.

Proof. Clearly, Ci ∈ Li (see Line 13 in Algorithm 1). The claim follows directly from
the fact that only chains of Type 2b are marked and the definition of Type 3b.

Lemma 65. The set of chains C \ {C0} is partitioned into the chains of Types 1,
2a and 3a and the chains being contained in caterpillars. Moreover, no chain is
contained in two caterpillars.

Proof. With Lemma 64, it remains to show that every chain Ci of Type 2b is con-
tained in exactly one caterpillar. At the time Ci was classified as Type 2b, Ci was
marked. We show that Ci is not marked anymore after all chains in C have been
classified. This forces Ci to be contained in exactly one caterpillar, as the only way



56 CHAPTER 4. CERTIFYING 3-CONNECTIVITY IN LINEAR TIME

to unmark chains is to append them to a caterpillar (see Line 15 of Algorithm 1)
and no chain is marked twice.

Let Ck be the parent of Ci. Because Ci is of Type 2b, Ci 6= C0 and Ci is not a
backedge. Let x be the last inner vertex of Ci. According to Lemma 63, there is a
chain of Type 3 that enters T (x) and starts at an inner vertex in t(Ci) →T s(Ci).
Let Cj be the minimal such chain. Immediately before Cj is found in the chain
decomposition, every chain that ends at a vertex in T (x) must start at s(Ci) with
Lemma 56 and is therefore of Type 2a or 2b. Since chains of Type 2a are backedges
and cannot have children, the parent of Cj must be of Type 2b and is therefore
marked. Moreover, every chain corresponding to a vertex in V (Cj →U Ci) \ {Cj} is
of Type 2b and marked. Thus, Cj is of Type 3b and Algorithm 1 unmarks Ci (see
Line 15 of Algorithm 1).

The above arguments show also that the chain of Type 3b in a caterpillar cannot
start at an arbitrary vertex. We get the following result.

Lemma 66. Let Li be a caterpillar and Dk be the minimal chain in Li. Then s(Ci)
is an inner vertex of t(Dk)→T s(Dk).

Proof. Let x be the last inner vertex of Dk. According to the construction of cater-
pillars, Ci is the minimal chain that ends on a vertex in T (x) and is neither of Type 1
nor Type 2. With Lemma 63, s(Ci) is an inner vertex in t(Dk)→T s(Dk).

Definition 67. Let the parent of a caterpillar Li be the parent of the minimal chain
in Li.

For computing the next BG-paths, we will often consider caterpillars as whole or
chains that are not contained in caterpillars.

Definition 68. A cluster is either a caterpillar or a chain of Type 1, 2a or 3a.

With Lemma 65, every chain Ci 6= C0 is contained in exactly one cluster. The
cluster of a chain is the cluster that contains the chain. The clusters of a set X of
chains are the clusters of chains in X, omitting double occurrences. We extend the
strict total order < on chains to clusters.

Definition 69. For two clusters A and B, let A < B if there is a chain Ca in A and
a chain Cb in B with Ca < Cb.

Note that the relation < on clusters is still a strict total order, as caterpillars
correspond to vertex-disjoint paths P in U with the property that one end vertex of P
is a proper ancestor of the other end vertex in U . Recall that we defined a pre-order
only for the vertices of a forest, e. g., < is a pre-order on V (U). For completeness,
we extend pre-orders to clusters. Note that the ancestors of cluster are well-defined
by the given parent-relations for chains and caterpillars.

Definition 70. Let a strict total order ≺ on a set of clusters F be a pre-order if,
for every cluster A ∈ F , all proper ancestors of A in F precede A in ≺.
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4.2.5 Restrictions

We impose restrictions on the construction sequence that will simplify the computa-
tion. Recall that S3, . . . , Sm−n+2 is the sequence of generated subgraphs of G in the
construction sequence when G is 3-connected.

Definition 71. Let Sl, 3 ≤ l ≤ m − n + 2, be upwards-closed if, for each vertex v
in Sl, the edge from v to its parent is contained in Sl. Let Sl be modular if Sl is the
union of chains.

Thus, if a modular and upwards-closed subgraph Sl contains a chain Ci, Sl must
contain also the parent of Ci. Clearly, S3 is upwards-closed and modular. In order
to find BG-paths efficiently, we want to restrict every Sl to be upwards-closed and
modular. However, this is not possible, as the following example shows. Consider
S3 = {C0, C1, C2} in the graph of Figure 4.2. As every BG-path for S3 has end
vertices x and y, S4 cannot be modular.

C3
C2

C0
C4

C6
C5

C1

y

x

Figure 4.2: C1 and C2 are of Type 1, C3 is of Type 2b, C4 of Type 2a, C5 of Type 3b
and C6 of Type 3a. No BG-path for the subgraph S3 (depicted with thick blue edges)
preserves modularity.

Therefore, we impose the following weaker restriction (R1): We add only clusters
that can be decomposed into subsequent BG-paths and whose additions generate
upwards-closed and modular subgraphs. We additionally demand that each cluster
is decomposed into as many BG-paths as it contains chains. Thus, if the cluster is
not a caterpillar, just a chain of Type 1, 2a or 3a is added that is a BG-path. Note
that intermediate BG-paths of clusters that are caterpillars may violate upwards-
closedness and modularity.

For the generated subgraph Sl+t, we impose also the restriction (R2) that no link
in Sl+t that consists only of tree edges has a parallel link. This will prevent BG-path
candidates from violating Property 30c due to the DFS-structure (see Figure 4.3).
It implies also that the BG-path that is applied on S3 generates a K4-subdivision
and not a K4

2 -subdivision. This is necessary for a sequence (3.8) by definition. Note
that (R2) does not hold for S3, as C0 has the parallel links C1 and C2. It must
however hold for all following subgraphs. We summarize the restrictions.
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..
.

Ci

...

...

(a) allowed

...
Ci

Cj

...

(b) forbidden

Figure 4.3: The effect of Restriction (R2) on adding the BG-path Ci to the fat
subgraph. Note that adding Ci in Figure (b) would allow the chain Cj to violate
Property 30c next.

Restrictions: Let Sl ⊂ G be the current upwards-closed and modular subgraph.
We add a cluster that

(R1) – can be decomposed into as many subsequent BG-paths as it contains
chains and

– generates an upwards-closed and modular subgraph Sl+t such that
(R2) – no link in Sl+t that consists only of tree edges has a parallel link in

Sl+t (note that Sl+t 6= S3).

In particular, Restriction (R1) forces the total number of operations in the con-
struction sequence to be |C \ {C0, C1, C2}| = |C| − 3. According to Lemma 53,
|C| − 3 = m − n − 1, which is necessary for every sequence (3.8), as shown in
Lemma 42.

From now on, we will only deal with construction sequences that are restricted
by (R1) and (R2). Whenever we are searching for new BG-paths, the current sub-
graph Sl is upwards-closed, modular and consists of exactly l chains. We denote Sl

by SR
l in such cases to emphasize these properties. It is not clear whether such a

restricted construction sequence exists; we will prove its existence in Section 4.2.6.
For simplicity, we say for a cluster that satisfies (R1) and (R2) on SR

l that it can
be added. We first show that Restriction (R2) implies Property 30c.

Lemma 72. Every path P for SR
l with Properties 30a and 30b is a BG-path. If P

is additionally a chain of Type 2a or 3a, P can be added.

Proof. For the first claim, assume to the contrary that P violates Property 30c.
Then |Vreal(SR

l )| ≥ 4 must hold and SR
l 6= SR

3 follows. Let Q and Z be the parallel
links of SR

l that contain the end vertices of P as inner vertices, respectively. Both
links, Q and Z, must contain a backedge, as otherwise one of them would contain
only tree edges and (R2) would be violated, since SR

l 6= SR
3 .
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Ca

Ci

Ck

Q

...
...

Figure 4.4: The chain Ci of Type 3 can be added to the fat subgraph.

Let Ci 6= C0 be the chain in SR
l that contains Q and let Cj 6= C0 be the chain in

SR
l that contains Z. According to Proposition 54, Ci and Cj contain each exactly

one backedge (the first edge). This implies that s(Ci) is an end vertex of Q, s(Cj) is
an end vertex of Z and s(Ci) = s(Cj). Let v be the vertex in Q∩Z that is different
from s(Ci). By construction of the chain decomposition, the inner vertices of Q and
Z are contained in disjoint subtrees of T . Since T is a DFS-tree, P must contain an
inner vertex that is an ancestor of v. As SR

l is upwards-closed, this vertex is already
contained in SR

l , which contradicts P to have Property 30a.
For the second claim, let P be a chain of Type 2a or 3a. Since P is a chain,

SR
l+1 is upwards-closed and modular and (R1) is satisfied. By definition of Types 2

and 3, t(P ) →T s(P ) is not contained in a chain in SR
l and therefore has an inner

vertex that is the end vertex of a chain in SR
l . As this vertex is real, adding P

preserves (R2) if SR
l 6= SR

3 . In the remaining case SR
l = SR

3 , P must be of Type 3a,
as otherwise P would contradict Property 30b. Then adding P must induce an inner
real vertex in C0, which satisfies (R2) for SR

4 .

We show under which conditions chains of Types 1, 2a and 3a can be added to
SR

l if not already contained in SR
l .

Lemma 73. Let Ci 6= C0 be a chain such that the parent Ck of Ci but not Ci itself is
contained in SR

l . If Ci is either of Type 1 with an inner real vertex in t(Ci)→T s(Ci),
of Type 2a with a real vertex in (t(Ci) →Ck

s(Ci)) \ s(Ci) or of Type 3a, Ci can be
added.

Proof. Since SR
l is upwards-closed, modular and contains Ck, Ci satisfies Prop-

erty 30a in all cases. Let Ci be of Type 1. Then the inner real vertex in t(Ci) →T

s(Ci) prevents any link that contains both, s(Ci) and t(Ci), from having s(Ci) or
t(Ci) as an inner vertex. This causes Ci to have Property 30b. Lemma 72 implies
that Ci is a BG-path for SR

l . As adding Ci preserves SR
l+1 to be upwards-closed and
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modular, (R1) is satisfied. Due to the inner real vertex in t(Ci)→T s(Ci), SR
l must

be different from SR
3 and (R2) holds in SR

l+1. It follows that Ci can be added.
Let Ci be of Type 2a. The vertex s(Ci) is real, as it is the end vertex of a chain

in SR
l . If additionally t(Ci) is real, every link in SR

l that contains s(Ci) and t(Ci)
must contain s(Ci) and t(Ci) as end vertices. Otherwise, t(Ci) →Ck

s(Ci) contains
an inner real vertex by assumption and t(Ci) must be an inner vertex of a link in
SR

l that does not contain s(Ci), as t(Ck) is real. Both cases ensure that Ci has
Property 30b. Using Lemma 72, Ci can be added.

Let Ci be of Type 3a. Then s(Ci) 6= s(Ck) holds by definition and Ck 6= C0, as
otherwise Ci would be of Type 1. Additionally, Ck < Ci, since Ck is the parent of
Ci. According to Lemma 56, s(Ci) must be an inner vertex of the path t(Ck) →T

s(Ck) (see Figure 4.4). Therefore, every chain Cj that contains both, s(Ci) and
t(Ci), satisfies Ci ∩ Cj = {s(Ci), t(Ci)} = {s(Cj), t(Cj)}. This causes Ci to have
Property 30b. Using Lemma 72, Ci can be added.

According to Lemma 73, the condition for adding a chain Ci 6⊆ SR
l of Type 3a

is very simple: It suffices that its parent is contained in SR
l . This yields a valuable

algorithmic approach. Whenever a chain in SR
l has children of Type 3a in U that are

not already in SR
l , these children can be added. We next give similar conditions for

the remaining Types 2b and 3b. According to Lemma 65, these chains are exactly
the ones that are contained in caterpillars.

