
Computing 2-Walks in Polynomial Time

Andreas Schmid
1

and Jens M. Schmidt
2

1 Max Planck Institute for Informatics, Saarbrücken, Germany

2 TU Ilmenau, Ilmenau, Germany

Abstract

A 2-walk of a graph is a walk visiting every vertex at least once and at most twice. By generalizing

decompositions of Tutte and Thomassen, Gao, Richter and Yu proved that every 3-connected

planar graph contains a closed 2-walk such that all vertices visited twice are contained in 3-

separators. This seminal result generalizes Tutte’s theorem that every 4-connected planar graph

is Hamiltonian as well as Barnette’s theorem that every 3-connected planar graph has a spanning

tree with maximum degree at most 3. The algorithmic challenge of finding such a closed 2-walk

is to overcome big overlapping subgraphs in the decomposition, which are also inherent in Tutte’s

and Thomassen’s decompositions.

We solve this problem by extending the decomposition of Gao, Richter and Yu in such a way

that all pieces, in which the graph is decomposed into, are edge-disjoint. This implies the first

polynomial-time algorithm that computes the closed 2-walk mentioned above.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases Algorithms and Data Structures, 2-Walks, 3-Connected Planar Graphs,

Tutte Paths, 3-Trees

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Among the most fundamental problems in graph theory is the question whether a graph

is Hamiltonian, i.e., contains a cycle of length n := |V |. Whitney [17] proved that every

4-connected maximal planar graph is Hamiltonian. Tutte extended this result by showing

that actually every 4-connected planar graph is Hamiltonian [16]. Thomassen [15] simplified

Tutte’s result and proved the generalization that every 4-connected planar graph contains a

path of length n − 1 between any given two vertices. There are numerous examples proving

that 3-connected planar graphs are not necessarily Hamiltonian; in fact, even deciding

whether a 3-connected 3-regular planar graph is Hamiltonian is NP-hard [10]. However, one

may ask how “close” 3-connected planar graphs are to Hamiltonicity. To this end, let a

k-walk be a walk that visits every vertex at least once and at most k times (edges may be

visited multiple times). A walk is closed if it has the same start- and endvertex. Thus, a

closed 1-walk is a Hamiltonian cycle.

Jackson and Wormald conjectured in [13] that every 3-connected planar graph contains a

closed 2-walk. In a seminal result [7], Gao and Richter proved this conjecture 1994 in the

affirmative. One year later, Gao, Richter and Yu [8] published a refined decomposition that

gives the existence of a very special closed 2-walk, namely one in which every vertex visited

twice is contained in a 3-separator. This decomposition is involved and its presentation

in [8] very densely written; in addition, it contains a flaw, which was fixed in the erratum [9].

However, as an immediate consequence, this special closed 2-walk forms a Hamiltonian cycle

if the graph is 4-connected and, hence, generalizes Tutte’s theorem to 3-connected planar

graphs. It also generalizes Thomassen’s result for 4-connected planar graphs. One of the

© Andreas Schmid and Jens M. Schmidt;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

2 Computing 2-Walks in Polynomial Time

remarkable aspects of the result from Gao, Richter and Yu is that it generalizes yet another

research direction. Barnette [2] proved that every 3-connected planar graph contains a

3-tree, i.e., a spanning tree with maximum degree at most 3. A 3-tree can be computed in

linear-time due to a Ph.D.-thesis by Strothmann [14]. Recently, Biedl showed that 3-trees

(and in fact, more special variants of them) can also be computed by canonical orderings [3].

Interestingly, a 3-tree can be directly obtained from a closed 2-walk in linear time, as shown

in [13, Lemma 2.2(ii)].

So far, 2-walks form the most general existence result in the above line of research. We

are interested in the computational complexity of finding the above special closed 2-walk [8].

Although the existence proof is over 20 years old, it is not even known whether such a 2-walk

can be computed in polynomial time.

Much more is known for its preceding variants: Inspired by Tutte’s classic result, Gouyou-

Beauchamps [11] showed that a Hamiltonian cycle in a 4-connected planar graph can be

computed in polynomial time. The crux of this approach lies in the fact that the subgraphs

arising from Tutte’s decomposition may overlap in an unbounded number of vertices and

edges. This made it very difficult to bound the running time spent in the recursion tree

reflecting the decomposition.

Asano, Kikuchi and Saito showed that a Hamiltonian cycle can be computed in linear-time

when the 4-connected planar input graph is additionally maximal planar [1]. Thomassen

claimed that one could also derive a polynomial-time algorithm from his more general

existence proof in [15]. In [4] it was shown that this statement was too optimistic, as

the subgraphs arising from his decomposition may again overlap in big parts. Chiba and

Nishizeki [5] showed that this problem can be avoided for 4-connected planar input graphs

and gave a linear-time algorithm to compute a Hamiltonian cycle for these graphs. However,

the general problem of overlapping subgraphs in 3-connected graphs has not been resolved.

Even the decomposition in [8] bears the same obstruction that made previous algorithmic

results difficult, namely big overlapping subgraphs.

As main result, we propose how to overcome this problem by extending the decomposition

of Gao, Richter and Yu such that all arising subgraphs will be edge-disjoint. This leads to the

first polynomial-time algorithm that computes the special closed 2-walk of [8], generalizing

the previous results. The result is stated for the class of circuit graphs, which contain all 3-

connected graphs. We aim for a detailed and self-contained description of this decomposition.

