
Simple Computation of st-Edge- and st-Numberings
from Ear Decompositions

Lena Schlipf
LG Theoretische Informatik

FernUniversität in Hagen, Germany

Jens M. Schmidt∗
Institute of Mathematics
TU Ilmenau, Germany

Abstract

We propose simple algorithms for computing st-numberings and st-edge-numberings
of graphs with running time O(m). Unlike previous serial algorithms, these are not
dependent on an initially chosen DFS-tree. Instead, we compute st-(edge-)numberings
that are consistent with any open ear decomposition D of a graph in the sense that
every ear of D is numbered increasingly or decreasingly.

Recent applications need such st-numberings, and the only two linear-time algo-
rithms that are known for this task use a complicated order data structure as black
box. We avoid using this data structure by introducing a new and light-weight num-
bering scheme. In addition, we greatly simplify the recent algorithms for computing
(the much less known) st-edge-numberings.

1 Introduction
st-Numberings (also known as (1,1)-orders) and their relatives st-orientations (also known
as (1, 1)-edge-orders and bipolar orientations) are fundamental tools for problems in graph
drawing (such as planarity testing, visibility representations and orthogonal embeddings),
routing (such as independent spanning trees) and graph partitioning. The papers [10, 13]
list a wealth of applications.

For an edge st of a graph G, an st-numbering < of G is a total order v1 < · · · < vn

of the vertices such that s = v1, t = vn, and every other vertex has both a larger and
smaller neighbor with respect to <. Every st-numbering defines an st-orientation (i.e. an
acyclic orientation such that s and t are the only vertices having indegree and outdegree 0,
respectively) by orienting every edge to the largest of its two endpoints. Conversely, every
st-orientation O may be transformed back to some st-numbering by topologically sorting
O. Since both transformations can easily be computed in linear time, all the results of
this paper also hold for st-orientations.

Several linear-time algorithms are known for computing st-numberings: The first was
found in 1976 by Even and Tarjan [7, 8], and then slightly simplified by Ebert [6]. Fur-
ther simplifications were given in 1986 by Tarjan [14] and in 2002 by Brandes [4]. All

∗This research is supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation).

1

these algorithms are inherently based on an initially chosen depth-first search (DFS) tree.
Maon, Schieber and Vishkin [9] showed how to compute st-numberings efficiently in par-
allel. Their algorithm uses open ear decompositions and implies also a linear-time serial
algorithm, but is considerably more involved than any of the above algorithms.

Thus, all simple linear-time algorithms known so far are special in the sense that they
compute st-numberings that inherently depend on an initially chosen DFS-tree. Let an
st-numbering be consistent with an open ear decomposition D of a graph G if it numbers
the vertices of every ear of D either increasingly or decreasingly (consistency of st-edge-
numberings may be defined similarly). Let T be any initially fixed DFS-tree. Then there
is an open ear decomposition that naturally depends on T (see e.g. [12]), and most of
the algorithms above compute only st-numberings that are consistent with this special
open ear decomposition. However, several applications (e.g. the ones in [2, 5, 13, 11])
need more general st-numberings that are consistent with an arbitrary given open ear
decomposition D. The following is a very simple and probably folklore approach to obtain
these st-numberings by falling back on st-orientations (see e.g. [9, Section 3.1] and [13,
Application 1]): Compute an open ear decomposition D, orient the first cycle from s to
t, and orient every following ear such that acyclicity is preserved; since the reachability
relation is always a poset, an appropriate orientation for the next ear is guaranteed to
exist.

Although this more general approach for computing st-numberings can be made di-
rectly into a linear-time algorithm [13, Application 1] (we give a concise description of
this algorithm in the last section), this algorithm is not simple, as it uses the complicated
order data structure of [3, 15] to identify which endpoint of a new ear is of minimal value.

There are two main results in this paper. First, we give the first simple linear-time
algorithm that, given any open ear decomposition D, computes an st-numbering that is
consistent with D. We avoid using the order data structure by using a new and light-
weight numbering scheme. Despite its generality, the algorithm does not seem to be more
complicated than any known ones.

Second, we consider st-edge-numberings (also known as (1, 1)-edge-orders), which are
considerably less known than their vertex-counterparts, but were recently used in applica-
tions (e.g., for constructing edge-independent spanning trees [11]). In fact, only two results
deal with st-edge-numberings so far: In [1], it is sketched that, analogous to the situa-
tion for the vertex case, st-edge-numberings may be computed from ear decompositions
(without making the runtime precise). In [11], this was used for a linear-time algorithm,
which however needed again the order data structure as black box. We present the first
simple linear-time algorithm that computes st-edge-numberings that are consistent with
any given ear decomposition. This makes the application in [11] a lot more practicable
and easy to implement.