Definition 74. Let a caterpillar Li with parent Ck be bad for SR
l if s(Ci) is con-

tained in Ck and s(Ci)→Ck
s(Ck) contains no inner real vertex (see Figure 4.5(a)).

Otherwise, Li is called a good caterpillar (see Figures 4.5(b) and (c)).

Let Li be a bad caterpillar with parent Ck and let y be the last vertex of the
minimal chain in Li. According to Lemma 66, s(Ci) ∈ V (t(Ck) →Ck

y) \ {y}. We
characterize good caterpillars.

Lemma 75. A caterpillar Li with parent Ck is good if s(Ci) is either an inner vertex
of t(Ck)→T s(Ck) (see Figure 4.5(b)) or a vertex in Ck such that s(Ci)→Ck

s(Ck)
contains an inner real vertex (see Figure 4.5(c)).

Proof. If s(Ci) /∈ V (Ck), s(Ci) must be an inner vertex of t(Ck) →T s(Ck) with
Lemma 66. Otherwise, s(Ci) ∈ V (Ck) and the path s(Ci) →Ck

s(Ck) contains an
inner real vertex, as otherwise Li would be bad.

We show that good caterpillars can be added under minor assumptions.

Lemma 76. Let Li be a caterpillar such that the parent Ck of Li but no chain in
Li is contained in SR

l . If Li is good, Li can be added.

Proof. Let Li be good and let t > 1 be the number of chains in Li. Clearly, the
graph generated by adding all chains in Li to SR

l is upwards-closed and modular,
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Ci

D0

Ck..
.

y

..
.

(a) A bad caterpillar Li

with parent Ck.

Ci

D0

Ck

..
.

y

..
.

(b) A good caterpillar Li with
parent Ck such that s(Ci) is
an inner vertex of t(Ck) →T

s(Ck).

Ci

D0

Ck..
.

y

b

a

..
.

(c) A good caterpillar Li

with parent Ck, s(Ci) ∈
V (Ck) and an inner real
vertex a in s(Ci) →Ck

s(Ck).

Figure 4.5: Kinds of caterpillars.

as Li consists of consecutive ancestors of Ci in U . It remains to show that Li

can be decomposed into t successive BG-paths for SR
l that generate the subgraphs

Sl+1, Sl+2, . . . , Sl+t such that Sl+t satisfies (R2). Let y be the last vertex of the
minimal chain in Li, thus y ∈ V (Ck).

We assume at first that s(Ci) is an inner vertex of t(Ck) →t s(Ck) (see Fig-
ure 4.5(b)). Then the path P = Ci ∪ (t(Ci) →T y) fulfills Properties 30a and 30b
and is a BG-path for SR

l with Lemma 72. Note that adding P preserves Sl+1 to be
upwards-closed but not modular. Successively, for each chain Cj of the t− 1 chains
in Li \ {Ci} (in arbitrary order), we add the path s(Cj)→Cj v with v being the first
vertex in Cj that is in P . All these paths are BG-paths, because y is real in Sl+1.

Now assume with Lemma 75 that s(Ci) is contained in Ck with an inner real
vertex a in s(Ci)→Ck

s(Ck) (see Figure 4.5(c)). We first show that t(Ck)→T s(Ck)
contains an inner real vertex as well. Assume the contrary. Then Ck must be of
Type 1 and contradicts (R2), unless SR

l = SR
3 . But SR

l must be different from SR
3 ,

since a exists, and it follows that t(Ck)→T s(Ck) contains an inner real vertex b.
Let D0 be the parent of Ci, which must be contained in Li, as t > 1. Then

(Ci ∪ D0) \ ((t(Ci) →T y) \ t(Ci)) is a BG-path due to the real vertices a and b

and we add it, although it neither preserves Sl+1 to be upwards-closed nor modular.
We next add t(Ci) →T y, which restores upwards-closedness. Successively, for each
chain Cj of the t − 2 remaining chains in Li \ {Ci, D0} (in arbitrary order), we
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add the path s(Cj) →Cj v with v being the first vertex in Cj that is contained in
V (t(Ci)→T y). With the same line of argument as before and Lemma 72, all these
paths are BG-paths.

We show that Sl+t satisfies (R2). Let Q be a link in Sl+t that consists only of
tree edges and that is not a link in SR

l , i. e., Q is generated when adding Li. If Q is
contained in Li, Q has no parallel link in Sl+t by construction. Otherwise, Q must
be contained in a link in SR

l that was subdivided by at least one of the real vertices
s(Ci) and y when adding Li. In this case, Q has no parallel link in Sl+t, as t(Ci) is
real in Sl+t for both decompositions of Li.

Otherwise, let Q be a link in Sl+t that consists only of tree edges and is a link in
SR

l as well. Then SR
l 6= SR

3 holds, as otherwise Q = C0 and adding Li would induce
an inner real vertex in Q, contradicting the choice of Q. It follows with (R2) that
Q has no parallel link in SR

l . Then Q cannot have a parallel link in Sl+t, as every
path between two of the three vertices {s(Ci), y, s(Ck)} in the union of chains in Li

contains an inner real vertex in Sl+t. We conclude that Sl+t satisfies (R2) and that
Li can be added.

Note that the decomposition of a good caterpillar Li into subsequent BG-paths
as shown in Lemma 76 can be computed in time linearly dependent on the edges in
Li.

4.2.6 Existence of the Restricted Sequence

We show that, even under the Restrictions (R1) and (R2), a construction sequence
from SR

3 to G exists.

Definition 77. Let ∼ be the equivalence relation on E(G) \ E(Sl) such that

– ∀e, f ∈ E(G) \ E(Sl) : e ∼ f if e = f or there is a path in G that contains e
and f but no vertex of Sl as inner vertex.

Let a subgraph H of a graph G be edge-induced by an edge set E′ ⊆ E(G) if
E(H) = E′ and V (H) is the union of the end vertices of all edges in E′.

Definition 78. Let the segments of Sl be the subgraphs of G that are edge-induced
by the equivalence classes of ∼. For a segment H of Sl, let V (H) ∩ V (Sl) be the
attachment vertices of H.

It is important to note that every segment of SR
l is the union of all vertices in a

subtree of U (we say of all chains in this subtree), as SR
l is modular and upwards-

closed. For a chain Ci that is not contained in Sl, let the segment of Ci be the
segment of Sl that contains Ci. Sometimes, we will identify a segment with the set
of the chains it contains.

The concept of segments is not new. Starting with the work of Auslander and
Parter [3], segments were used to design many efficient algorithms for problems
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related to planarity [13, 25, 35, 45, 50, 60, 80, 85] and 3-connectivity [34, 79, 80]. It
is folklore that a segment of a cycle in a 3-connected graph is either an edge or has
at least three attachment vertices. Due to Lemma 63, we can deduce this result (in
our notation) also for G, although G is not known to be 3-connected.

Lemma 79. Every segment H of SR
l that is not a backedge has at least three at-

tachment vertices.

Proof. Let Ci be the minimal chain in H. Since t(Ci) ∈ SR
l and SR

l is upwards-
closed, both vertices s(Ci) and t(Ci) are attachment vertices of H. The chain Ci

is not a backedge, as otherwise H would be a backedge. According to Lemma 63,
H contains a chain that starts at an inner vertex x of t(Ci) →T s(Ci). As SR

l is
upwards-closed, x is a third attachment vertex of H.

A chain whose parent is in SR
l but which is not contained in SR

l itself is of interest,
as it is a possible candidate for a BG-path.

Lemma 80. Every segment H of SR
l contains exactly one chain that is a child of a

chain in SR
l , namely the chain that is minimal in H.

Proof. Recall that upwards-closedness and modularity of SR
l implies that there is a

subtree U ′ of U such that H is the union of the chains in U ′. Clearly, only the root
Dk of U ′ (i. e., the minimal chain in H) can be a child of a chain in SR

l . The chain
Dk is a child of a chain in SR

l , as t(Dk) ∈ SR
l , SR

l is upwards-closed and SR
l contains

at least the root C0 of U .

We show in which cases chains of Type 3 that start in SR
l but are not contained

in SR
l can be added.

Lemma 81. Let D0 be a chain of Type 3 such that s(D0) ∈ V (SR
l ), D0 6⊆ SR

l and
D0 is minimal among the chains of Type 3 in its segment H. Let Dk < · · · < D0 be
all ancestors of D0 that are contained in H. Then the clusters of Dk, . . . , D0 can be
successively added to SR

l , unless one of the following exceptions holds.

1. D0 is of Type 3a, k = 1, Dk is of Type 1, s(D0) is an inner vertex of t(Dk)→T

s(Dk) and there is no inner real vertex in t(Dk)→T s(Dk) (see Figure 4.6(a)),

2. D0 is of Type 3b and {D0, . . . , Dk} is a bad caterpillar (see Figure 4.6(b)),

3. D0 is of Type 3b, {D0, . . . , Dk−1} is a caterpillar, Dk is of Type 1, s(D0)
is an inner vertex of t(Dk) →T s(Dk) and there is no inner real vertex in
t(Dk)→T s(Dk) (see Figure 4.6(c)).

Proof. Due to the choice of D0, there is no chain of Type 3 in {D1, . . . , Dk}. The
chain Dk is minimal in H. Additionally, {D1, . . . , Dk} does not contain a chain of
Type 2a, as chains of that type cannot have children.
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Figure 4.6: The three exceptions of Lemma 81. The black vertices in Exceptions 81.1
and 81.3 may also be non-real.

Let D0 be of Type 3a. If k = 0, t(D0) is contained in SR
l and D0 can be added

with Lemma 73, implying the claim. Otherwise, k ≥ 1. Assume thatD1 is of Type 2b
and let Cj 6= D0 be the chain of Type 3b in the caterpillar containing D1. Then
Cj is contained in H, as SR

l is upwards-closed and modular. Moreover, Cj < D0
holds, as otherwise D0 would have been of Type 3b in the chain decomposition. This
contradicts the minimality of D0 and it only remains that D1 is of Type 1.

The vertex s(D1) is a proper ancestor of s(D0), since D1 < D0 and D0 is not of
Type 2. Since D0 is not of Type 1, s(D0) must be a proper ancestor of t(D1). It
follows that s(D0) is an inner vertex of t(D1)→T s(D1). If k ≥ 2, D2 must contain
t(D1) →T s(D1), because D1 is of Type 1 and a child of D2. Hence, the edge e
joining s(D0) with the parent of s(D0) in T is contained in D2 (see Figure 4.6(a)).
But since SR

l is upwards-closed and s(D0) ∈ V (SR
l ), e must be contained in SR

l ,
contradicting that k ≥ 2. Thus, k = 1 and the parent of D1 in U is contained in SR

l .
If t(D1) →T s(D1) contains an inner real vertex, D1 and D0 can be subsequently
added with Lemma 73. Otherwise, Exception 81.1 holds.

Let D0 be of Type 3b and let Li be the caterpillar that contains D0. Due to (R1),
every chain in Li is contained in H and, by definition of caterpillars, D1 is of Type 2b
and in Li. Let Dt, 1 ≤ t ≤ k, be the minimal chain in Li. If t = k and Li is good,
the parent of Li is contained in SR

l and Li can be added with Lemma 76. If t = k

and Li is bad, Exception 81.2 holds (see Figure 4.6(b)).
The only remaining case is t < k. Assume that Dt+1 is of Type 2b and let Cj



4.2. A CERTIFYING ALGORITHM IN LINEAR TIME 65

be the chain of Type 3b in the caterpillar containing Dt+1. Then, Cj is contained in
H and Cj < D0 holds. This contradicts the minimality of D0 and we conclude that
Dt+1 is of Type 1 (see Figure 4.6(c)).