◮ Theorem 1. Let G be a circuit graph with external face boundary C and let x, y be vertices

of C. A closed 2-walk of G can be computed in polynomial time such that x and y are visited

exactly once and every vertex visited twice is contained in either a 2-separator or an internal

3-separator of G.

2 Preliminaries

We assume familiarity with standard graph theoretic notations as in [6]. A k-separator of

a graph G = (V, E) is a set of k vertices whose deletion leaves a disconnected graph. Let

n := |V | and m := |E|. A graph G is k-connected if n > k and G contains no (k−1)-separator.

A set of paths intersecting pairwise at most at their endvertices are called independent. For

a path P and to vertices x, y ∈ P , let the subpath from x to y in P be xPy.

A central concept for the decomposition is the notion of H-bridges: For a subgraph H of

G, an H-bridge of G is a component K of G − V (H) together with all edges joining vertices

of K with vertices of H and the endvertices of these edges. Although standard notation

allows an H-bridge to be a single edge, we excluded this case from the definition, as such

A. Schmid and J. M. Schmidt 3

bridges will not play any role for 2-walks. A vertex in an H-bridge L is an attachment of L

if it is also in H and an internal vertex of L otherwise.

A plane graph is a planar embedding of a graph. For two vertices x, y of a cycle C in

a plane graph, let xCy be the clockwise path from x to y in C. For a cycle C in a plane

graph G, let the subgraph of G inside C be the subgraph induced by E(C) and all edges

intersecting the open disc-homeomorph of the plane interior of C. A subgraph inside a cycle

of a 3-connected plane graph G is not necessarily 3-connected; however, its only 2-separators

must have both vertices on the external face. Since we will often use induction on such

subgraphs when describing the decomposition, we will deal with circuit graphs instead of

3-connected plane graphs. A circuit graph (G, C) is a 2-connected plane graph G with

external face boundary C such that the following property is satisfied:

◮ Definition 2 (3-Paths Property). For every vertex v in G\C, G contains three independent

paths from v to distinct vertices in C.

Clearly, circuit graphs generalize 3-connected plane graphs. In the following, we will give

several lemmas about circuit graphs that will be used throughout the paper.

◮ Lemma 3. Let {u, v} be a 2-separator of a circuit graph (G, C). Every component of

G \ {u, v} contains a vertex of C.

Proof. Assume to the contrary that G \ C has a component K with V (K) ∩ V (C) = ∅.

Since K does not contain a vertex of C, each path from a vertex w ∈ V (K) to C contains u

or v. Thus, there are no three independent paths from w to C, contradicting the 3-Paths

Property. ◭

◮ Lemma 4. Let {u, v} be a 2-separator of a circuit graph (G, C). Then u and v are

contained in C and G \ {u, v} has exactly two components.

Proof. First assume that u or v, say u, is not contained in C. As {u, v} is a 2-separator of

G, G \ {u, v} has at least two components. Since u /∈ V (C), one component of G \ {u, v}

must contain all remaining vertices of C. This contradicts Lemma 3. For the second claim,

observe that G \ {u, v} has at most two components that contain vertices of C, as C \ {u, v}

is the union of at most two paths. Thus, a third component would contradict Lemma 3. ◭

Next, we state several lemmas how a circuit graph can be decomposed into smaller circuit

graphs.

◮ Lemma 5 ([7]). Let {u, v} be a 2-separator of a circuit graph (G, C). For each {u, v}-bridge

H of G (recall that H 6= uv), H ∪ uv is a circuit graph.

◮ Lemma 6 ([7]). Let C ′ be any cycle in a circuit graph (G, C) and let H be the subgraph

inside C ′. Then (H, C ′) is a circuit graph.

A block is a maximal connected subgraph that does not contain a 1-separator. Every

block is either 2-connected or has at most two vertices. It is well-known that the blocks of

a graph partition its edge-set. A graph G is called a chain of blocks if it consists of blocks

B1, B2,, Bk such that V (Bi) ∩ V (Bi+1), 1 ≤ i < k, are pairwise distinct 1-separators of G

and G contains no other 1-separator. Thus, a chain of blocks is a graph, whose block-cut

tree [12] is a path. A key idea in the decomposition is that deleting a vertex of the external

face boundary of a circuit graph results in a plane chain of blocks. Every such block will

again be a circuit graph due to Lemma 6.

4 Computing 2-Walks in Polynomial Time

◮ Lemma 7 ([7]). Let (G, C) be a circuit graph and let v ∈ V (C). Then G \ v is a plane

chain of blocks B1, B2, ..., Bk such that one of the neighbours of v in C is in B1 \ B2 and the

other is in Bk \ Bk−1.

The lemma above can be further strengthened if the external face boundary of the circuit

graph is a triangle.

◮ Lemma 8. Let (G, C) be a circuit graph such that C = {v, w, z} is a triangle and G 6= C.

Then G \ v is a circuit graph and G \ {v, w} is a plane chain of blocks B1, ..., Bk with z ∈ B1

and one neighbour of w in Bk.

