
Interval Stabbing Problems in Small Integer
Ranges

Jens M. Schmidt∗

Freie Universität Berlin, Germany

Enhanced version of August 2, 2010

Abstract
Given a set I of n intervals, a stabbing query consists of a point q and

asks for all intervals in I that contain q. The Interval Stabbing Problem is
to find a data structure that can handle stabbing queries efficiently. We
propose a new, simple and optimal approach for different kinds of interval
stabbing problems in a static setting where the query points and interval
ends are in {1, . . . , O(n)}.

keywords: interval stabbing, interval intersection, rank space, static, discrete, point
enclosure

1 Introduction
Interval stabbing, also known as the one-dimensional point enclosure problem is
one of the most fundamental problems in computational geometry and has been
studied for decades. Let la be the left endpoint and ra be the right endpoint of
an interval a. We address the following static setting:

Let I be a given set of n intervals with la, ra ∈ Q := {1, ..., O(n)} for every
a ∈ I. An interval a ∈ I is stabbed by a point q ∈ Q if q ∈ a. We want
to construct simple and lightweight data structures that answer the following
queries on I efficiently:

1. Interval Stabbing Problem: Given a query point q ∈ Q, report all intervals
in I that are stabbed by q.

2. Interval Intersection Problem: Given a query interval [lq, rq] with lq, rq ∈
Q, report all intervals i ∈ I with [li, ri] ∩ [lq, rq] 6= ∅.

3. Interval Cover Problem: Given an interval q ∈ I, report all intervals in I
that contain the interval q.

∗This research was supported by the Deutsche Forschungsgemeinschaft within the research
training group “Methods for Discrete Structures” (GRK 1408).

1



4. Multiple Query Problems: These problems extend each of the problems 1-
3 by allowing multiple queries q1 < . . . < qt, ∀i : qi ∈ Q, at the same
time. The query points have to be given as a sorted list while the output
consists of the intervals that are stabbed by at least one qi (without double
occurences).

We demand in addition that the intervals in each output are reported in
lexicographical order. In general, queries do not admit a worst-case running
time better than O(n), since the output itself can be that large. But for many
inputs the output will be much smaller. Therefore, it is reasonable to consider
the output-sensitive complexity for queries, where the running time is given with
respect to the input size and the output size k. We assume the uniform cost
model, thus k is the number of intervals in the output. Clearly, every data
structure needs to store all intervals and, thus, needs at least Ω(n) space and
preprocessing time to be built. The query time is at least Ω(1 + k) (or Ω(t+ k)
for problems of type 4), the 1 (or t) coming from queries in Q that are not
covered by any interval.

We will only focus on solutions that reach that bounds, i. e., that solve
problems 1-4 in asymptotic optimal space and time. Therefore common interval
data structures like interval trees [6, 8], segment trees [4] and priority trees [9]
cease to apply, as each of them needs a preprocessing time of Ω(n logn) and
query times of at least Ω(logn + k). Alstrup, Brodal and Rauhe [1] describe a
data structure, based on results in [7], that can be used for solving the problems
optimally. The idea is to interpret every interval a ∈ I as a point (la, ra) in
the integer grid n × n and then model the given problem by three-sided range
queries in this grid, i. e., by rectangular range queries with one side going to ∞
or −∞. Each three-sided range query can be performed in time O(1 + k) by
computing iteratively nearest common ancestors in a cartesian tree as shown by
Gabow, Bentley and Tarjan [7]. However, this procedure seems far too involved
for the type of problems we look at and comes with a significant implementation
overhead.

The essence of this paper is a direct, new approach that solves all problems
optimally and does not rely on computing nearest common ancestors, thus has
considerably less overhead. Problems 1 and 2 can as well be solved by the filter-
ing search data structure due to Chazelle [5] in the same asymptotic time and
space requirements. However, filtering search does not solve Problems 3 and 4
and experiments show that our data structure performs faster than filtering
search in practice. That can be explained with the lower number of compar-
isons needed for one query in the theoretical worst case: Our data structure
needs 3k point-to-q comparisons instead of 8k comparisons for Chazelle’s data
structure.

We assume all given intervals a to be closed, but, if necessary, open and half
open intervals may be easily modeled by increasing la and/or decreasing ra by
one in advance. Let la and ra be the endpoints (or shorter ends) of an interval
a ∈ I and let la be the left endpoint and ra be the right endpoint.