As Dt+1 < D0 and D0 is not of Type 2, s(Dt+1) is a proper ancestor of s(D0).
Since Dt+1 has a child, Dt+1 is not a backedge. Applying Lemma 63 to the chain
Dt+1 yields together with the minimality of D0 that s(D0) is an inner vertex of
t(Dt+1)→T s(Dt+1). The parent ofDt+1 is in SR

l , as it contains t(Dt+1)→T s(Dt+1)
and s(D0) →T s(Dt+1) is contained in SR

l . This implies k = t + 1. If there is no
inner real vertex in t(Dk) →T s(Dk), Exception 81.3 holds. Otherwise, Lemma 73
implies that Dk can be added. After adding Dk, Li is good due to Lemma 75 and
can be added with Lemma 76.

We extend Lemma 81 to all chains of Type 3 that start at a vertex in SR
l . Let a

caterpillar Li start at the vertex s(Ci).

Lemma 82. Let the preconditions of Lemma 81 hold and let D0 be not contained
in one of the Exceptions 81.1–81.3. Let Y be the set of ancestors of all chains in H
that are of Type 3 and start in SR

l . Then the clusters of Y can be successively added
in any pre-order that adds clusters that start at t(Dk) last, e. g., in ascending order
of <.

Proof. We show how the clusters of Y can be successively added by iteratively ap-
plying Lemma 81. Note that Y is the vertex set of a subtree UY of U that is rooted
on Dk (Dk is defined by the preconditions of Lemma 81). By definition of Y , the
leaves of UY are chains of Type 3 that start at a vertex in SR

l .
Let any pre-order σ on the clusters of Y be given that adds clusters that start at

t(Dk) ∈ V (SR
l ) last. We go along σ. After adding an arbitrary number of clusters

in the order of σ, let J be the next cluster to add. Let Js be the minimal chain in J
and let SR

t be the current subgraph of G. At this point, Js is the root of a subtree
U ′ of UY and, as σ is a pre-order, the minimal chain in its segment H ′ of SR

t . Let
J0 be the minimal chain of Type 3 in V (U ′) that starts at a vertex in SR

l . Then J0
is also the minimal such chain in H ′. Let Js < · · · < J0 be all ancestors of J0 in U ′.

We apply Lemma 81 to J0 in H ′ and show that J0 cannot be contained in one of
the Exceptions 81.1–81.3. This implies that the clusters of Js, . . . , J0 can be added
in pre-order. The claim follows from merely adding J and iterating the argument
for the next cluster in σ.

It remains to show that J0 is not contained in one of the Exceptions 81.1–81.3.
By assumption, this holds for J0 = D0; in that case, the cluster of Dk is added. As
σ is a pre-order, the cluster of Dk is the first cluster in H that is added. We can
therefore assume for the following arguments that Dk is in SR

t .
First, assume to the contrary that J0 is contained in Exception 81.1 or 81.3

(see Figure 4.7(a)). Since SR
l is upwards-closed, s(J0) ∈ V (SR

l ) implies that s(Js) ∈
V (SR

l ). Because of Lemma 80, Dk is the only chain in H that ends on a vertex in SR
l .
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Since Js is a proper descendant of Dk and of Type 1, it follows from s(Js) ∈ V (SR
l )

that s(Js) = t(Dk). As J0 > Js and s(J0) ∈ V (SR
l ), s(J0) = s(Js) = t(Dk) holds due

to Lemma 56. This contradicts J0 to be in Exception 81.1 or 81.3, because s(J0) is
not an inner vertex of t(Js)→T s(Js).
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(a) J0 is not contained in Excep-
tions 81.1 and 81.3.
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(b) J0 is not contained in Excep-
tion 81.2.

Figure 4.7: In SR
t , J0 is not contained in one of the Exceptions 81.1–81.3.

Now assume to the contrary that J0 is contained in Exception 81.2 (see Fig-
ure 4.7(b)). Then J0 is of Type 3b and part of a bad caterpillar Lj in SR

t , whose
parent D is not contained in H ′. We show that D = Dk. Because Lj contains only
chains in H ′ ⊂ H and Dk is the minimal chain in H that is already contained in
SR

t , D must be a descendant of Dk. Since Lj is bad in SR
t , s(J0) is contained in

D \ s(D). By definition of J0, s(J0) ∈ V (SR
l ). Because of Lemma 80, Dk is the only

chain in H that ends on a vertex in SR
l . Moreover, no inner vertex of a chain in H

is contained in SR
l , as H does not contain C0 and SR

l is upwards-closed. It follows
that D = Dk and s(J0) = t(Dk).

We show that Lj cannot be bad in SR
t . The chain Dk is not a backedge, as it

has the child Js. Let x be the last but one vertex of Dk. Applying Lemma 63 on
Dk yields that a chain Cy of Type 3 enters T (x) with s(Cy) being an inner vertex
of t(Dk) →T s(Dk). The chain Cy is contained in H, but not in H ′, as that would
contradict the choice of J0. As the pre-order σ adds clusters that do start at t(Dk)
last, the clusters of Cy and of all proper ancestors of Cy in H must have been added
before. Thus, Dk must contain at least one inner real vertex in SR

t , which contradicts
Lj to be bad.
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Definition 83. For SR
l and a chain Ci in SR

l , let Children12(Ci) be the set of children
of Ci of Types 1 and 2 that are not contained in SR

l and let Type3(Ci) be the set of
chains of Type 3 that start at a vertex in Ci and are not contained in SR

l .

The definition of Children12(Ci) and Type3(Ci) for a chain Ci in SR
l is crucial, as

the clusters of these sets are essentially the ones for which we will prove that they
can be added under a certain condition. We defined Children12(Ci) to contain only
children of Type 1 and 2. On a high-level view, it will not be necessary to consider
children of Ci of Type 3, as their clusters will be added before in the course of adding
the clusters of Type3(Cj) for an ancestor Cj of Ci.

We start by showing that, under a certain condition, the clusters of the following
subset of Type3(Ci) can be added.

Lemma 84. Let Ci be a chain in SR
l such that Type3(Cj) = ∅ holds for every proper

ancestor Cj of Ci. Let B be the subset of chains in Type3(Ci) whose segments do
not contain a chain in Children12(Ci). Then the clusters of all ancestors of chains
in B that are not in SR

l can be successively added. The order of addition can be
any pre-order that adds clusters in same segments of SR

l consecutively and in which
the start vertices of the clusters of B are consecutive in t(Ci) →Ci s(Ci), e. g., in
ascending order of <.

Proof. Let Cy be a chain in B such that s(Cy) is an ancestor of s(Cz) for every chain
Cz ∈ B. Let H be the segment of Cy. We show that the clusters of all ancestors of
chains in B ∩H can be added. Then choosing Cy as before for the remaining subset
of B and iterating the argument on Cy gives the claim.

Let D0 be the minimal chain of Type 3 in H. We show that D0 ∈ B. According
to Lemma 56, s(D0) is an ancestor of s(Cy). However, s(D0) cannot be contained in
a proper ancestor Cj of Ci, as Type3(Cj) = ∅ holds by assumption. It follows that
s(D0) starts at a vertex in Ci and, thus, D0 ∈ B.

We want to apply Lemma 82 on D0 to add the clusters of all ancestors of chains
in B ∩ H. Let Dk be the minimal chain in H. To apply Lemma 82, it suffices to
show that D0 is not contained in one of the Exceptions 81.1–81.3. Note that this
does not directly follow from the fact that Dk /∈ Children12(Ci), as Dk does not need
to be a child of Ci for Exceptions 81.1–81.3.

First, assume to the contrary that D0 is contained in Exception 81.1 or 81.3.
Then Dk is of Type 1. It remains to show that Ci is the parent of Dk, as this would
contradict the assumption that H ∩ Children12(Ci) = ∅. Since Dk is of Type 1,
t(Dk)→T s(Dk) must be contained in the parent of Dk. In both Exceptions, s(D0) is
an inner vertex of t(Dk)→T s(Dk) that is additionally non-real, as t(Dk)→T s(Dk)
does not contain inner real vertices. It follows with s(D0) ∈ V (Ci) that the parent
of Dk is Ci.

Assume to the contrary that D0 is contained in Exception 81.2. Then Dk is of
Type 2b and the set {D0, . . . , Dk} of ancestors of D0 in H is a bad caterpillar. Let
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D be the parent of Dk. We claim that D = Ci. This implies that Dk is contained in
Children12(Ci), which contradicts the assumption that H ∩ Children12(Ci) = ∅.

Assume to the contrary that D 6= Ci. As {D0, . . . , Dk} is a bad caterpillar and
s(D0) ∈ V (Ci), s(D0) is contained in the intersection of D \ s(D) and Ci. We first
show that s(D0) = t(D). If Ci = C0, D \ s(D) can intersect with C0 only at the
vertex t(D), which implies that s(D0) = t(D). Let Ci 6= C0. Then s(D0) can neither
be s(Ci) nor t(Ci), as these vertices are contained in proper ancestors Cj of Ci,
contradicting the assumption that Type3(Cj) = ∅. Thus, s(D0) is an inner vertex of
Ci. Since D can contain the inner vertex s(D0) of Ci only as end vertex and because
s(D0) ∈ V (D \ s(D)), s(D0) = t(D) holds. For the same reason, Ci must be the
parent of D.

We take this to a contradiction. As {D0, . . . , Dk} is a bad caterpillar, D contains
no inner real vertex by definition. Moreover, D cannot be a backedge, as it has
the child Dk. Thus, there is a chain Cz of Type 3 that starts at an inner vertex in
t(D)→T s(D) due to Lemma 63. This chain Cz is not contained in SR

l , as otherwise
D would contain an inner real vertex. If s(Cz) is contained in Ci, Cz contradicts
the choice of Cy, as Cz would be in B and s(Cz) would be a proper ancestor of
s(Cy). Otherwise, s(Cz) is contained in a proper ancestor Cj of Ci and contradicts
the assumption Type3(Cj) = ∅.

For each of the Exceptions 81.1–81.3 in Lemma 81, the parent of Dk contains a
path that obstructs D0 and its ancestors from being added, as it contains no inner
real vertex. We refer to this path as follows.

Definition 85. Let a chain Ci that is of Type 1 or 2a and has parent Ck be dependent
on the path t(Ci)→Ck

s(Ci). Let a caterpillar Li with parent Ck and s(Ci) ∈ V (Ck)
(and every chain contained in it) be dependent on the path s(Ci) →Ck

s(Ck). The
dependent path of a chain that is of Type 3a or contained in a caterpillar Li with
s(Ci) /∈ V (Ck) is defined to be empty.

The idea behind the dependent path P of certain clusters D is that P carries
information that is needed to decide whether D can be added. E. g., if the parent of
D is contained in SR

l and P is empty, we can add D, as pointed out by Lemmas 73
and 76. In the case when the parent of D is contained in SR

l but P is not empty, the
fact whether D can be added will be essentially dependent on the existence of inner
real vertices in P . We show next that non-empty dependent paths of the minimal
chains in segments H of SR

l separate H from SR
l .

Lemma 86. Let H be a segment of SR
l and let D be the minimal chain of H. If

D is neither of Type 3a nor contained in a caterpillar Li with s(Ci) /∈ V (Ck), the
dependent path P of D contains all attachment vertices of H.

Proof. Assume first that D is a chain of Type 1. Then P = t(D)→T s(D). If D is a
backedge, the claim follows directly. Otherwise, let x be the last inner vertex of D.
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As T is a DFS-tree and due to Lemma 56, every backedge that enters T (x) starts in
P , which gives the claim.