Proof. Due to Lemma 7, G\v is a plane chain of blocks with z ∈ B1 and w ∈ Bk. According

to the 3-Paths Property, G contains independent paths from every vertex in G \ V (C) to v,

w and z. Thus, G′ := G \ v is a block and therefore forms a circuit graph (G′, C ′). Applying

Lemma 7 to (G′, C ′) gives that G′ \ w is a plane chain of blocks with z ∈ B1 and a neighbour

of w in Bk. ◭

3 From Tutte Paths to 2-Walks

We recapitulate the fundamental steps of Gao, Richter and Yu [8] for proving the existence

of a closed 2-walk. A crucial role plays the notion of a Tutte path. A Tutte path (Tutte

cycle) of a circuit graph (G, C) is a path (cycle) T for which every T -bridge has exactly 2

attachments if it contains an edge of C and otherwise exactly 3 attachments. A Tutte path

from x to y through u has start vertex x, end vertex y and contains u; we will sometimes

say that u is the intermediate vertex of T . Tutte paths can be used to construct a closed

2-walk if the attachments of its T -bridges are sufficiently disjoint. In [8], the existence of a

Tutte path T with T -bridges B1, B2, . . . , Bk was proven for which a set S = {s1, s2, . . . , sk}

of vertices exists such that si is an attachment of Bi for each i. The set S is called system of

distinct representatives (SDR) of the T -bridges. The next results give the existence of such

Tutte paths and cycles; Theorem 9 is slightly weaker than the one in [8] (in which y ∈ V (G)),

but sufficient for our needs.

◮ Theorem 9 ([8]). Let (G, C) be a circuit graph, let x, u, y ∈ V (C) with x 6= y and let

a ∈ {x, u}. Then there is a Tutte path P of G from x to y through u and an SDR S of the

P -bridges such that a /∈ S.

According to Lemma 7, G \ x is a plane chain of blocks. By computing a Tutte path for

every such block and extending the union of these Tutte paths to x (using the two incident

edges in C), we immediately obtain a Tutte cycle of G. Note that the time for computing

this Tutte cycle is dominated by the computation of the Tutte paths (see Lines 2–4 of

Algorithm 1).

◮ Corollary 10 ([8]). Let (G, C) be a circuit graph and let x, y ∈ V (C). Then there is a

Tutte cycle T of G and an SDR S of the T -bridges in G with x, y ∈ V (T) and x, y /∈ S.

Proving the existence of an SDR as in Corollary 10 is the crucial new insight of Gao,

Richter and Yu’s paper [8]. It implies the existence of a closed 2-walk. The idea is to use the

vertices of the SDR S as branch vertices, at which the walk deviates from T into 2-walks of

the T -bridges, which exist by induction. The constructed closed 2-walk will therefore have

special properties for the vertices visited twice. Let an internal 3-separator S of a circuit

graph (G, C) be a 3-separator such that G − S contains a component disjoint from C.

A. Schmid and J. M. Schmidt 5

◮ Theorem 11 ([8]). Let (G, C) be a circuit graph and let x, y ∈ V (C). Then there is a

closed 2-walk W in G visiting x and y exactly once such that every vertex visited twice is

contained in either a 2-separator or an internal 3-separator of G.

We are interested in the computational complexity of finding the 2-walk of Theorem 11

when an efficient subroutine for computing Tutte paths is known.

Algorithm 1

1: procedure 2-walk((G, C), x, y ∈ V (C))

2: for every block B of the plane chain of blocks G \ x do

3: Compute a Tutte path PB of B ⊲ crucial

4: Join the union of all computed Tutte paths to x and obtain a Tutte cycle T of G

5: for every T -bridge L do

6: Recurse on L to compute a 2-walk WL ⊲ polynomially dependent on Line 3

7: Output the union of T and all WL

Algorithm 1 gives a high-level description of the steps taken for the proof of Theorem 11.

For all steps except the computation of Tutte paths in Line 3 and the computation of suitable

circuit subgraphs for the recursion on L in Line 6, the corresponding existence proofs give

immediately linear-time algorithms. It can be readily shown that the computation of Line 6

exceeds the time spent for computing a Tutte path by at most a factor m (we refer to the

appendix for details); hence, we can reduce to computing Tutte paths.

However, it is not even clear whether a Tutte path itself can be computed in polynomial

time, as its existence proof uses a decomposition into circuit subgraphs that may overlap

in large parts. We will show that a Tutte path can be computed in polynomial time; this

implies our main Theorem 1.

4 Finding Tutte Paths

We will prove Theorem 9 by extending the decomposition of Gao, Richter and Yu. The

extended decomposition will only branch into edge-disjoint circuit graphs and thus turn out

to be algorithmically accessible. In the following sections, we will first review some steps

given in [8] needed to set up the decomposition, then explain how we can avoid overlapping

subgraphs, and finally give the details of the extended decomposition.

4.1 Setting up the Decomposition

We review the initial steps taken for the original decomposition in [8]. Let (G, C) be a circuit

graph, let x, u, y ∈ V (C) with x 6= y and let a ∈ {x, u}. We want to find a Tutte path from

x to y through u. The vertex a acts as a place-holder that allows us to prevent x or u to be

in the SDR S; this will be useful for the induction.

We first eliminate some symmetric cases. If u = x, we can choose any other vertex

v ∈ V (C) \ x and assign u = v. The same holds if u = y and a 6= u. If a = u = y, we

interchange the roles of x and y and proceed as above. Thus we can assume that u /∈ {x, y}.