2 Preliminaries
We use standard graph-theoretic terminology and consider only graphs that are finite,
undirected and do not contain self-loops; however, we allow parallel edges.

Definition 1 ([16]). An ear decomposition of a graph G is a sequence (P0, P1, . . . , Pk)

2

of subgraphs of G whose edge-sets partition E such that P0 is a cycle and every Pi,
1 ≤ i ≤ k, is either a path that intersects P0∪ · · ·∪Pi−1 in exactly its endpoints or a cycle
that intersects P0 ∪ · · · ∪ Pi−1 in exactly one vertex. Every Pi is called an ear.

An ear decompositionD is called open if all of its ears except P0 are paths. According to
Whitney [16], every ear decomposition has exactlym−n+1 ears (we setm := |E|). For any
i, let Gi := (Vi, Ei) := P0∪· · ·∪Pi. For any ear Pi 6= P0, let inner(Pi) := V (Pi)−V (Gi−1)
be the set of inner vertices of Pi (for P0, we define every vertex of P0 as inner vertex).
Hence, every vertex of G is an inner vertex of exactly one ear, which implies that the inner
vertex sets of the ears of any ear decomposition partition V . For a vertex v, let birthD(v)
be the index i such that Pi contains v as inner vertex. Whenever D is clear from the
context, we will omit the subscript D.

There is a very simple algorithm that computes a structure from which both an ear
decomposition and an open ear decomposition (if exists) can be “read off”:

Theorem 2 ([12]). For any edge st ∈ G, an ear decomposition and an open ear decom-
position of G (if exists, respectively) such that st ∈ P0 can be computed in time O(m).

For every ear Pi, 0 < i ≤ m− n, we choose an arbitrary endpoint pi of Pi as represen-
tative of Pi and let qi be the other (not necessarily different) endpoint of Pi (see Figure 1).
For P0, we set p0 := q0 := s. We denote the vertices of Pi (consecutively along Pi and
starting from the representative vertex pi) by pi = vi

0, v
i
1, . . . , v

i
ki+1 = qi (if Pi is a cycle,

we omit qi in this list); hence, Pi has ki inner vertices if Pi is a path, and ki + 1 vertices
otherwise.

3 st-Numberings from Open Ear Decompositions
Let D = (P0, P1, . . . , Pm−n) be an open ear decomposition of a graph G such that st ∈ P0
(e.g., computed by Theorem 2; this step is not much more involved than computing an
initial DFS-tree for the classical algorithms). The idea for computing an st-numbering
from D is now to modify the st-orientation method explained in the introduction such
that vertex numbers change only in a well-defined way; to achieve the latter we assign an
interval to every vertex instead of one number.

For the intervals, we first define the binary order relation depend on vertices. Let every
inner vertex of Pi depend on its representative pi and take the transitive closure of this
relation, so that, for every three vertices a, b and c such that a depends on b and b depends
on c, also a depends on c. Clearly, the dependence relation is a strict poset. Let the weight
w(v) of any vertex v ∈ V be the number of all vertices that depend on v (see Figure 1).

Theorem 3. Let D = (P0, P1, . . . , Pm−n) be an open ear decomposition of a graph G.
Then an st-numbering of G that is consistent with D can be computed in time O(m).

Proof. We may compute the weight of all vertices in linear time as follows. Initial-
ize w(v) := 0 for all vertices v. For every i from m − n to 1, set w(pi) := w(pi) +
|V (inner(Pi))|+

∑
v∈inner(Pi)w(v). Since all vertices that depend on pi are inner vertices

of some ear Pj satisfying j ≥ i, this counts the weights correctly.

3

[4, 9]

s

t

P0

P1

P2

0

0

0

0

0

3

57

0[1]

[2]

[3, 10]

[11]

[12]

[4]

[5, 8]

[8]

[7]

[6]

[9]

[5]

[3]

[10]

0

0

0

P3

Figure 1: An open ear decomposition D, in which the representatives pi of ears Pi are
drawn solid. For every vertex v, the number at v depicts its weight, and the interval
depicts I(v) in the course of the proof of Theorem 3.

The crucial idea is now to use the weight of a vertex v to give v enough slack in
the search for its final st-number; in more detail, one st-number for v must remain after
all vertices that depend on v have been st-numbered (in particular, every interval I(v)
will contain at most w(v) + 1 numbers). To this end, we will not assign one number to
every vertex v, but an interval I(v) of natural numbers, in which the final number of the
desired st-numbering is contained. At any point in time, the intervals of all vertices will
be consecutive and pairwise disjoint. Hence, we may define for two vertices v and w that
v < w if some number of I(v) is less than some number of I(w); this gives the total order <
on V , which eventually will be the desired st-numbering. For an interval I(v), let Imin(v)
and Imax(v) be the smallest and the largest number of I(v).