Let Ck be the parent of D. Assume that D is a chain of Type 2a. Since D is a
backedge, s(D) and t(D) are the only attachment vertices of H. The claim follows,
as the dependent path P ⊂ Ck of D contains s(D) and t(D).

Due to (R1) and since Ck is contained in SR
l , D cannot be of Type 3b. Assume

that D is a chain of the remaining Type 2b. According to (R1), D is contained in a
caterpillar Li of which every chain is contained in H. By assumption, s(Ci) ∈ V (Ck).
The chain D is not a backedge, as it has a child; let x be the last inner vertex of D.
By the construction of caterpillars, Ci is the minimal chain of Type 3 that enters
T (x). It follows with Lemma 56 that every backedge that enters T (x) starts either at
s(Ck) or at a descendant of s(Ci) in Ck. Thus, all attachment vertices are contained
in P = s(Ci)→Ck

s(Ck).

The following theorem leads to an existence proof of the restricted construction
sequence if G is 3-connected.

Theorem 87. Assume that the input graph G is 3-connected. Let Ci be a chain in
SR

l such that Children12(Cj) = Type3(Cj) = ∅ holds for every proper ancestor Cj of
Ci. Then there is an order σ in which the clusters of all ancestors of the chains in
Children12(Ci) ∪ Type3(Ci) that are not contained in SR

l can be successively added.

Proof. By applying Lemma 84 in advance, we can assume that the segment of every
chain in Type3(Ci) contains a chain in Children12(Ci). Let H be such a segment of a
chain in Type3(Ci) and let Dk be the minimal chain in H. According to Lemma 80,
Dk is only chain in H that is in Children12(Ci).

If Children12(Ci) = ∅, Type3(Ci) = ∅ and the claim follows. We will show that
Children12(Ci) 6= ∅ causes Children12(Ci) to contain a chain D whose cluster can be
added. Assume for a moment that this already has been shown and let H ′ be the
segment of D. Adding the cluster of D to the current subgraph deletes D from the
set Children12(Ci). Therefore, H ′ does not contain a minimal chain in Children12(Ci)
anymore and we can add the clusters of all ancestors of the chains in Type3(Ci)∩H ′
that are contained in H ′ by applying Lemma 84. Iterating this argument gives the
claim.

Assume to the contrary that Children12(Ci) 6= ∅ and that the cluster of every
chain in Children12(Ci) cannot be added. We first subsume properties of every chain
D ∈ Children12(Ci); let H be the segment of D. By definition, D is of Type 1
or 2; D is also the minimal chain in its segment H with Lemma 80. Let D be of
Type 1. Then the dependent path P of D does not contain an inner real vertex,
as otherwise D can be added with Lemma 73. According to Lemma 63, D must be
either a backedge or H contains a chain of Type 3 that starts in Ci, implying that
H contains a chain in Type3(Ci). In the latter case, we can apply Lemma 82 and it
follows that D must be contained in Exception 81.1 or 81.3 (as the chain Dk).
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Let D be of Type 2. Then Ci 6= C0. If D is of Type 2a, neither t(D) nor an inner
vertex in the dependent path P of D can be real, since otherwise D can be added
due to Lemma 73. If D is of Type 2b, D is the minimal chain of a caterpillar with
parent Ci. As we assumed that the cluster of D cannot be added, this caterpillar
must be bad with Lemma 76 and there is no inner real vertex in the dependent path
P of D. Because H ∩ Type3(Ci) 6= ∅, it follows with Lemma 82 that D is contained
in Exception 81.2 (as the chain Dk). We list the possible cases for each D.

1. D is of Type 1 without an inner real vertex in P and either a backedge or the
chain Dk in Exception 81.1 or 81.3

2. Ci 6= C0 and D is of Type 2a without a real vertex in P \ s(D)

3. Ci 6= C0, D is of Type 2b without an inner real vertex in P and D is the chain
Dk in Exception 81.2

In each of these cases, P is contained in Ci. If D is a backedge (possible in
Cases 1. and 2.), P is of length at least two, as G is simple. If D is no backedge
(possible in Cases 1. and 3.), P is also of length at least two due to Lemma 79. In
every case, P does not contain an inner real vertex. Hence, the dependent path P
for some chosen chain D is contained in a link L of SR

l . Thus, P ⊆ L ⊆ Ci and
L is of length at least two. According to Lemma 32 and the 3-connectivity of G, a
parallel link of L (maybe L itself) contains an inner vertex v on which a BG-path
starts. Note that this BG-path does neither have to be a chain nor preserve (R1)
or (R2). Also, v is not necessarily contained in P .

We show next that L itself contains v as an inner vertex due to our imposed
restrictions on the construction sequence. This will imply a contradiction later.
Assume first that all edges of L are DFS-tree edges. If SR

l = SR
3 , L = C0 must hold.

Because G is simple, at least one chain of C1 and C2 is not a backedge, say C1. Let
x be the last inner vertex of C1. The claim follows by applying Lemma 63 on C1,
as the chain of Type 3 that enters T (x) can be extended to a BG-path ending at an
inner vertex of C1. If SR

l 6= SR
3 , the claim follows from L having no different parallel

link due to Restriction (R2) in SR
l .

Now assume that L contains a backedge. Since L is contained in Ci, s(Ci) must
be an end vertex of L. Let w be the other end vertex of L. As Ci has a child, Ci

is no backedge. Applying Lemma 63 on Ci gives a chain of Type 3 that starts at a
proper ancestor Cj of Ci and enters T (x) for x being the last inner vertex of Ci. As
Type3(Cj) = ∅ holds by assumption and SR

l is upwards-closed, Ci contains an inner
real vertex. Therefore, w is different from t(Ci). If there is a parallel link L′ 6= L of
L in SR

l , let Ck be the chain that contains L′. Then s(Ci) = s(Ck), Ck = L′ and
Ck is a child of Ci, implying that Ck is of Type 2. The chain Ck is not of Type 2b,
as otherwise Ck would contain an inner real vertex due to the caterpillar Lk ⊂ SR

l .
Therefore, Ck is of Type 2a and cannot contain an inner vertex, as it is a backedge.
We conclude that v is an inner vertex of L on which a BG-path B starts.
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LetH be the segment of SR
l that containsB. Assume first thatH contains a chain

D′ ∈ Children12(Ci) and let P ′ be the dependent path of D′. Then all attachment
vertices of H must be contained in P ′ by Lemma 86, this holds in particular for v.
As v is non-real and H is not contained in SR

l , B must contradict Property 30b.
It follows that H does not contain any child of Ci that is of Type 1 or 2. Because
Type3(Cj) = ∅ for all proper ancestors Cj of Ci, H cannot contain a child of Ci that
is of Type 3. We conclude that H does not contain any child of Ci.

Assume that H contains a chain Ca of Type 1 with s(Ca) = v. Let Cb be the
parent of Ca, as Ca 6= C0. Note that Cb is not necessarily in H. Then Cb 6= Ci, as
otherwise Ca would be a child of Ci in H. By definition of Type 1, Cb contains the
tree edges t(Ca) →T v and t(Cb) = v follows, as v is contained in Ci. This implies
that Cb is a child of Ci, giving a contradiction. Additionally, H cannot contain a
chain Ca of Type 3 with s(Ca) = v, as otherwise Ca would be contained in Type3(Ci),
which implies that H contains a chain in Children12(Ci). Let J be the chain that
contains the first edge of B. By the previous arguments, J must be of Type 2 and
s(J) = v.

We take this to a contradiction. Let Ca be the maximal (with respect to <)
ancestor of J that is not of Type 2. Then s(Ca) = v holds by definition of Type 2
and Ca must be contained in H, as s(Ca) is non-real. This contradicts that H
contains neither a chain of Type 1 nor a chain of Type 3 that starts at v. It follows
that B cannot exist, implying that the claim.

Assume for a moment that G is 3-connected. We show that every SR
l contains

a chain Ci that satisfies the preconditions of Theorem 87, starting with C0 in SR
3 .

Applying Theorem 87 on Ci and adding the clusters in σ generates a subgraph
SR

t . The subgraph SR
t must contain all children of Ci and therefore causes the

precondition to hold for Ci+1. This ensures that iteratively applying Theorem 87
on C0, C1, . . . , Cm−n+1 constructs G, which proves the existence of the restricted
construction sequence.

Corollary 88. Let G be a 3-connected graph with a chain decomposition C =
{C0, . . . , Cm−n+1}. Then there is a construction sequence of G restricted by (R1)
and (R2) that starts with SR

3 = {C0 ∪ C1 ∪ C2}.

4.2.7 The Algorithm

We already described the parts of the certifying algorithm that

– compute the DFS-tree T ,

– compute whether G has connectivity 0, 1 or at least 2,

– compute the chain decomposition C and the chain classification,

– check whether Properties A and B are satisfied and



72 CHAPTER 4. CERTIFYING 3-CONNECTIVITY IN LINEAR TIME

– compute SR
3 .

All steps can be computed in time O(n+m) (see Sections 4.2.1–4.2.3).

AlthoughG is not known to be 3-connected, the proof of Theorem 87 still provides
an algorithmic method to search iteratively for BG-paths that build the restricted
construction sequence, starting with SR

3 : We iterate over all chains Ci, 0 < i <

m− n+ 1 (we say that Ci is processed). For Ci, let B be the set of all ancestors
of the chains in Children12(Ci) ∪ Type3(Ci) that are not contained in the current
subgraph. We try to find an order on the clusters of B in which they can be added.
This order does not necessarily exist, as G might be not 3-connected. However,
we will give an algorithm that either computes such an order or finds a separation
pair. In the case that this order can be found for every Ci, we obtain a construction
sequence of G, which certifies G to be 3-connected.

During the chain classification, we store on each chain a list of its children of
Type 1 and 2 and on each vertex v a list of the chains of Type 3 that start at v. This
allows us to compute the sets Children12(Ci) and Type3(Ci) efficiently for each Ci in
time O(|Ci|+ |Children12(Ci)|+ |Type3(Ci)|) by traversing (t(Ci)→Ci s(Ci)) \ s(Ci).

We describe the processing phase of Ci. First, the sets Children12(Ci) and
Type3(Ci) are computed. For convenience, we perform the following test in ad-
vance (this can however be handled differently in an implementation). For each
D ∈ Children12(Ci) that is of Type 2a and for which t(D) is real, we add D due to
Lemma 73.

Let SR
l be the current subgraph. We partition the chains in Type3(Ci) into the

segments of SR
l by storing a pointer on each Cj ∈ Type3(Ci) to the minimal chain D

of the segment that contains Cj . The chain D is computed by traversing the path
in T from t(Cj) to the root of T until we encounter a vertex v with a parent that is
already contained in SR

l . Then v must be an inner vertex of D (each inner vertex
has a pointer to its chain) and we mark each vertex of the traversed path with D.
Further traversals in the same segment get D by stopping at the first vertex that
is marked. Since the clusters of all traversed chains will eventually be added in the
same processing phase, the total running time of these traversals for all processed
chains adds up to a total of O(m).

Let X be the subset of the chains in Type3(Ci) that are contained in segments in
which the minimal chain is not a chain of Children12(Ci). With Lemma 80, each such
segment does not contain any chain in Children12(Ci). To compute X, it suffices to
check for each Cj ∈ Type3(Ci) in constant time whether its pointer points to a chain
in Children12(Ci). In the affirmative case, Cj is not contained in X; otherwise, Cj is
contained in X.

According to Lemma 84, the clusters of all ancestors of the chains in X that are
not in SR

l can be added successively. Moreover, these clusters can be added in the
order in which they were traversed when partitioning the chains of Type3(Ci) into
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segments (i. e., in ascending order of <). We add them in this order. However, as
these clusters form a subtree U ′ of U for each segment H with H ∩X 6= ∅, any other
pre-order on V (U ′) in conformance with Lemma 84 can be computed in time linearly
dependent on |V (U ′)|. Whenever a cluster containing a chain in Type3(Ci) is added,
we delete it from Type3(Ci).