We will need y to be in uCx in a later step. Therefore if y ∈ xCu, we flip the current

embedding of G such that in the new embedding y ∈ uCx.

The proof of Theorem 9 proceeds by induction on the number of edges in G. If |E(G)| = 3,

G is a triangle. In that case, the Tutte path we are looking for is xuy, the corresponding

SDR S is empty and there are clearly no overlapping subgraphs. For the induction step, let

6 Computing 2-Walks in Polynomial Time

u1 the neighbour of u that is not in xCu. In the special case that u1 = y, we define K := u1.

Otherwise, we define K as the minimal connected union of blocks of G \ xCu that contains

u1 and y, where minimality is with respect to the number of blocks (see Figure 1). As argued

before, the blocks of G \ xCu form a tree; by minimality, K will be a plane chain of blocks.

Let B1, . . . , Bl be the blocks of K such that u1 ∈ B1 and y ∈ Bl and let Ci be the external

face boundary of Bi. We number the 1-separators in K from v1 to vl−1, i.e., the blocks Bi

and Bi+1 intersect exactly in vi. In addition, we set v0 := u1 and define vl as the vertex in

Bl nearest to x in u1Cx.

For each (K ∪ xCu)-bridge L, L intersects K in at most one vertex, as otherwise a block

of K would not be maximal. We call this vertex, if it exists, α(L). Note that the edge uu1 is

not a (K ∪ xCu)-bridge by definition. It is however possible that there is a (K ∪ xCu)-bridge

that contains vlCx. If so, we denote this special bridge by L′ (otherwise, vlCx is just an

edge). The bridge L′ is special among the (K ∪ xCu)-bridges, as it is the only one that

may have exactly two attachments; all other bridges have at least three attachments by the

3-Path Property.

4.2 Avoiding Overlapping Subgraphs

In the proof of Theorem 9 in [8, 9], the authors define a second connected subgraph F

that overlaps with K and then recurse on both subgraphs separately by constructing Tutte

paths of every block of these subgraphs (see Figure 1). The recursively constructed Tutte

paths of F (giving a path from x to u) and in K (giving a path from u1 to y) are then

concatenated with uu1 to get the desired Tutte path of G. The overlapping parts of F and

K may therefore receive multiple recursive calls, which prevents to bound the running time

of this decomposition.

x u

u1vl

K

P

y

b
L

B D

B
+ D

+

F

J

(J)

Figure 1 A circuit graph (G, C), in which the plane chain of blocks K is depicted in dark grey

(red) and F is the subgraph induced by xCu and the vertices of light grey (yellow) subgraphs. Here,

F and K overlap in the grey (orange) subgraphs B+ and D+. The part P ′ from u1 to y of the

desired Tutte path of G can be computed by induction on the blocks of K.

However, the description of F in [8] suggests that an overlapping subgraph in this

decomposition consists always of the inner vertex set of some bridge of the Tutte path

computed for K. In the following, we will compute a Tutte path from u1 to y, but instead of

doing this in K, we will do this in a slightly modified subgraph η(K). This augmentation

will allow us to identify and exclude possible overlapping subgraphs in advance. We first

state some results about bridges of Tutte paths T . For the next observation, recall that

A. Schmid and J. M. Schmidt 7

T -bridges are not single edges.

◮ Observation 12. Let (G, C) be a circuit graph and let T be a Tutte path of G. Then the

attachments of any T -Bridge with two attachments form a 2-separator in G.

According to Lemma 3, both vertices of a 2-separator in a circuit graph lie on the external

face boundary. The following lemma strengthens this statement for the 2-separators that are

attachments of T -bridges.

◮ Lemma 13. Let (G, C) be a circuit graph with a Tutte path T from x ∈ V (C) to y ∈ V (C).

Then every T -Bridge with two attachments has either both attachments on xCy or both on

yCx.

Proof. Assume otherwise. Let J be a T -bridge with two attachments {c, d}, c ∈ xCy \ {x, y}

and d ∈ yCx \ {x, y}. By Observation 12, {c, d} is a 2-separator in G. Thus, G \ {c, d}

contains exactly two components X and Y with x ∈ X and y ∈ Y that cover C \ {c, d},

according to Lemma 4. Due to Lemma 3, the inner vertex set of J is either X or Y . In both

cases, J contains an edge of T , which contradicts that J is a T -bridge. ◭

We explain the idea for our decomposition; the precise decomposition will be given in the

next section. Let T be a Tutte path from u1 to y of K and consider any T -bridge J . In the

decomposition of [8], by planarity, J can only intersect an overlapping part if it intersects the

upper external face boundary of K. Then J has exactly two attachments c and d, according

to the definition of a Tutte path and the fact that J contains a boundary edge of some block

of K. By Observation 12 and Lemma 4, c and d must be as well on the boundary of K. In

fact, c and d are on the upper boundary of K by Lemma 13. In summary, the only parts of

K that would have possibly overlapped in the original decomposition are the T -bridges with

exactly two attachments on the upper boundary of K (see also Figure 1).