If the query range Q is not {1, ..., O(n)} there are techniques that reduce
problems to work within a small integer range [1, 7]. E. g., any universe can be
reduced to the integer range {2, ..., 4n} by first sorting the≤ 2n interval ends and
then assigning to each one two times its rank. This leaves a gap between every
pair of consecutive interval ends. Then a binary search transforms any stabbing

2



query q ∈ Q to a query in {2, ..., 4n}, reflecting its relative position in Q, either
at an interval end or a gap. This goes along with a blow-up of the preprocessing
time to O(n logn) and query time to O(log(n) + k) for problems 1-3 and to
O(min(t log(n), n) + k) for problems of type 4. If the model of computation
is the unit-cost word RAM and each query point fits in a constant number of
words, much faster algorithms for sorting and predecessor searching of query
points can be applied (Andersson et al. [2], Beame and Fitch [3]), although
these results are not needed for the restricted universe we consider here.

2 The Data Structure

Figure 1: The intervals e1, e2 and
h1 are removed from I in advance,
because Smaller(e) = {e1, e2} and
Smaller(h) = {h1}. Only intervals
a and b cover d and Parent(d) = b.
Moreover, c overlaps d, e, f , g and e1
but d does not overlap c.

We identify intervals with their left
and right endpoints and sort all inter-
vals according to the lexicographic or-
der < ⊆ N × N , i. e., for two inter-
vals a and b holds a < b if la < lb
or (la = lb ∧ ra ≤ rb). The compu-
tation time of this lexicographic list is
O(n) by using (stable) bucket sort for
the right endpoints followed by a bucket
sort for the left endpoints, since all in-
terval ends are by definition in Q.

Intervals that share right endpoints
will integrate well in our data structure,
thus the frequently used input trans-
formation to intervals with completely
distinct ends is not necessary. To get
rid of intervals sharing their left end-
point l (for every l), we apply the fol-
lowing preprocessing: All the intervals
with left endpoint l, except one such longest interval a, are stored in a list called
Smaller(a) (see Figure 1). These lists are sorted by length in descending order,
get a link to a, and every element in them is removed from I (i. e., from now on
I does not contain intervals in Smaller(a) and n is redefined to |I| afterwards).
This establishes < to be a strict total order on I relying only on left endpoints.
Later, a simple trick will deal with the omitted intervals Smaller(a).

Two intervals a, b ∈ I intersect if a ∩ b 6= ∅. Otherwise, they are called dis-
joint. We say that interval a overlaps interval b if la < lb ≤ ra < rb. Moreover,
let a be covered by b (and b cover a) if a ⊆ b. Let the rightmost interval in
a non-empty subset of I be the interval with the maximal left endpoint. Note
that this is well-defined as the left endpoint is unique in I. Then Parent(a) is
defined as the rightmost among all intervals that cover a (see Figure 1). If a is
not covered by any interval, Parent(a) := ∅.

Proposition 1. For two intervals a, b ∈ I with a < b exactly one of the following
statements holds:

• a and b are disjoint

• a is covering b

3



• a overlaps b.

Figure 2: The spanning tree S of the
example in Figure 1. Black nodes indi-
cate intervals stabbed by q.

We attach each interval a to
Parent(a), yielding a forest F with
intervals as nodes and the Parent-
function as edges. Let rooti denote
the root of a maximal tree Ti in F .
We construct a spanning tree S =
(V,E) by augmenting the forest with
a special dummy node root (represent-
ing the interval Q) and attaching the
roots of all trees Ti to it (see Figure 2).

Let S be ordered by sorting the
children of each node according to
their left endpoints. The children of
a node v ∈ V are stored in a doubly
linked list, denoted by Children(v).
Every entry in Children(v) is a sibling of each other entry. We call the sib-
ling immediately to the left (right) of an entry the left sibling (right sibling). In
a tree, a node w is an ancestor of a node v, if w is contained in the path from
v to the root (including the node v).

3 The Interval Stabbing Problem
We show how to solve Problem 1 using the spanning tree S and extend this result
later to problems 2-4. First, imagine that all pairs of intervals in I would either
be disjoint or cover each other. In this restricted case it suffices to precompute
the rightmost stabbed interval Start(q) for every q ∈ Q, if it exists. If a query
q arises, let Ts be the tree in F that contains Start(q) and P be the path from
Start(q) to roots in Ts. Then we can get all k stabbed intervals by traversing P
in time O(1 + k), since Start(q) must be the smallest stabbed interval and all
other stabbed intervals have to be ancestors of it in Ts.

However, in general intervals may overlap and stabbed ones can even be
contained in different trees of F . We partition V (S) into four classes subject to
P (see Figure 2). A node v ∈ V (S) is in class

• A, if v is in P or the dummy node

• B, if v has a sibling w in P with lw > lv

• C, if lv > q

• D, otherwise

Lemma 2. For every v ∈ V (S) the stabbed children of v are adjacent in
Children(v).