Let SR
t be the generated graph. The segment H of every remaining chain in

Type3(Ci) must contain a chain D in Children12(Ci). The chain D is the minimal
chain in H due to Lemma 80. According to Theorem 87, the clusters of all ancestors
of the chains in Children12(Ci) ∪ Type3(Ci) that are not in SR

t can be successively
added if G is 3-connected. However, Theorem 87 does not specify in which order
these clusters can be added, so we need to compute a valid order on them (if this
order exists).

Let H be the segment of a chain D in Children12(Ci). The cluster of D can-
not be a caterpillar Lj with s(Cj) /∈ V (Ci), as we maintain the invariant that
Children12(Ck) = Type3(Ck) = ∅ for every proper ancestor Ck of Ci. Thus, D is
dependent on a non-empty path P ⊆ Ci by Definition 85. This path contains all
attachment vertices of H with Lemma 86. We can compute the attachment vertices
of H efficiently, as the previously described partition of Type3(Ci) into segments
provides the set H ∩ Type3(Ci). The attachment vertices of H are the union of the
start vertices of the chains in H ∩ Type3(Ci) and the vertices s(D) and t(D). This
gives also P , as P is the path of maximal length in Ci that has attachment vertices
of H as end vertices.

For computing a possible order in which the remaining clusters can be added, we
need the following lemma. It shows that the clusters of all ancestors of the chains in
H ∩ (Children12(Ci) ∪ Type3(Ci)) that are not contained in SR

t can be added if and
only if P contains an inner real vertex.

Lemma 89. Let D be a remaining chain in Children12(Ci) in SR
t , let H be the

segment of SR
t that contains D and let P be the dependent path of D. If P contains

an inner real vertex, the clusters of all ancestors of the chains in H∩(Children12(Ci)∪
Type3(Ci)) that are not in SR

t can be successively added. Moreover, these clusters
can be added in any pre-order that adds clusters that start at t(D) last, e. g., in
ascending order of <. Conversely, if P does not contain an inner real vertex, no
cluster in H can be added.

Proof. Let P contain an inner real vertex. If H ∩ Type3(Ci) 6= ∅, the claim follows
directly from Lemma 82, as the dependent path of the minimal chain (Dk) of each
of the Exceptions 81.1–81.3 contains no inner real vertex. If H ∩ Type3(Ci) = ∅,
we only need to show that the cluster of D can be added. Moreover, D must be of
Type 1 or 2a, as otherwise H ∩ Type3(Ci) 6= ∅. According to Lemma 73, D can be
added.

Otherwise, P does not contain an inner real vertex. Assume to the contrary that
we can add a cluster in H. As Restriction (R1) requires upwards-closedness after
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Figure 4.8: Mapping segments to intervals. Different colors depict different segments.

adding each cluster, the cluster of D must be added first. According to Lemma 86,
all attachment vertices of H are contained in P . The end vertices of P must be real,
as otherwise no path in H can satisfy Property 30b. Since D ∈ Children12(Ci), D
cannot be of Type 3. If D is of Type 1, s(D) and t(D) must be the end vertices of
P , P consists only of tree edges and adding D would contradict Restriction (R2).

Therefore, D is of Type 2. Then P must contain the backedge in Ci and it follows
that s(D) = s(Ci). If D is of Type 2a, the end vertices of D are the end vertices of P .
Since both end vertices are real, D would have been added before with Lemma 73.

We conclude that D is of Type 2b. Then the cluster of D is a bad caterpillar
Lj , as s(Cj) /∈ V (Ci) would contradict Type3(Ck) = ∅ for a proper ancestor Ck of Ci

and because P does not contain an inner real vertex. Let Q1 and Q2 be the first two
BG-paths in Lj that are added as part of the addition of Lj . As Q1 must connect
the two end vertices of P and since Lj contains exactly one edge e that is incident
to s(Cj), Q1 contains e. Thus, Q2 cannot contain the end vertex s(Cj) of P and it
follows that Q2 has at most one real end vertex. Since P and Q1 are parallel links
of St+1, Q2 violates one of the Properties 30a–c. This contradicts Restriction (R1),
as Lj , the cluster of D, can not be decomposed into BG-paths.
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4.2.7.1 Reduction to Overlapping Intervals

Let Y be the set of segments that contain a remaining chain in Children12(Ci). Let
the dependent path of a segment H ∈ Y be the dependent path of its minimal chain,
i. e., the maximal path in Ci connecting two attachment vertices of H. Let an order
σ on a subset of Y be proper if the dependent path of each segment in σ contains
an inner real vertex or an inner vertex that is an attachment vertex of a previous
segment in σ. Note that the addition of the clusters in previous segments H would
cause the attachment vertices of H to be real.

Let B be all ancestors of chains in Children12(Ci)∪Type3(Ci) that are not in SR
l .

According to Lemma 89, finding an order in which the clusters of B can be added
reduces to finding a proper order σ on Y . Having σ allows us to add the clusters of
B ∩H subsequently for each segment H in σ. We show how a proper order σ on Y
can be efficiently computed by a reduction to overlaps of intervals.

A very clear and simple characterization of 3-connectivity in terms of a binary
relation (called directly-linked) on the segments of cycles is given by Vo [79, 80]
and based on the work of Williamson [84]. The binary relation represents a graph
whose connectivity determines the 3-connectivity of the input graph. To compute
the proper order σ on Y (if it exists), we will use a similar concept: We reduce the
computation of σ to the computation of a spanning tree the graph G′ of a certain
binary relation. In particular, σ exists if G′ is connected. The binary relation will
correspond to overlaps on intervals. The structure imposed by previous computation
steps allows us to compute these intervals efficiently.

We map each segment H ∈ Y to a set I(H) of intervals on the elements of V (Ci):
Let a1, . . . , ak be the attachment vertices of H and let I(H) =

⋃
1<j≤k{[a1, aj ]} ∪⋃

1<j<k{[aj , ak]} (see Figure 4.8). Additionally, we augment V (Ci) by an artificial
first vertex v0 and map the real vertices b1, . . . , bk of Ci to the set of intervals I0 =⋃

1<j<k{[v0, bj ]}. This construction can be efficiently computed and creates at most
|Children12(Ci)|+ 2|Type3(Ci)|+ |Vreal(Ci)| − 2 intervals for Ci, adding up to a total
of O(m) intervals for all chains.

Let two intervals [a, b] and [c, d] overlap if a < c < b < d or c < a < d < b.
We want to compute a proper order on Y by finding a sequence of overlapping
intervals starting with I0. Let the overlap graph of Y be the graph with vertex set
I0 ∪

⋃
H∈Y I(H) and an edge between two vertices if and only if the corresponding

intervals overlap. Let the merged overlap graph of Y be the graph that results from
the overlap graph by merging the vertices corresponding to I0 and to I(H) for every
segment H ∈ Y , respectively, to one vertex.

Lemma 90. There is a proper order on the segments in Y if and only if the merged
overlap graph G′ of Y is connected.

Proof. Let G′ be connected and G′′ be a spanning connected subgraph of G′. Then
V (G′) = V (G′′) = Y ∪ {I0}. Let H0, H1, . . . ,H|Y | be the order in which the vertices
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of G′′ are visited first by an arbitrary DFS in G′′ that starts on I0 = H0. We show
that σ = H1, . . . ,H|Y | is a proper order on Y . Let Hi, 1 ≤ i ≤ |Y |, be a segment in
σ. Then Hi is adjacent to a vertex Hj , j < i, in G′′ by construction and an interval
in I(Hi) overlaps with an interval in I(Hj). If j = 0, the dependent path of Hi

contains an inner real vertex. If j > 0, the dependent path of Hi contains an inner
vertex that is an attachment vertex of the previous segment Hj of σ.

Let σ = H1, . . . ,H|Y | be a proper order on Y . We show that everyHi, 1 ≤ i ≤ |Y |,
is adjacent to I0 or a vertex Hj with j < i in G′. This implies that G′ is connected. If
the dependent path Pi of Hi contains an inner real vertex v, v must be the end point
of an interval [v0, v] in I0. Since Pi does not contain v0, the interval [s(Pi), t(Pi)] in
I(Hi) and [v0, v] overlap. Otherwise, Pi does not contain an inner real vertex. In
that case, Pi contains an inner vertex that is an attachment vertex of a segment Hj

with 1 ≤ j < i, as σ is proper.
Let v be an inner vertex of Pi that is an attachment vertex of the segment Hj

with minimal j and let Pj be the dependent path of Hj . If Pj ⊆ Pi, no inner vertex
of Pj can be real and it follows that Pj contains an inner vertex that is an attachment
vertex of a segment Hk with 1 ≤ k < j, contradicting the choice of v. Thus, Pj is not
contained in Pi. We conclude that I(Hj) contains an interval [v, u] or [u, v] with u
being an end vertex of Pj that is not in Pi. This implies that [v, u] or [u, v] overlaps
with the interval Pi ∈ I(Hi).

If G is 3-connected, a proper order σ on Y exists according to Theorem 87 and
Lemma 89. The merged overlap graph G′ of Y is then connected with Lemma 90.
The following algorithm detects whether G′ is connected and computes σ in the
affirmative case and the connected components of G′ otherwise.

Lemma 91. Let t be the total number of intervals that have been created for I0 and
all segments in Y and let G′ be the merged overlap graph of Y . There is an algorithm
with running time O(t+ |V (Ci)|) that computes a proper order σ on Y , if exists, and
that computes the connected components of G′, if no proper order on Y exists.

Proof. We may construct G′ explicitly and, if G′ is connected, extract σ from G′ as
described in the proof of Lemma 90. Unfortunately, then G′ cannot be computed
explicitly in time linearly dependent on t, as it can contain up to

(t
2
)
∈ Ω(t2) edges.

For a worst case example, consider t slightly shifted copies of the same interval.
We cope with this problem by computing a sparse merged overlap graph, i. e.,

a spanning subgraph Gs of G′ with at most 2t edges but with exactly the same
connected components as G′.

A simple sweep-line algorithm due to Olariu and Zomaya [54] computes in time
O(t) a spanning subgraph G′s of the overlap graph of Y (but not of the merged
overlap graph) such that G′s has at most 2t edges and exactly the same connected
components as the overlap graph of Y . The algorithm assumes the end points of
intervals to be sorted. As we deal only with intervals that correspond to vertices on a



4.2. A CERTIFYING ALGORITHM IN LINEAR TIME 77

chain Ci and an extra vertex v0, we can apply bucket sort in advance to sort the end
points. We remark that this will not be necessary in the application of this lemma,
as predecessors and successors in this order can be maintained during a traversal of
Ci. Note also that the work in [54] describes mainly a non-sequential variant of the
algorithm; for a simple sequential variant, Lemmas 4.1 and 4.2 in [54] suffice.

Thus, G′s can be computed in time O(t+ |V (Ci|). To obtain Gs, we just have to
merge the sets I0 and I(H) for each H ∈ Y in G′s to one vertex, respectively. This
takes a total running time of O(t+ |V (Ci|). In Gs, we apply a DFS on the vertex I0
to decide whether Gs is connected. If Gs is connected, Gs is a spanning connected
subgraph of G′. Then, as described in the first lines of the proof Lemma 90, the
order in which the vertices are visited first in the DFS gives a proper order on Y . If
Gs is not connected, the DFS computes the connected components of Gs, which are
exactly the connected components of G′.

For every chain Ci ∈ C, at most |Children12(Ci)|+ 2|Type3(Ci)|+ |Vreal(Ci)| − 2
intervals are created. Thus, applying the algorithm of Lemma 91 for all chains in C
adds up to a total time of O(m).