We now state how the intervals are chosen, beginning with the ones for the vertices
of P0 (see also Algorithm 1 for pseudo-code). We set I(s) := [1, 1 + w(s)] and, for every
1 ≤ j ≤ k0 + 1, I(v0

j) := [Imax(v0
j−1) + 1, Imax(v0

j−1) + 1 + w(v0
j)] (see Figure 1). Clearly,

the intervals are pairwise disjoint and the order < on these intervals is an st-numbering
of P0. Now, given such an st-numbering < of Gi−1, we compute an st-numbering of Gi

by distinguishing the following two cases for Pi.
(i) Case pi < qi (see P1 and P3 in Figure 1).

We traverse Pi from qi to pi and move the largest values of I(pi) to intervals of the
inner vertices of Pi as follows: I(vi

ki
) := [Imax(pi) − w(vi

ki
), Imax(pi)] and, for ev-

ery 1 ≤ j < ki, I(vi
j) := [Imin(vi

j+1) − 1 − w(vi
j), Imin(vi

j+1) − 1]. As this moves
|inner(Pi)| +

∑
j∈inner(P (i))w(j) values from the interval I(pi), we update I(pi)

by deleting exactly this many largest values from it. Hence, we have Imax(pi) =
Imin(vi

1) − 1 and, as the interval of pi was initialized using w(pi), no interval is
empty. In addition, all intervals are pairwise disjoint.
We show that the intervals form an st-numbering of Gi. Deleting the above values
of I(pi) preserves that I(pi) is consecutive and does not harm the st-numbering of
Gi−1 at all. For the remaining inner vertices of Pi, every vertex has a smaller and a

4

larger neighbor by construction, except for possibly the smaller neighbor of vi
1 and

the larger neighbor of vi
ki
. However, pi < vi

1 follows from Imax(pi) = Imin(vi
1) − 1,

and vi
ki
< qi follows from pi < qi and the fact that I(vi

ki
) got at least one number

that was previously in I(pi).
(ii) Case pi > qi (see P2 in Figure 1).

We traverse Pi from qi to pi and move the smallest values of I(pi) to intervals of
the inner vertices of Pi as follows: I(vi

ki
) := [Imin(pi), Imin(pi) + w(vi

ki
)] and, for

every 1 ≤ j < ki, I(vi
j) := [Imax(vi

j+1) + 1, Imax(vi
j+1) + 1 + w(vi

j)]. Again, this
moves |inner(Pi)| +

∑
j∈inner(P (i))w(j) values from the interval I(pi), and so we

update I(pi) by deleting exactly this many smallest values from it. Hence, we have
Imin(pi) = Imax(vi

1) + 1 and, as the interval of pi was initialized using w(pi), no
interval is empty. In addition, all intervals are pairwise disjoint.
We show that the intervals form an st-numbering of Gi. Deleting the above values
of I(pi) preserves that I(pi) is consecutive and does not harm the st-numbering
of Gi−1. As above, it remains only to show that vi

1 has a larger and vi
ki

a smaller
neighbor. However, vi

1 < pi follows from Imin(pi) = Imax(vi
1)+1, and qi < vi

ki
follows

from pi > qi and the fact that I(vi
ki

) got at least one number that was previously in
I(pi).

Since the above intervals can be set in total time O(m) and the intervals of every open
ear are consecutively either increasing or decreasing, we obtain the claim.

4 st-Edge-Numberings from Ear Decompositions
Two edges are called neighbors if they share a common vertex.

Definition 4. For an edge st of a graph G, an st-edge-numbering < of G (see Figure 2)
is a total order on the edge set E − st such that m ≥ 2,

– every edge e 6= st, except for one incident to s, has a neighbor e′ with e′ < e and
– every edge e 6= st, except for one incident to t, has a neighbor e′ with e < e′.

1 2

3
4

13

14

7

9
10

11

s

t

8

15

12

5
6

Figure 2: An st-edge-numbering of a 2-edge-connected graph G.

It is known that a graph G has an st-edge-numbering if and only if G has an ear
decomposition if and only if G is 2-edge-connected [11]. Let an st-edge-numbering be
consistent to an ear decomposition D if the edges of every ear are numbered increasingly
or decreasingly.