Thus, if we find all 2-separators in viCivi−1 for a block Bi of K before we actually

compute a Tutte path of this block, we have identified all subgraphs of this block which

would have possibly overlapped in the original decomposition. Let {c, d} be a 2-separator of

a block Bi such that c and d is in viCivi−1. Let further B+
cd be the {c, d}-bridge in Bi that

contains the path cCid (see Figure 1). We call a 2-separator {c, d} in viCivi−1 maximal in

viCivi−1 if there is no other 2-separator {c′, d′} in viCivi−1 with c and d in c′Cid
′. A block

Bi may contain several maximal 2-separators; however, they must be consecutive on viCivi−1.

For the computation of a Tutte path of Bi, we will first find all maximal 2-separators in Ci.

The next smaller 2-separators inside them will only be computed if necessary.

Let {c, d} be a 2-separator of Bi with c and d in viCivi−1 and let v be an inner vertex of

B+
cd. Then cl and cr are defined as the vertices in xCu closest to x and u, respectively, that

are reachable from v by a path not containing any vertex of {c, d} ∪ V (C) as inner vertex

(possibly cl = cr). For a 2-separator {c, d} of Bi with c and d in viCivi−1, let F ′

cd be the

{c, d, cl, cr}-bridge that contains B+
cd and let Fcd := F ′

cd \ {c, d}. The subgraph Fcd contains

the overlapping parts of K of the original decomposition as discussed above.

In order to modify K to η(K), we iterate through all maximal 2-separators {c, d} of every

block of K and “cut off” some B+
cd in a predefined way. This will allow us to compute Tutte

paths for every block of η(K) and iteratively detour these Tutte paths to the subgraphs B+
cd

if necessary. For some B+
cd, we will add a special edge to η(K) whose containment in the

previously computed Tutte path will decide whether such a detour is needed. The exact

definition of η(K) is dependent on the existence of a 1-separator in Fcd. For the relevant

case cl 6= cr, we will prove that a vertex b is a 1-separator of Fcd if and only if {b, c, d} is a

3-separator of G. If such a 1-separator b exists, we will show that b can actually be chosen in

8 Computing 2-Walks in Polynomial Time

such a way that the subgraph of Fcd “above” b is a block; such a vertex will additionally be

unique.

◮ Lemma 14. Let cl 6= cr. A vertex b ∈ Fcd is a 1-separator of Fcd if and only if {b, c, d} is

a 3-separator of G. No 1-separator of Fcd is contained in clCcr.

For proofs, we refer to the appendix. Lemma 14 implies that there is a block of Fcd that

contains clCcr. We call this block A. Note that there may be many 1-separators in Fcd.

However, there is exactly one such 1-separator that is contained in A.

◮ Lemma 15. Let cl 6= cr and let Fcd contain a 1-separator. Then Fcd contains a unique

1-separator b such that b ∈ A.

We are now ready to define η(K).

◮ Definition 16. Let η(K) be the graph obtained from K by performing the following for

every maximal 2-separator {c, d} 6= {vi, vi−1} of every block Bi of K.

Case 1 : cl = cr

Do nothing.

Case 2 : cl 6= cr and Fcd contains a 1-separator (see Figure 2(a))

Replace B+
cd with B+

cd \ A.

Case 3 : cl 6= cr and Fcd contains no 1-separator (see Figure 2(b))

Delete all inner vertices of B+
cd and add the edge cd if cd does not already exist.

(Bi)

b

c d

A

cl cr

vi-1vi

(a) Case 2: cl 6= cr and Fcd contains

a 1-separator b. We replace B+
cd

with

B+
cd

\ A.

c de

i

B
+

cd
B
+
cd

cd

(Bi)

cl cr

vi-1vi

(b) Case 3: cl 6= cr and Fcd does not
contain a 1-separator. We delete all
inner vertices of B+

cd
and add the edge

cd if it does not already exist.

Figure 2 The two cases of modifying K to η(K). In both cases, the remaining part of B+
cd is the

dark grey (red) subgraph, i.e., the grey (orange) part of B+
cd is deleted.

For a block Bi of K, let η(Bi) be the corresponding block of η(K). Let η(Ci) be the

external boundary of η(Bi). Note that η(K) is no longer a plane chain of blocks of G \ xCu,

as the modified blocks η(Bi) are not maximal any more in G. However, every η(Bi) that is

not just an edge is still a circuit graph, as shown next (see the appendix for a proof).

◮ Lemma 17. Every η(Bi) that is not an edge is a circuit graph.

In the following, whenever dealing with a maximal 2-separator {c, d} of K, the variables

Fcd, F ′

cd, cl, cr, Bi, A will always refer to the previously defined objects and b will refer to the

unique 1-separator of Fcd defined in Lemma 15.

A. Schmid and J. M. Schmidt 9

4.3 Extending the Decomposition

We extend the decomposition described so far. First, we find a preliminary Tutte path P of

η(K), which will eventually be modified to a Tutte path of G in Section 4.3.2. As a speciality

in advance, there are two kinds of (K ∪ xCu)-bridges, for which the extension of P into these

bridges is not hard to show; these are the isolated (K ∪ xCu)-bridges, which have all their

attachments, on xCu and the special bridge L′. For a thorough treatment of these bridges,

we refer to the Appendix. Here, we will assume that G contains neither isolated bridges nor

L′.