We therefore gave a linear-time algorithm that either computes a construction
sequence of G or returns a witness for the fact F that there is no proper order σ on
Y , namely that more than one connected component of the merged overlap graph G′
exist. According to Theorem 87 and Lemma 90, F proves that G is not 3-connected.
However, to obtain an easy-to-verify certificate in that case, we will show how a
separation pair can be extracted in the next section. If the input graph is assumed
to be 3-connected, we get the following theorem.

Theorem 92. The sequences (3.1)–(3.10) for a simple 3-connected graph G can be
computed in time O(m).

We remark that the reduction to intervals does not have to be explicit in an
implementation; instead, we can work directly on the graph.

4.2.7.2 Extracting a Separation Pair

We show how a separation pair can be extracted if not all clusters of Children12(Ci)∪
Type3(Ci) have been added after processing Ci. Then Children12(Ci) must still con-
tain a chain D. Let H be the segment that contains D and let SR

l be the current
subgraph. Let W be the union of H and every segment that is mapped to the same
connected component A of the merged overlap graph as H. The set W can be rep-
resented as the connected component A itself, which was already computed in the
processing phase of Ci with the algorithm of Lemma 91.

The union of dependent paths of the segments in W is a path P = x → y that
is contained in Ci, as there is a sequence of overlapping intervals for A. The path P
cannot contain inner vertices that are real due to Lemma 89. It follows that every
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edge in E(G) \ E(P ) that is adjacent to an inner vertex in P must be contained in
a segment H ′ of SR

l (H ′ does not have to be contained in W ). As H ′ is contained
in W or the intervals of H ′ do not overlap with any interval of a chain in W , all the
attachment vertices of H ′ must be in P . Additionally, P contains an inner vertex
v, since the two attachment vertices of segments that are backedges cannot connect
two consecutive vertices in T , as G is simple, and because every other segment has
at least three attachment vertices due to Lemma 79.

Therefore, deleting x and y separates v from G \ V (P ) and x and y form a
separation pair, certifying that G is not 3-connected. The vertices x and y can be
computed in O(n+m) by considering the attachment vertices of the segments in W .
This gives the following result.

Theorem 93. There is a certifying algorithm that tests the 3-connectivity of a simple
graph G in time O(n + m), returns each of the sequences (3.1)–(3.10) if G is 3-
connected and returns a cut vertex or a separation pair otherwise.

Algorithm 2 gives an overview of the whole approach. An example of its ap-
plication can be found in Figure 4.9. We get the following corollary from the dis-
cussion of certificates for 3-edge-connectivity (see Section 3.6.3) and edge cuts (see
Section 3.6.1).

Corollary 94. There is a certifying algorithm that tests the 3-edge-connectivity of
a simple graph G in time O(n+m).

4.2.7.3 Simplifications

We list some simplifications for Algorithm 2.

• Treatment of chains of Type 2a:
Lines 5 and 6 in Algorithm 2 can be omitted. Let Ci be the currently processed
chain and suppose there is a chain D ∈ Children12(Ci) of Type 2a with t(D)
being real. We show that D will be added if G is 3-connected (if G is not 3-
connected, the absence of D does not harm the algorithm to find a separation
pair, as D is a backedge).
Let G be 3-connected and let P be the dependent path of D. We can assume
that P has no inner real vertex after processing Ci, as otherwise D would have
been added as well by construction of the merged overlap graph. Clearly, Ci

must contain an inner vertex, since D is a child of Ci; let v be the first inner
vertex of Ci. Since G is simple, t(D) 6= v holds, which implies that v is an
inner vertex of P . Thus, v is non-real and it follows that G contains no chain
of Type 3 that ends at v. Every chain that starts at v implies that v has a
child in T . We conclude with deg(v) ≥ 3 in G that at least one child of Ci ends
at v and is of Type 1 or 2. Since this chain is contained in Children12(Ci) and
G is 3-connected, v is real after processing Ci, contradicting the assumption.
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Algorithm 2 certify(Graph G)
1: Compute a DFS-tree T of G, a chain decomposition C and classify the chains
2: Check Properties A and B, Compute SR

3 := C0 ∪ C1 ∪ C2 . Sections 4.2.1–4.2.3
3: for i := 0 to m− n+ 1 do . process each Ci

4: Compute the lists Children12(Ci) and Type3(Ci) . page 72
5: for each D ∈ Children12(Ci) that is of Type 2a such that t(D) is real do
6: Add D; update Children12(Ci) . optional, see Section 4.2.7.3
7: Partition Type3(Ci) into segments . page 72
8: (every such segment is represented by the minimal chain it contains)
9: for each segment H with H ∩Type3(Ci) 6= ∅ and H ∩Children12(Ci) = ∅ do
10: Add the clusters of all ancestors of H ∩ Type3(Ci) that are in H in the
11: order of <; update Type3(Ci) . Lemma 84
12: Let Y be the set of segments that contain a chain in Children12(Ci)
13: for each H ∈ Y do
14: Compute the attachment vertices and the dependent path of H. page 73
15: Map H to a set of intervals on Ci . Section 4.2.7.1
16: Using these intervals, compute either a proper order σ on Y or more than
17: one connected component of the merged overlap graph G′ of Y . Lemma 91
18: if a proper order σ was computed then
19: for each segment H ∈ Y in the order of σ do . Add clusters
20: Add the clusters of all ancestors of H ∩ (Type3(Ci) ∪ Children12(Ci))
21: that are in H in the order of <; update Type3(Ci) . Lemma 89
22: else . G′ is not 3-connected
23: Compute a separation pair . Section 4.2.7.2
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• Integrating the preprocessing phase:
The processing phases of chains can be integrated into the chain decomposi-
tion. A chain Ci can already be processed when it is contained in the current
subgraph and when all chains of Children12(Ci) ∪ Type3(Ci) have been found.
Therefore, the chain decomposition does not have to be finished for computing
a proper ordering and for adding clusters. This gives a two-step approach of the
whole algorithm: The first step just performs a DFS and the second step com-
putes the construction sequence by processing iteratively C0, C1, . . . , Cm−n+1.

4.3 Conclusions

We proposed several variants of construction sequences for the class of 3-connected
graphs and developed efficient transformations between them. This led to a con-
ceptually new approach to compute these construction sequences bottom-up, which
achieves optimal linear running time. Using construction sequences as certificates
for 3-connectivity allowed to create certifying algorithms for testing graphs on being
3-connected and 3-edge-connected in time O(n+m).

An SPQR-tree of a 2-connected graph G is a tree that represents the 3-connected
components of G. Hopcroft and Tarjan [34] and Gutwenger and Mutzel [27] show
that the SPQR-tree of a 2-connected graph can be computed in linear time. Clearly,
we can certify the 3-connected components (the so-called R-nodes) of this tree to
be 3-connected with the algorithm of Chapter 4. However, it would be interesting
whether the algorithm itself can be extended to give such an SPQR-tree of the input
graph.

In contrast to the non-certifying algorithms in [34, 79, 80], the algorithm given in
this thesis does neither assume the graph to be 2-connected nor needs to compute low-
points (as defined in [34]) in advance. As 3-connectivity tests are used in practice and
many implementation details are to consider, it would be interesting and reasonable
to compare these algorithms experimentally.

Another open question is whether the approach with construction sequences pro-
vides a way to test graphs efficiently on higher vertex connectivity. Up to now, no
linear-time algorithm for testing graphs on 4-connectivity is known.
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Figure 4.9: An example of the algorithm.



82 CHAPTER 4. CERTIFYING 3-CONNECTIVITY IN LINEAR TIME

C14

C6

C4

C5

C2

C1

C8

C11

C0

C15

C10

v2

v3

v4

C7

v1

v7

C16

C17

C13

C12

C3

C9

v6

v5

v8

v9

v10

v11

v12

v13

v14 v15

v16

v17

(g) The subgraph SR
14 after

adding the clusters C10, C12,
C13, C3, L16 and C15 due to
Lemma 89. The next non-
trivial chain to process is C4

with Children12(C4) = {C5}
and Type3(C4) = {C16}. Both
chains are contained in the good
caterpillar L16, which is a seg-
ment of SR
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v12 with Lemma 76.
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Children12(C6) = {C17} and
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is C8 with Children12(C8) =
{C11} and Type3(C8) = ∅. Due
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Figure 4.9: An example of the algorithm (continued).



Chapter 5

Contractible Edges in
3-Connected Graphs

The moving power of
mathematical invention is not
reasoning, but imagination.

Augustus De Morgan

All results of this chapter are joint-work with Amr Elmasry and Kurt Mehlhorn
from Max-Planck-Institut für Informatik in Saarbrücken, Germany.

5.1 Introduction

Over 40 years ago, Tutte [76] proved the fundamental result that every 3-connected
graph on more than 4 vertices contains a contractible edge, i. e., an edge e = xy

with x 6= y that generates a 3-connected graph upon contraction. Since then, the
distribution of contractible edges in 3-connected graphs has been intensively stud-
ied. Many papers establish lower bounds on the number of contractible edges [2, 55],
or on entire contractible subgraphs [41]. See [40] for an excellent survey. Analo-
gously, bounds on the number of removable edges in 3-connected graphs have been
proved [33, 37].

We strengthen Tutte’s result by showing that every depth-first search tree of a
3-connected graph contains a contractible edge. One might hope for more than one
contractible edge in a depth-first search tree or for a generalization of this result to
more general subgraphs, e. g., for spanning trees. However, we exhibit 3-connected
graphs with a depth-first search tree containing exactly one contractible edge and
3-connected graphs with a spanning tree containing no contractible edge. We call
a 3-connected graph a fox if it has a spanning tree containing no contractible edge.
We present infinite families of foxes and give conditions under which a 3-connected
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graph is not a fox (see Lemma 104).
The results of this chapter are not only of structural interest. They may as well

lead to new inductive proof methods for 3-connected graphs and to simpler certifying
algorithms for testing 3-connectivity. As a first step in this direction, [17] derive a
certifying algorithm in linear-time for the 3-connectivity of Hamiltonian graphs from
the main result of this chapter (for the case that a Hamiltonian cycle of the input
graph is part of the input).

5.2 Preliminaries

For a graph G and a vertex cut V ′ of G, the connected components of G \ V ′ are
called the split components (or separation classes) with respect to V ′. Recall that
vertex cuts of size one, two and three are called cut vertices, separation pairs and
separation triples, respectively.

We use the following known results in our proofs.

Proposition 95. An edge xy in a 3-connected graph on more than 4 vertices is
contractible if and only if no separation triple containing x and y exists.

Theorem 96 (Tutte [76], see also Corollary 10). Every 3-connected graph on more
than 4 vertices contains a contractible edge.

Lemma 97 (Halin [30]). In a 3-connected graph on more than 4 vertices, every
vertex of degree 3 has an incident contractible edge.

Lemma 98 (Ota [55]). Let v be a vertex of degree 3 in a 3-connected graph G on
more than 4 vertices and let x, y, and z be its neighbors. If xy ∈ E(G), then vz is
contractible.

Our main result is the following.

Theorem. Let G be a graph on more than 4 vertices. Every depth-first search tree
of G contains a contractible edge.

5.3 Separation Triples and Split Components

We establish some useful properties of separation triples and split components.

Lemma 99. Let ST = {x, y, z} be a separation triple in a 3-connected graph G. Let
D be one of the split components of G\ST . Then, every vertex in ST has a neighbor
in D.