Proof. We assume to the contrary that there is at least one child b ∈ I that is
not stabbed between two stabbed children a and c. Since siblings cannot cover
each other and a and c cannot be disjoint a must overlap c. Then a∩ c contains
the query point and b is stabbed as well, since lb < lc and rb > ra. �

4



Given a query point q, we first show how to obtain all stabbed intervals in
the sets A, B and C efficiently with a traversal starting at Start(q). If Start(q) is
not stabbed, no interval can be stabbed and the query time is O(1). Otherwise,
all intervals in A must contain q and we traverse them. The stabbed intervals
in B can then be easily computed with Lemma 2 by iteratively traversing to
the left sibling for each node in P until the list ends or a node was not stabbed.
No interval in C can be stabbed because their left endpoints are greater than q
by definition, so only class D remains.

Lemma 3. Every stabbed node v ∈ D has a stabbed ancestor in B.

Proof. With v all ancestors of v are stabbed and at least one of them is
contained in A, since the dummy node is in A. Let w be the ancestor that
is not in A but has a parent z in A. If z 6= Start(q) then w is a stabbed
sibling left of a node in P and therefore in B and the claim follows. Otherwise,
z = Start(q) contradicts v ∈ D, since all intervals in the subtree of z have a
greater left endpoint than z has. �

Lemma 4. If v ∈ D has a right sibling w and is stabbed, w is stabbed as well.

Proof. According to Lemma 3, there is a stabbed ancestor of v and w in
B. Then the right sibling z of this ancestor exists, is either in A or B and is
stabbed. By construction of the spanning tree lv < lw < lz must hold and the
query point q is in v ∩ z. Since v ∩ z ⊆ w, the point q has to stab w as well. �

Lemmas 3 and 4 lead immediately to a recursive characterization of all
stabbed nodes in D. Let U(v) for a node v ∈ D be the sequence of nodes
from v to the first node in B where each successor is the right sibling, if it
exists, and otherwise the parent.

Corollary 5. The node v ∈ D is stabbed if and only if all nodes of U(v) are
stabbed.

Corollary 5 allows us to compute all stabbed nodes in D by traversing paths
back from stabbed nodes in B.

Definition 6. The rightmost path R(v) of a node v ∈ V (S) is empty if v has
no left sibling or its left sibling w is not stabbed. Otherwise, R(v) is the path
from w to the rightmost stabbed node in the subtree of w in S.

Note that R(v) contains only stabbed intervals and can be constructed by
iteratively taking the last child, starting with w. We are now in a position to
compute all stabbed nodes by traversing P from the bottom up and recursively
computing and traversing R(v) from the bottom-up for each visited node v (see
Algorithm 1). All stabbed nodes in A and B are found, since the computation of
rightmost paths considers left children and continues with them at some point,
if they are stabbed. The same holds for stabbed nodes in D, since Corollary 5
ensures that all stabbed nodes in C are reachable by a sequence of rightmost
paths that start with a stabbed node in B.

We can find all k stabbed intervals in O(1 + k) time, because checking an
interval to be stabbed by q, computing Start(q) and traversing to the parent,
left sibling or last child can be done in constant time.

5



Algorithm 1 Traverse (v ∈ V (S), stack O, q ∈ Q)
1: Push v to stack O . for output purposes
2: while next interval w in Smaller(v) exists and q ∈ w do
3: Push w to stack O
4: Compute the rightmost path R(v)
5: for all nodes w in R(v) (from the bottom up) do
6: Traverse(w,O, q)

Algorithm 2 Stabbing query (q ∈ Q)
1: Stack O = ∅ . O for output purposes
2: if Start(q) = ∅ then STOP . q stabs no interval
3: Compute the path P from Start(q) to roots
4: for all nodes v in V (P ) (from the bottom up) do
5: Traverse(v,O, q)
6: while O 6= ∅ do . reverse list of stabbed intervals
7: Append pop(O) to output

It only remains to show how to deal with the intervals in the Smaller-lists
and ensure that the output is sorted in lexicographic order. Each time we reach
a node v with Smaller(v) 6= ∅, we traverse that list until the end or the first
non-stabbed node was found. This way we do not visit intervals that are not
stabbed and, thus, preserve the running time of O(1+k) for each query. We use
the following lemma to verify that the output is sorted in lexicographic order.

Lemma 7. A preorder traversal on root returns all intervals of S sorted by
their left endpoints.