For a (K ∪ xCu)-bridge L, let C(L) be the shortest path in vlCu that contains all

attachments of L in vlCu. When considering such L, the endpoints of C(L) closest to vl and

u in vlCu are called cl and cr, respectively (cl = cr is possible).

4.3.1 Finding a Tutte Path of eta(K)

We continue the decomposition of a circuit graph (G, C) of Section 4.1 by computing a Tutte

path Pη(K) of η(K) from u1 to y and an SDR of the Pη(K)-bridges. For each block η(Bi) of

η(K), we compute Pη(Bi) and an SDR Sη(Bi) of the Pη(Bi)-bridges as follows.

If η(Bi) is just an edge vi−1vi, set Pη(Bi) := vi−1vi and Sη(Bi) := ∅. Otherwise, if

i < l, compute by induction a Tutte path Pη(Bi) of η(Bi) from vi−1 to vi and a SDR Sη(Bi)

of all Pη(Bi)-bridges such that vi /∈ Sη(Bi) (as intermediate vertex, an arbitrary vertex in

V (Ci) \ {vi−1, vi} can be chosen). If i = l, compute a Tutte path Pη(Bl) of η(Bl) from vl−1

to y through vl and an SDR Sη(Bl) of all Pη(Bl)-bridges. We apply the induction on η(Bl)

such that vl /∈ Sη(Bl). Then Pη(K) = ∪l
i=1Pη(Bi) is the desired Tutte path of η(K) from u1

to y.

Every Pη(Bi)-bridge with three attachments in η(Bi) is also a Pη(Bi)-bridge with three

attachments in G. Every internal vertex of such a Pη(Bi)-bridge has the same neighbourhood

in η(Bi) as in G. Therefore, each such bridge preserves its number of attachments in G. The

same argument holds for the Pη(Bi)-bridges in η(Bi) that have exactly two attachments and

contain an edge of C. In fact, these two observations do not only hold for Pη(Bi), but for

any Tutte path PH of some circuit graph H ⊂ G. We will therefore only discuss PH -bridges

in the remainder of the paper that have exactly two attachments in H and do not contain

any edge of C. We will show that these bridges have exactly three attachments in G.

In order to find the desired Tutte path P of (G, C), we initially set P := xCu1 ∪Pη(K) and

then modify P step by step such that the final path P is a Tutte path, does not contain any

edge cd that was added in Case 3, and admits an SDR S of all P -bridges. We will decompose

G into smaller circuit graphs on which we apply induction. These graphs will pairwise

intersect in at most one vertex, i.e., they are edge-disjoint. By carefully choosing a when

applying the induction, we will avoid that the vertex in the intersection is a representative in

both graphs. The modification of P starts by handling the (K ∪ xCu)-bridges that have an

attachment on K, but are not contained in any Fcd. We next show useful details of these

bridges.

◮ Lemma 18. Let L be any (K ∪ xCu)-bridge for which α(L) exists and which is not

contained in some Fcd. Then α(L) ∈ η(K) and α(L) ∈ Pη(Bi).

4.3.2 Finding a Tutte Path of G

Algorithm 2: FindTuttePath((G, C), x, u, y, P, S)

10 Computing 2-Walks in Polynomial Time

Input: (G, C), x, u, y, P, S, where P is the preliminary Tutte path from x to y of Sec-

tion 4.3.1 and S the corresponding SDR

Output: A Tutte path of (G, C) stored in P and an SDR S of the P -bridges in G stored

in S

1. For every (K ∪ xCu)-bridge L in G with α(L) ∈ η(K):

According to Lemma 18, α(L) ∈ Pη(Bi) for some Bi.

Let J = (L ∪ C(L)) \ α(L).

J is 2-connected: L has an inner vertex by definition of bridge and thus at least two

attachments on C by the 3-Paths Property. Hence, |V (J)| ≥ 3. Starting with C(L)

and adding the two paths to C(L) from every remaining vertex in J due to the 3-Paths

Property gives an open ear decomposition [18]. Thus, J is 2-connected.

It follows that the boundary of J is a cycle and J is a circuit graph.

a. Compute a Tutte path PJ from cl to cr and an SDR SJ of all PJ -bridges by induction

such that depending on a, either cl or cr is not in SJ . If a = x, apply the induction

such that cl /∈ SJ . Otherwise, if a = u, apply the induction such that cr /∈ SJ .

b. Set P := P \ clCcr ∪ PJ and S := S ∪ SJ .

By the 3-Paths Property, every PJ -bridge in J that has exactly two attachments

and does not contain an edge of C must contain a vertex that in G is a neighbour

of α(L). Each such PJ -bridge will therefore become a P -bridge with exactly three

attachments in G.

2. For every maximal 2-separator {c, d} of K satisfying Case 1 of Definition 16:

Let J be any Pη(Bi)-bridge in η(Bi) that contains an edge of cη(Ci)d. We show that

every such J becomes a P -bridge in G with exactly three attachments. By the 3-Path

Property, there is a path from every inner vertex of J to some vertex in C that does

neither contain c nor d. In this case the only possible such vertex is cl = cr. Thus, J

is a P -bridge in G with exactly three attachments, one of which is cl.