Proof. Assume otherwise, say z has no neighbor in D. Then, D is a split component
of G \ {x, y}, a contradiction to G being 3-connected.
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Lemma 100. Let ST = {x, y, z} be a separation triple in a 3-connected graph G, and
let D be one of the split components of G \ ST . If ST ′ = {x′, y′, z′} is a separation
triple in G with ST ′ 6= ST and ST ′ ⊂ V (D) ∪ ST , then there is a split component
of G \ ST ′ properly contained in D.

Proof. Let D,D1, . . . , Dj be the split components of G \ ST . Consider the compo-
nents Di, where 1 ≤ i ≤ j. Every Di is connected in G \ (V (D) ∪ ST ), and hence
connected in G\ST ′. Moreover, according to Lemma 99, any vertex in ST \ST ′ has
a neighbor in Di. It follows that (ST \ST ′)∪V (Di) is contained in a split component
of G \ ST ′. Since ST \ ST ′ is non-empty, (ST \ ST ′)∪

⋃
1≤i≤j V (Di) is contained in

a split component of G \ ST ′. Any other split component of G \ ST ′ (there must be
at least one) is contained in V (G)\ ((ST \ST ′)∪

⋃
1≤i≤j V (Di)∪ST ′), and therefore

properly contained in D.

Lemma 101. Let G be a 3-connected graph and let {x, y, z} and {v, y, w} be two
separation triples in G intersecting exactly in y. Then, v and w are contained in
the same split component of G \ {x, y, z} if and only if x and z are contained in
the same split component of G \ {v, y, w}. Moreover, if v and w belong to distinct
split components, then each of G \ {x, y, z} and G \ {v, y, w} has exactly two split
components.

Proof. Assume that v and w are contained in the same split component of G \
{x, y, z}. Then, there is a split component S of G\{x, y, z} that contains a neighbor
of x and a neighbor of z, but neither v nor w. As S∪{x, z} is connected inG\{v, y, w},
x and z belong to the same split component of G \ {v, y, w}. Conversely, if x and z
belong to the same split component of G\{v, y, w}, then v and w belong to the same
split component of G \ {x, y, z} for the same reason. This proves the first claim.

Assume that there are more than two split components of G \ {x, y, z}. Then,
among these split components there is a component containing neither v nor w.
It follows that x and z belong to the same split component of G \ {v, y, w}; in
accordance, v and w belong to the same split component of G \ {x, y, z}. The same
arguments apply if there are more than two split components of G \ {v, y, w}.

We call two separation triples {x, y, z} and {v, y, w} crossing if they intersect in
exactly one vertex and if v and w belong to distinct components of G \ {x, y, z}.
Then, x and z belong to distinct components of G \ {v, y, w} by Lemma 101. In
addition, both, G \ {x, y, z} and G \ {v, y, w}, have exactly two split components.

Lemma 102. Let G be a 3-connected graph, let {x, y, z} and {v, y, w} be two crossing
separation triples in G, let D be the split component of G\{x, y, z} containing v and
let X and Z be the split components of G\{v, y, w} containing x and z, respectively.
Then, either X ∩ D = ∅ or {x, y, v} is a separation triple. Additionally, either
Z ∩D = ∅ or {z, y, v} is a separation triple.
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Figure 5.1: Two crossing separation triples.

Proof. Assume X ∩D 6= ∅. Consider any edge ur ∈ E(G) with u ∈ V (X ∩D) and
r /∈ V (X ∩ D). See Figure 5.1. Then, r ∈ {x, y, z, v, w}. However, r 6= z, because
{v, y, w} separates X from z, and r 6= w, because {x, y, z} separates D from w. It
follows that {x, y, v} separates X ∩D from the rest of G. Analogously, if Z ∩D 6= ∅,
then {z, y, v} separates Z ∩D from the rest of G.

Lemma 103. Let G be a 3-connected graph, let ST = {v, y, w} be a separation triple
in G and let X be a split component of G \ ST . If G \X is not 2-connected and b is
a cut vertex of G \X, then b 6∈ ST and one of the vertices in ST has b as its only
neighbor in G\X (and hence is a split component of G\ (V (X)∪{b})). Conversely,
if each vertex in ST has at least two neighbors in G \X, then G \X is 2-connected.

Proof. Assume that G\X is not 2-connected. Then, there is a cut vertex b that splits
G \X. If one of the split components of G \ (V (X)∪ {b}) does not contain a vertex
from ST , then b is a cut vertex inG, which contradictsG to be 3-connected. It follows
that every split component of G\ (V (X)∪{b}) contains at least one vertex from ST .
If b ∈ ST , say b = y, then G \ (V (X) ∪ {b}) has exactly two split components; one
containing v and one containing w. Since ST is a separation triple in G, there are
vertices in G \X other than those in ST . It follows that one of the components of
G\ (V (X)∪{b}) must contain at least two vertices, say the component that contains
w. Then, {y, w} splits G, which contradicts G to be 3-connected. Therefore, b 6∈ ST .

The vertices of ST cannot all lie in one split component of G \ (V (X) ∪ {b}).
Hence, at least one of these split components, say S, contains exactly one vertex
from ST , say w. If w has a neighbor in G \ X other than b, then |V (S)| > 1 and
S \w is a split component of G \ {b, w}, which contradicts G to be 3-connected.

5.4 Contractible Edges and Spanning Trees

We next give a sufficient condition for every spanning tree of a 3-connected graph to
contain a contractible edge.
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Figure 5.2: The solid edges are non-contractible and form a spanning tree.
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Figure 5.3: A depth-first search tree (depicted in red) that contains only one con-
tractible edge, namely wx.

Lemma 104. Let G be a 3-connected graph on more than 4 vertices and let F be
an edge cut of G. If every edge e in F has an end vertex x, where deg(x) = 3 and x
has two neighbors in G \ F adjacent to each other, then G is not a fox.

Proof. Let v and w be the two neighbors of x in G \ F . Since v and w are adjacent,
Lemma 98 implies that e is contractible. Therefore, every edge in F is contractible,
and hence every spanning tree of G contains at least one contractible edge.

Examples: There are arbitrary large foxes; the wheel graphs Wn, n ≥ 5, with the
spokes as the spanning tree form an infinite family, see Figure 5.2(a). Figure 5.2(b)
shows the base graph of another infinite family of examples. In this graph, the
vertices x, y, and w play a special role. The next larger graph in this family is
generated as follows: Let v be the neighbor of x that is neither y nor w in the
smaller graph, subdivide xv by one vertex and connect the new vertex with y; see
Figure 5.2(c).

We will show that every depth-first search tree of a 3-connected graph contains a
contractible edge. The graph on 6 vertices of Figure 5.3 illustrates that one cannot
guarantee more than one contractible edge. However, we are not aware of any graph
on more than 6 vertices that admits a depth-first search tree containing exactly one
contractible edge.
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Figure 5.4: The T -minimal split component D.

Consider a 3-connected graph G on more than 4 vertices. Assume that G is a fox
and let T be a spanning tree of G containing no contractible edge. It follows that,
for every edge xy ∈ E(T ), there exists a vertex z ∈ V (G) such that {x, y, z} is a
separation triple. We call {x, y, z} a T -separation triple (this assumes xy ∈ E(T )).
Split components that result from the removal of a T -separation triple are called
T -split components. A T -minimal split component is a T -split component that does
not properly contain a T -split component.

Lemma 105. Let G be a 3-connected graph on more than 4 vertices. Assume that
G is a fox and let T be a spanning tree of G containing no contractible edge. Then,
every T -minimal split component consists of exactly one vertex, say v. This vertex
has degree 3 and is incident to exactly one edge of T . More precisely, if the neighbors
of v in G are x, y, and z with xy ∈ E(T ), then vz /∈ E(T ) and either vx ∈ E(T ) or
vy ∈ E(T ).

Proof. Let D be a T -minimal split component and let {x, y, z} with xy ∈ E(T ) be
the associated separation triple. Since T is a spanning tree, there exists a vertex
v ∈ V (D) that is a neighbor of x, y, or z in T . We show that D has only one vertex,
namely v.

If vz ∈ E(T ), then vz is non-contractible and hence a separation triple {v, z, w}
exists. Since xy ∈ E(G), either w ∈ {x, y} or both, x and y, are in the same
split component of G \ {v, z, w}. Consequently, there exists a split component S
of G \ {v, z, w} such that x, y /∈ V (S). By Lemma 99, v has a neighbor, say u, in
S. Since u /∈ {x, y, z}, u is in the same split component of G \ {x, y, z} as v, i. e.,
u ∈ V (D). It follows that every vertex in S is in D as well. Since v /∈ V (S), S is
properly contained in D, which is a contradiction to the minimality of D. It follows
that vz /∈ E(T ). Accordingly, either vx ∈ E(T ) or vy ∈ E(T ).

Assume w.l.o.g. that vy ∈ E(T ). See Figure 5.4. Therefore, vy is non-contractible
and a separation triple {v, y, w} exists. If there is a split component of G \ {v, y, w}
that contains neither x nor z, the arguments of the preceding paragraph indicate
that the T -split component D is not T -minimal. It follows that {v, y, w} splits G
into exactly two components, one containing x and one containing z. Call the former
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component X and the latter Z. We show next that both, X ∩D and Z ∩D, must
be empty.

If X ∩D 6= ∅, Lemma 102 implies that {x, y, v} separates X ∩D from the rest of
G, which contradicts the minimality ofD. This implies thatX∩D = ∅. Analogously,
Z ∩D = ∅.

Thus, we have shown that, assuming v ∈ V (G) is in a T -minimal split component,
there exists a separation triple {x, y, z} with xy ∈ E(T ) such that vx, vy, vz ∈ E(G),
deg(v) = 3, vz /∈ E(T ) and w.l.o.g. vy ∈ E(T ).

Although foxes must have some vertices of degree 3, as indicated by the previous
lemma, not all vertices of a fox can be of degree 3.

Theorem 106. If G is a 3-connected 3-regular graph on more than 4 vertices, then
G is not a fox.

Proof. Assume thatG has a spanning tree T containing no contractible edge. Accord-
ing to Lemma 105, there are vertices v, x, y, z ∈ V (G) such that vx, vy, vz ∈ E(G),
xy, vy ∈ E(T ) but vz /∈ E(T ). Because G is 3-regular, deg(x) = deg(y) = 3. As
T is a spanning tree of G, either the third edge incident to x, say xr, or the third
edge incident to y, say ys, is a tree edge. Since vy ∈ E(G), xr is contractible by
Lemma 98. Since xy, vy ∈ E(T ), both edges are non-contractible by assumption.
Accordingly, ys is contractible by Lemma 97. This contradicts the assumption that
T contains no contractible edge.

Consider a 3-connected graph G on more than 4 vertices. Assume that G is a
fox and let T be a spanning tree of G that contains no contractible edge. Let v be a
T -minimal split component in G and let vy be the only tree edge incident to v. We
call a T -separation triple {v, y, w} a special T -separation triple. Split components
that result from deleting a special T -separation triple are called special T -split com-
ponents. A special T -minimal split component is a special T -split component that
does not properly contain a special T -split component.

Lemma 107. Let G be a 3-connected graph on more than 4 vertices. Assume that G
is a fox and let T be a spanning tree of G that contains no contractible edge. Then,
every special T -minimal split component consists of exactly one vertex and has a
neighbor that is also a special T -minimal split component. Let v and v′ be such a
pair of special T -minimal split components with vv′ ∈ E(G). Then, G contains a
vertex y such that vy, v′y ∈ E(T ).

Proof. Let X be a special T -minimal split component; X is split off by the special
T -separation triple ST = {v, y, w} with vy ∈ E(T ) and such that v is a T -minimal
split component. According to Lemma 100, the three vertices of no other special
T -separation triple are contained in V (X) ∪ ST . Since ST is a T -separation triple,
there is a T -minimal split component v′ ∈ V (X); v′ belongs to a special T -separation
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Figure 5.5: A case contradicting the minimality of X

triple ST ′ = {v′, y′, w′} with v′y′ ∈ E(T ), where y′ ∈ V (X)∪ST and w′ /∈ V (X)∪ST
(otherwise, X would not be minimal).