Proof. All children of a node v ∈ V (S) are sorted and have left endpoints
strictly greater than lv for v 6= root. Let w be the right sibling of v. Then, due
to the definition of Parent, every interval in the subtree on v has a left endpoint
of strictly less than lw. Recursively collecting the actual node and traversing the
children from left to right returns the intervals sorted by their left endpoints.

�

The traversal of S starts with the stabbed interval Start(q) that has the
maximal left endpoint and visits subsequent intervals containing q in a postorder
traversal that prefers right children to left children. As this postorder reverses
the preorder traversal and the output of the preorder traversal is sorted in inverse
lexicographic order with Lemma 7, we need to reverse the order of intervals
found. This is done by using a stack (see Algorithm 2).

All preprocessing steps, i. e., computing the Parent and Start pointers can be
done with one sweep line procedure in time O(n) by maintaining a list of stabbed
intervals for each q ∈ Q (see the pseudocode description in Algorithm 3). For
each stabbed interval v of a query, we check at most three subsequent intervals
on containing q, the left sibling of v, the last child of v and the successor in
Smaller(v). However, we need only to compare the right endpoints of those
intervals with q, since Lemma 7 ensures that lv ≤ q holds.

6



Algorithm 3 Preprocessing
1: List L = ∅; create dummy node root
2: ∀q ∈ Q : compute lists Smaller(q); update I
3: ∀a ∈ I : create a pointer to the interval Parent(a)
4: for all a ∈ I in lexicographic order do . build event structure
5: Append a to Event(ra) . event list of intervals on ra

6: Append a to Event(la)
7: for q = 1 to N do . sweep line
8: If L 6= ∅, store the last element in L as Start(q), else Start(q) := NULL
9: for all intervals a ∈ Event(q) in reverse order do

10: if la = q then
11: Start(q) = a
12: Append a to L and save a link to its position in L
13: else . ra = q
14: if a has a predecessor b in L then
15: Store b as Parent(a) and append a to Children(b)
16: else
17: Store root as Parent(a) and append a to Children(root)
18: Remove a from L

Theorem 8. All k intervals stabbed by a query point q can be found sorted in
lexicographic order in query time O(1 + k) and with at most 3k comparisons
with q (2k comparisons if all left endpoints in I are pairwise distinct). The
preprocessing time and space requirement is O(n).

4 Variants of the Problem
We discuss the problems 2-4. The Interval Intersection Problem differs from
the Interval Stabbing Problem only in having a query interval [lq, rq] instead
of a query point. Let an interval be stabbed if its intersection with [lq, rq] is
non-empty. Then Lemmas 2, 3, 4 and Corollary 5 remain valid and we can
still use the data structure of the Interval Stabbing Problem to get all stabbed
intervals. The traversal starts at the rightmost interval t intersecting [lq, rq], if
exists, and recurses to its ancestors and rightmost paths as described before,
finally stopping at intervals that are not stabbed. These lie with Lemma 7
completely left of lq and are not part of the output. Testing a visited interval
a on being stabbed can be done with one comparison by checking ra ≥ lq,
leading to a O(1 + k) query time in total. It remains to show how t can be
precomputed. During the preprocessing, we store additional values Start2(p)
for every p ∈ Q, which point to the rightmost interval a with la ≤ p (this does
not increase the asymptotic running time). When querying [lq, rq], lq ∈ t implies
that t = Start(lq). Otherwise, t = Start2(rq) must hold and t can be obtained
by computing the interval max(Start(lq),Start2(rq)) in time O(1), if exists, and
checking whether the right endpoint of this interval is at least lq.

For the Interval Cover Problem an interval q ∈ I is given. We set Start(q) =
q, because there is no interval with a higher left endpoint covering q. Since
ancestors cover q if one of their children does, we can build the path P and
partition V (S) subject to P as in the Interval Stabbing Problem. When we

7



Figure 3: Different values for the window size δ in Chazelle’s data structure
(short random intervals).

replace the property stabbed with covering q on intervals, the Lemmas 2, 3, 4
and Corollary 5 still hold. Every visited interval a can be tested on covering q
by checking ra ≥ rq, which gives a query time of O(1 + k).

We show that the Multiple Interval Stabbing Problem in 4 allows for a query
time of O(t + k), the other problems in 4 can then be solved using the same
technique. If every interval in the output would be stabbed by only one value
qi, 1 ≤ i ≤ t, the problem could be solved in time O(t + k) by applying the
queries q1, . . . , qt subsequently. In general that is not the case and we have to
ensure that the traversals of different query points do not both visit a node.