3. For every maximal 2-separator {c, d} of K satisfying Case 2 of Definition 16:

a. Compute a Tutte path PA of the block A of Fcd from cl to cr through b and an SDR

SA of all PA-bridges. Apply the induction such that a /∈ SA, analogously to Step 1(a).

b. Set P := P \ clCcr ∪ PA and S := S ∪ SA.

Let H be the {b, c, d}-bridge in G that does not contain clCcr, according to

Lemma 14.

Consider any PA-bridge J with exactly two attachments in A that does not contain

an edge of C. By the 3-Paths Property, J must contain an inner vertex that has

a neighbour in G \ A. Since b is a 1-separator of Fcd in A and b ∈ PA, the set of

all such neighbours is either {c}, {d} or {c, d}. We will show that the last case

is not possible; hence, every such PA-bridge will become a P -bridge with exactly

three attachments in G. As PA is a Tutte path and J has only two attachments, J

contains an edge of the external boundary of A. By planarity and the existence of

(the connected) {b, c, d}-bridge H in G, J cannot be adjacent to both, c and d.

In the case that Pη(Bi) contains an edge of H, there may exist Pη(Bi)-bridges

J ⊆ H \ b with two attachments having both attachments in cη(Ci)d. We show

that every such J becomes a P -bridge in G with exactly three attachments. By the

3-Path Property, there is a path from every inner vertex of J to some vertex in C

that does neither contain c nor d. As J ⊂ H, this path contains b. Thus, J is a

P -bridge in G with exactly three attachments, one of which is b.

4. For every maximal 2-separator {c, d} of K satisfying Case 3 of Definition 16:

a. If cd /∈ Pη(Bi) (see Figure 3):

A. Schmid and J. M. Schmidt 11

c d

cl cr

P(Bi)

cd

B+cd

vi-1vi

d

(a) A maximal 2-separator {c, d} of Bi such that
cl 6= cr and Fcd contains no 1-separator. In this
case, cd is not contained in Pη(Bi).

c d
bR

cl cr

Fcd

f

d

(b) The subgraph Fcd (not containing dashed
edges). We compute a Tutte path PFcd

of Fcd

from cl to cr through b ∈ R (the fat line depicts
the path R).

Figure 3 Step 4(a) of FindTuttePath

Let f be the face in Bi that contains cd and an inner vertex of B+
cd.

Let R be the path obtained from the boundary of B+
cd in f by deleting c and d.

i. Choose an arbitrary vertex b in R.

ii. Compute a Tutte path PFcd
of Fcd from cl to cr through b by induction on Fcd

and an SDR SFcd
of all PFcd

-bridges. Apply the induction such that a /∈ SFcd
,

analogously to Step 1(a).

iii. Set P := P \ clCcr ∪ PFcd
and S := S ∪ SFcd

.

Consider any PFcd
-bridge J with exactly two attachments in Fcd that does not

contain an edge of C. By the 3-Paths Property, the inner vertex set of J is

neighboured to either {c}, {d} or {c, d}. We show that the last case is not

possible, which proves that every such PFcd
-bridge becomes a P -bridge in G with

exactly three attachments. By the choice of R, the only vertex that may be

adjacent to c and d is b (in that case, R = {b}). However, b is not a neighbour of

an inner vertex of J , as b ∈ PFcd
. This proves the claim. Ninja.Ninja.

b. If cd ∈ Pη(Bi):

Recall that cd was possibly added during the construction of η(K) and may therefore

not be in G. We aim to replace cd in Pη(Bi) with a Tutte path of B+
cd from c to d.

According to Lemma 5, B+
cd ∪ cd is a circuit graph.

Let d′ be the neighbour of d on the boundary of B+
cd ∪ cd that is different from c.

Let K ′ := (B+
cd ∪ cd) \ d. According to Lemma 7, K ′ is a plane chain of blocks

B′

1, B′

2, . . . , B′

l′ such that d′ ∈ B′

1 and c ∈ B′

l′ . Note that K ′ is a subgraph of G, as

it does not contain cd.

By planarity, every K∪xCu-bridge L in G that is contained in Fcd has its attachment

α(L) (if exists) on the upper boundary of K ′, while every neighbour of d is on the

lower boundary of K ′.

We will replace cd ∈ Pη(Bi) with the union of the edge dd′ and a Tutte path of

η(K ′) from d′ to c; the Tutte path is constructed in the very same way as we did

for K, i.e., by first computing η(K ′), then Tutte paths of the blocks of η(K ′) and

then branching into the different steps of FindTuttePath. This will iterate on the

maximal 2-separators of K ′, which are the sets of next smaller 2-separators of K.

Note that η(K) and η(K ′) are edge-disjoint.

Technically, η() is defined on a given circuit graph. We face this problem by

constructing the following artificial circuit graph G′, which allows for a proper

definition of η(K ′).

12 Computing 2-Walks in Polynomial Time

Let G′ be the union of K ′ ∪ clCcr, all K ∪ xCu-bridges that are contained in

Fcd, and the new edges ccl and crd′. Clearly, G′ is a circuit graph (G′, C ′). Let

x′ := cl, u′ := cr, u′

1 := d′ and y′ := c.