Assume first that y′ ∈ V (X). Then, w′ must split G\X, and Lemma 103 implies
that one of the vertices in ST has w′ as its only neighbor in G\X. Since vy ∈ E(G),
such vertex must be w. We next show that all neighbors of w are contained in
ST ′, implying that w has degree 3. Assume to the contrary that w has a neighbor
u′ 6∈ ST ′. Then, u′ and w belong to the same split component of G\ST ′. Every path
from u′ to any vertex in a different split component of G \ ST ′ must pass through
either v′, y′ or w. Hence, {v′, y′, w} is a special T -separation triple contained in
V (X) ∪ ST . But such possibility is ruled out in the previous paragraph because of
the minimality of X.

It follows that w has degree 3, its neighbors are precisely the vertices in ST ′,
and w is a T -minimal split component. By Lemma 98, ww′ is contractible, and
accordingly does not belong to T . Additionally, wv′ 6∈ E(T ), since v′y′ ∈ E(T )
and v′ has only one incident tree edge. Hence, wy′ ∈ E(T ). Let z′ be the third
neighbor of v′ besides y′ and w. Then, {w, y′, z′} is a special T -separation triple that
separates v′ from the rest of G (see Figure 5.5). This contradicts our choice of X
being minimal. We conclude that y′ /∈ V (X), and hence y′ ∈ ST .

Since v′ and w′ are in different split components of G\ST , the triples ST and ST ′

cross due to Lemma 101. Hence, the vertices of ST \ {y′} must belong to different
split components of G \ ST ′. Since vy ∈ E(G), this excludes the possibility that
y′ = w. Moreover, y′ 6= v, since otherwise v would be incident to two tree edges,
namely vy and v′y′. It follows that y = y′. If |V (X)| > 1, Lemma 102 implies
that either {v′, y, v} or {v′, y, w} is a special T -separation triple. Such a triple has
a split component properly contained in X, which contradicts the minimality of X.
It follows that v′ is the only vertex in X. Let w′′ be the third neighbor of v besides
v′ and y. Then, {v′, y, w′′} is a special T -separation triple that separates v from the
rest of G. We conclude that v and v′ are both special T -minimal split components,
vv′ ∈ E(G) and vy, v′y ∈ E(T ).
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Theorem 108. Let G be a 3-connected graph on more than 4 vertices. Assume
that G is a fox and let T be a spanning tree of G that contains no contractible edge.
Then, G contains two edges whose four end vertices are distinct special T -minimal
split components.

Proof. Let v and v′ be adjacent special T -minimal split components as described in
Lemma 107; v is split off by ST ′ = {v′, y, w′} and v′ is split off by ST = {v, y, w}.

Assume first that there is a special T -minimal split component in V (G) \
{v, v′, y, w,w′}. Call it z, and let z′ be the adjacent special T -minimal split compo-
nent. Then, z′ 6∈ {v, v′}, and hence (v, v′) and (z, z′) are the desired pairs.

Otherwise, any special T -minimal split component of G is contained in
{v, v′, y, w,w′}. Let W ′ be the component of G \ ST that contains w′ and let W be
the component of G\ST ′ that contains w. Both,W ′ andW , are special T -split com-
ponents and hence contain special T -minimal split components. These components
must be w for W and w′ for W ′. Then, (v, w′) and (v′, w) are the desired pairs.

Next, we use Theorem 108 to prove our main result.

Theorem 109. Let G be a graph on more than 4 vertices. Every depth-first search
tree of G contains a contractible edge.

Proof. Let T be a depth-first search tree of G and assume that T contains no con-
tractible edge. According to Theorem 108, there exist two pairs of distinct vertices
of degree 3, each vertex being a T -minimal split component, such that the vertices
of each pair are adjacent in G. With Lemma 105, every T -minimal split component
is a vertex of degree 3 that is either the root or a leaf in T . Accordingly, there
exists a pair of vertices that are leaves in T while being adjacent in G, which is a
contradiction to the fact that T is a depth-first search tree.

We remark that there are arbitrarily large foxes that contain exactly four vertices
of degree 3 (see Figure 5.6).

5.5 Conclusions

The main result of this chapter is that every depth-first search tree of a 3-connected
graph contains a contractible edge. However, not every spanning tree of a 3-connected
graph contains a contractible edge. An interesting fact is that all wheel graphs, as
well as the members of the infinite family of foxes in Figure 5.2, satisfy the equation
m = 2n − 2. This raises the question about the existence of an infinite family of
foxes where |m − 2n| grows large, e. g., is not bounded by any constant. So far we
have only found foxes with |m − 2n| ≤ 3 (see Figure 5.7 for an extremal example).
Another open question would be whether there exists an inductive characterization
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Figure 5.7: A fox with m = 2n− 3.

of foxes. Such a characterization would provide more insight into the distribution of
contractible edges in 3-connected graphs.
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< (order on chains), 46
∼, 62
β(e,Bi), 30
C0, . . . , Cm−n+1 (chains), 50
Children12(Ci), 67
deg(v), 5
δ(G), 6
E(G), 5
G ∩G′, 6
G ∪G′, 6
G \X, 7
G4, . . . , Gz (graph sequence), 22
k-connected, 9
k-edge-connected, 10
k-regular graph, 6
K3

2 , 5
Kn, 5
Kn-multigraph, 5
κ(G), 9
κ′(G), 10
Li (caterpillar), 55
m, 5
n, 5
N(v), 6
R1, 58
R2, 58
S or Sl (current subgraph), 24
s(P ), 7
S4, . . . , Sz (subgraph sequence), 22
smooth(G), 15
t(P ), 7
T (v), 7
Type3(Ci), 67
Types 1–3b, 51

U , 50
v →G w, 7
V (G), 5
Vreal(S), 24
Wn, 7
2-component, 47
3-connected, 10

acyclic, 7
adjacent, 5
ancestor, 7

of chain, 50
arc-vertex, 42
attachment vertices, 62

backedge, 37
Barnette’s and Grünbaum’s sequence

bottom-up, 16
top-down, 20

base graphs, 1
basic operation, 17, 25
BG-operation, 15
BG-path, 24

basic, 25
can be added, 58

block-cut tree, 47
bottom-up sequence, 2
bridge, 8

can be added, 58
caterpillar, 55

bad, 60
cluster, 56
good, 60
parent of, 56
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start vertex of, 65
certifying algorithm, 3, 39
chain, 46

cluster, 56
dependent, 68
entering, 55
minimal, 55
processing a, 72
Property B of, 53

chain decomposition, 46, 50
checker, 39
child, 7

of chain, 50
cluster, 56

of a chain, 56
complete graph, 5
connected component, 7
connected graph, 7
connectivity, 9
construction sequence, 2

Barnette’s and Grünbaum’s
bottom-up, 16
top-down, 20

basic, 17
bottom-up variant, 2
restrictions of, 58
size of, 35
top-down variant, 2
Tutte’s
bottom-up, 14
top-down, 14

using BG-operations, 16
using BG-paths, 25
using contractions, 14
using removals, 20

contractible edge, 11
contraction, 11
crossing separation triples, 85
cubic graph, 6
cut vertex, 8
cycle, 7

Hamiltonian, 7

length of, 7

decomposition, 6
degree, 5
dependent path

of chain, 68
of segment, 75

depth-first search, 36
depth-first search index, 46
descendant, 7

of chain, 50
DFI, 46
DFS, 36
directed graph, 5
disconnected graph, 7

edge, 5
added by BG-operation, 16
addition of, 7
backedge, 37
bridge, 8
contractible, 11
contraction of, 11
deletion of, 6
end vertices of, 5
entering, 37
incident, 5
label of, 20
parallel edge, 5
removable, 18
removal of, 18
self-loop, 5

edge cut, 8
edge representation, 30
edge-connectivity, 10
edge-induced subgraph, 62
empty graph, 5
end vertex, 5
entering a subtree

backedge, 37
chain, 55

expand operation, 28
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finite graph, 5
forest, 7
fox, 83

graph, 5
K3

2 , 5
Kn, 5
Kn-multigraph, 5
k-connected, 9
minimally, 16

k-edge-connected, 10
k-regular, 6
acyclic, 7
complete, 5
connected, 7
cubic, 6
cycle, 7
decomposition of, 6
directed, 5
disconnected, 7
edge-induced subgraph of, 62
empty, 5
finite, 5
forest, 7
fox, 83
isomorphism of, 5
maximal, 6
merged overlap, 75
sparse, 76

minimal, 6
minimum degree of, 6
overlap, 75
path, 7
simple, 5
smoothing of, 15
spanning subgraph of, 6
subdivision, 15
subgraph of, 6
proper subgraph of, 6

tree, 7
SPQR-tree, 80

underlying simple, 5

undirected, 5
wheel graph, 7
spokes, 7

Hamiltonian cycle, 7

identifying vertices, 7
incident edge, 5
inductively defined construction, 1
inner vertex, 7
internally vertex-disjoint paths, 7
interval overlap, 75
isomorphism, 5

label, 20
leaf, 7
link, 24

parallel, 24

maximal graph, 6
merged overlap graph, 75

sparse, 76
minimal graph, 6
minimally k-connected graph, 16
minimum degree, 6
modular, 57

neighbored vertex, 5

overlap graph, 75
overlap of intervals, 75

parallel edge, 5
parent, 7

of caterpillar, 56
of chain, 50

path, 7
BG-path, 24
chains, 46
end vertices of, 7
inner vertex of, 7
internally vertex-disjoint, 7
length of, 7
link, 24
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vertex-disjoint, 7
path representation, 30
pre-order, 7

on clusters, 56
prescribed subdivision, 25
processing a chain, 72
proper ancestor, 7
proper descendant, 7
proper order on segments, 75
proper subgraph, 6
Property A, 49
Property B, 53

of a chain, 53

real vertex, 24
red-green coloring, 40
removable edge, 18
removal, 18
representation

sequence of contractions, 20
sequence of removals, 30

restrictions, 58
rooted tree, 7

segment
of a chain, 62
of a subgraph, 62

self-loop, 5
separation class, 84
separation pair, 8
separation triple, 8

crossing, 85
sequence of contractions, 14

representation, 20
sequence of removals, 20

edge representation, 30
path representation, 30

simple graph, 5
size of a construction sequence, 35
smoothing

of graph, 15
of vertex, 15

spanning subgraph, 6
special T -minimal split component, 89
special T -separation triple, 89
special T -split component, 89
split component, 84

T -minimal, 88
special, 89

spokes of a wheel graph, 7
SPQR-tree, 80
start vertex

of a caterpillar, 65
of a path, 7

subdivision, 15
prescribed, 25

subgraph, 6
subtree, 7

T -minimal split component, 88
special, 89

T -separation triple, 88
special, 89

T -split component, 88
special, 89

top-down sequence, 2
tree, 7

leaf of, 7
rooted, 7
SPQR-tree, 80
subtree of, 7

Tutte’s construction sequence
bottom-up, 14
top-down, 14

Types 1–3b, 51

undirected graph, 5
upwards-closed, 57

vertex, 5
addition of, 7
adjacent, 5
ancestor, 7
proper, 7

arc-vertex, 42
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cut vertex, 8
degree of, 5
deletion of, 7
descendant, 7
proper, 7

identification, 7
neighbored, 5
real, 24
separation pair, 8
separation triple, 8
smoothing of, 15
splitting of, 11

vertex cut, 8
vertex splitting, 11

wheel graph, 7
spokes, 7
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