Assume that we start with the traversal of the rightmost query point qt and
compute recursively rightmost paths. Then with Lemma 7 the sequence of left
endpoints of visited intervals is strictly monotone decreasing. For every visited
interval a we check in advance if la ≤ qt−1 holds and if so, replace the current
query point qt with the minimal query point qj ≥ la, j < t. If now a or any
subsequent interval is stabbed by qt, it will also be stabbed by qj and we can
perform all comparisons with qj instead of qt. If a traversal of qi, i > 1, ends
without switching to qi−1 we invoke the traversal on the next query point qi−1.
Since the list q1, . . . , qt is ordered, the additional expense to update the query
point is bounded by t constant time comparisons, which gives a total query time
of O(t+ k).

Corollary 9. The k intervals in the output of problems 2 and 3 can be found
sorted in lexicographic order in query time O(1 + k) and with at most 3k com-
parisons with q (2k comparisons if all left endpoints in I are pairwise distinct).
For problems of type 4 a query can be done in time O(t + k) with at most 4k
comparisons with values in {q1, . . . , qt}. For all problems the preprocessing time
and space requirement is O(n).

8



(a) Preprocessing (random intervals) (b) Preprocessing (short random intervals)

(c) Query times (random intervals) (d) Query times (short random intervals)

Figure 4: Comparison of preprocessing and query times.

5 Experimental Analysis
We implemented Chazelle’s data structure [5] with various window sizes (δ =
1.2, 1.5, 2, 3, 5) for the Interval Stabbing Problem and compared the running
times to our approach on Problem 1. However, δ = 2 gave the best results in
both preprocessing and query times and we will focus on that parameter, since
δ < 2 did not lead to observable better query times but to a considerably worse
preprocessing time instead (see Figure 3). Both data structures use identical
representations for intervals, lists and stacks and work under the same conditions
as much as possible. All tests are performed on a 1.86 GHz CPU and 2GB RAM
using the MS compiler 9.0 with optimization level O2. The source code is
available online: http://page.mi.fu-berlin.de/jeschmid.

Figure 5: Point-to-q comparisons

The input consists of various
n from 10000 to 1000000, Q :=
{1, . . . , 5n} (other constants than 5
led to similar results) and either ran-
dom intervals with uniformly dis-
tributed interval ends in Q or short
random intervals. Short random in-
tervals have an exponentially dis-
tributed length with expected value
1000, while their left endpoints and
all query points are uniformly dis-
tributed on Q. The exponential dis-

9

http://page.mi.fu-berlin.de/jeschmid


tribution is generated with inverse
transform sampling on a uniform dis-
tribution. Both query and preprocessing times are averaged over 20 instances
for each n with up to 10000 queries per instance.

The preprocessing times of both data structures in practice reflect the theo-
retical linear bound of Θ(n), except for small n (see Figures 4(a) and 4(b)). In
both figures, our approach performs faster, although on short random intervals
the advantage is marginal. Since query times are primarily dependent on the
output length, we measure the average computation time needed for one interval
in the output. Theoretically, each query time should be constant, although the
memory hierarchy can increase the time in practice when n grows. For large n,
the query times of our data structure are significantly faster than Chazelle’s for
both input types (see Figures 4(c) and 4(d)).

Figure 5 shows how many point comparisons with q are made on average
for each interval in the output. Both data structures need about half of the
comparisons of the theoretical worst case (3 point-to-q comparisons for our data
structure, 8 point-to-q comparisons for Chazelle’s data structure).

References
[1] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal

range searching. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science (FOCS’00), pages 198–207, 2000.

[2] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time?
In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC’95), pages 427–436, 1995.

[3] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem. In Pro-
ceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC’99),
pages 295–304, New York, NY, USA, 1999. ACM.

[4] J. L. Bentley. Solutions to Klee’s rectangle problems. Tech. report, Carnegie-
Mellon Univ., Pittsburgh, PA, 1977.

[5] B. Chazelle. Filtering search: A new approach to query answering. SIAM J.
Comput., 15(3):703–724, 1986.

[6] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries.
Tech. Report F59, Inst. Informationsverarb., Tech. Univ. Graz, 1980.

[7] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing (STOC’84), pages 135–143, 1984.

[8] E. M. McCreight. Efficient algorithms for enumerating intersecting intervals and
rectangles. Tech. Report CSL-80-9, Xerox Palo Alto Res. Center, CA, 1980.

[9] E. M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.

10


	Introduction
	The Data Structure
	The Interval Stabbing Problem
	Variants of the Problem
	Experimental Analysis