Then K ′ is consistent to our previous definition, i.e., the minimal connected

union of blocks of G′ \ x′C ′u′ that contains y′ and u′

1, and η(K ′) is well-defined

in dependence of G′ and {x′, u′, y′}.

i. Compute η(K ′) from K ′.

ii. For each block η(B′

i) of η(K ′), compute a Tutte path Pη(B′

i
) and an SDR Sη(B′

i
) of

the Pη(B′

i
)-bridges in η(B′

i) by induction, as described in Section 4.3.1.

iii. Set P ′ := clPcr ∪ Pη(B′

1
) ∪ · · · ∪ Pη(B′

l′
) ∪ crd′.

iv. Set S′ := Sη(B′

1
) ∪ · · · ∪ Sη(B′

l′
).

v. Apply FindTuttePath((G′, C ′)), x′, u′, y′, P ′, S′).

vi. Set P := P \ clCcr \ cd ∪ xPcl ∪ clP
′cr ∪ crPd ∪ dd′ ∪ d′P ′c ∪ cPy.

vii. Set S := S ∪ S′.

By construction, (G′, C ′) does neither contain an L′-bridge nor an isolated bridge;

moreover, P ′ is exactly the preliminary Tutte path of (G′, C ′) computed in

Section 4.3.1. Thus, FindTuttePath((G′, C ′)), x′, u′, y′, P ′) outputs a Tutte path

of (G′, C ′) and stores it in P ′. The above construction of P then forwards the

changes that were made for P ′ to P .

Since P ′ is a Tutte path of (G′, C ′) and by the 3-Paths Property, the only P ′-

bridges with two attachments that do not contain an edge of C must have an

inner vertex that is a neighbour of d. As d ∈ P , such P ′-bridges will become

P -bridges with exactly three attachments in G.

4.4 Polynomial Time Bound for Computing Tutte Paths

It remains to show that Algorithm 2 runs in polynomial time. Clearly, all recursive calls are

made on pairwise edge-disjoint circuit subgraphs; it is also easy to see that every single step

of Algorithm 2 can be computed in polynomial time O(mk). It thus suffices to show that

the number of recursion calls is polynomial in m and that we did not add too many new

edges for the recursive calls.

Let T (m) be the running time of Algorithm 2 on G having m edges. If there are j

recursive calls made for the circuit graph G, let Gi be the circuit graph of the ith such

call and let mi := |E(Gi)| for all 1 ≤ i ≤ j. If we would not add any new edge during

Algorithm 2, T (m) = O(mk) +
∑j

i=1 T (mi). Let w be the neighbor of vl in vlCx. As all

Gi are edge-disjoint and do not contain the edges uu1 and vlw, we have
∑j

i=1 mi ≤ m − 2.

Solving the recurrence gives then T (m) ∈ O(mk+1).

However, we may have added an edge cd during the construction of η(K) whenever we

were in Case 3 of Definition 16. In each such case, the only recursive call made for G in which

cd takes part is the one, say G1, that computes the Tutte path of η(Bi) (see Section 4.3.1).

In G1 and for each such cd, the edge dd′ (see Figure 3(a)) is not contained, which restores

validity of the above argument.

The most crucial open question that we want to investigate in the future is how the given

polynomial running time for computing a special closed 2-walk can be improved to a low

order polynomial.

References

1 T. Asano, S. Kikuchi, and N. Saito. A linear algorithm for finding Hamiltonian cycles in

4-connected maximal planar graphs. Discrete Applied Mathematics, 7(1):1–15, 1984.

A. Schmid and J. M. Schmidt 13

2 D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736,

1966.

3 T. Biedl. Trees and co-trees with bounded degrees in planar 3-connected graphs. In 14th

Scandinavian Symposium and Workshops on Algorithm Theory (SWAT’14), pages 62–73,

2014.

4 N. Chiba and T. Nishizeki. A theorem on paths in planar graphs. Journal of graph theory,

10(4):449–450, 1986.

5 N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time solvable for

4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989.

6 R. Diestel. Graph Theory. Springer, fourth edition, 2010.

7 Z. Gao and R. B. Richter. 2-Walks in circuit graphs. Journal of Combinatorial Theory,

Series B, 62(2):259–267, 1994.

8 Z. Gao, R. B. Richter, and X. Yu. 2-Walks in 3-connected planar graphs. Australasian

Journal of Combinatorics, 11:117–122, 1995.

9 Z. Gao, R. B. Richter, and X. Yu. Erratum to: 2-Walks in 3-connected planar graphs.

Australasian Journal of Combinatorics, 36:315–316, 2006.

10 M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is

NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

11 D. Gouyou-Beauchamps. The Hamiltonian circuit problem is polynomial for 4-connected

planar graphs. SIAM Journal on Computing, 11(3):529–539, 1982.

12 F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen, 13:103–

107, 1966.

13 B. Jackson and N. C. Wormald. k-Walks of graphs. Australasian Journal of Combinatorics,

2:135–146, 1990.

14 W.-B. Strothmann. Bounded degree spanning trees. PhD thesis, FB Mathematik/Infor-

matik und Heinz Nixdorf Institut, Universität-Gesamthochschule Paderborn, 1997.

15 C. Thomassen. A theorem on paths in planar graphs. Journal of Graph Theory, 7(2):169–

176, 1983.

16 W. T. Tutte. A theorem on planar graphs. Transactions of the American Mathematical

Society, 82:99–116, 1956.

17 H. Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390, 1931.

18 H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical

Society, 34(1):339–362, 1932.