For our algorithm, we first compute an ear decomposition D = (P0, P1, . . . , Pm−n) of
G such that st ∈ P0 (e.g. by Theorem 2). As for the vertex-variant, we need a notion of

5

P0

P2

P3

P5

s

t

8

01

0

0
0

0

2

0

P1 5

P4

Figure 3: An ear decomposition D = (P0, P1, . . . , P5) of G, in which the representatives pi

of ears Pi are drawn filled. Notice that p3 = p5. The vertex numbers depict their weights.
While the edge sets E(P1), E(P2), E(P4) depend only on their representatives p1, p2 and
p4, respectively, E(P3) depends on p1 and p3, and E(P5) depends on p1 and p5.

dependency. Let every edge of Pi depend on the vertex pi. Recursively, for every edge
e ∈ Pj that depends on some representative pi /∈ P0 (this implies i ≤ j), let e also depend
on pbirth(pi) (see Figure 3). Let the weight w(v) of any vertex v ∈ V be the number of all
edges that depend on v.

Theorem 5. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of a graph G. Then an
st-edge-numbering of G that is consistent with D can be computed in time O(m).

Proof. We may compute the weight of all vertices in linear time as follows. Initialize
w(v) := 0 for all vertices v. For every i from m − n to 1, set w(pi) := w(pi) + |E(Pi)| +∑

v∈inner(Pi)w(v). Since all edges that depend on pi are in some ear Pj satisfying j ≥ i,
this counts the weights correctly.

We encode the desired total order < on edges by the function π : E → N. Differently
as in the vertex-variant, we will assign these numbers directly rather than approximating
them by intervals. In order to avoid having to renumber edges, we will ensure as Invariant 1
that the numbers of every two neighbored edges e and e′ of any ear differ by one plus the
number of dependent edges stored at their common incident vertex v, i.e. |π(e)− π(e′)| =
1 + w(v).

We now state the precise numbering scheme and begin with the consecutive edges
e1, . . . , ek0 of P0 − {st}, where e1 is incident to s (see also Algorithm 2 for pseudo-code).
In accordance with Invariant 1, we set π(e1) := 1+w(s) and π(ej) := π(ej−1)+1+w(v0

j) for
every further edge ej (see Figure 2). Clearly, π is an st-edge-numbering of P0, so assume
by induction we have one for Gi−1. For every vertex v of Gi−1, let low(v) and high(v) be
the smaller and larger number of the two incident edges of v in Pbirth(v) (here, we define
low(s) := 0 and high(t) := π(ek0) + 1 +w(t)). Clearly, each value low(v) and high(v) can
be computed in constant time after Pbirth(v) has been numbered. In order to keep track of
the numbers that are still available for the incident edges of a vertex v, we maintain the
value end(v), and initialize it with high(v). For every vertex v ∈ Gi, we will preserve as
Invariant 2 that low(v) < end(v) ≤ high(v) and the numbers in [low(v) + 1, end(v) − 1]
are not assigned to any edge, so that initially numbers for all edges that depend on v
are available. In particular, the numbers (if any) in [1, end(s) − 1] are smaller than any
number that is assigned to an edge, and high(t) − 1 is the largest number that will be
assigned to an edge. Note that all intervals [low(v) + 1, end(v)− 1] for vertices v ∈ Gi are

6

pairwise disjoint.
Given the st-edge-numbering for Gi−1, we compute one for Gi by distinguishing the

following cases for Pi. Let e1, . . . , er be the consecutive edges of Pi such that e1 := piv
i
1

and er := vi
ki
qi (e1 = er is possible if Pi is an edge).

(i) Case low(pi) ≤ low(qi) (see P1, P2, P3 in Figure 3).
We number the edges of Pi decreasingly from er to e1 as follows: π(er) := end(pi)−1
and, for every 1 ≤ j < r, π(ej) := π(ej+1)−1−w(v), where v is the common vertex of
ej and ej+1. Since this uses all values in [π(e1), end(pi)−1], we set end(pi) := π(e1).
Clearly, this preserves Invariants 1 and 2.
It remains to show that this obtains an st-edge-numbering of Gi. Since we started
with a valid numbering of Gi−1 and every edge e /∈ {e1, er} of Pi has clearly smaller
and larger neighbors by construction, we aim for finding a smaller neighbor of e1
and a larger neighbor of er. We distinguish two cases. First, let pi 6= s. By
Invariants 1 and 2 for pi, e1 has a neighbor e′ ∈ Pbirth(pi) that satisfies π(e′) =
low(pi) < end(pi) = π(e1) and is therefore smaller. Similarly, er has a neighbor
e′′ ∈ Pbirth(qi) that satisfies π(e′′) = high(qi). Since π(er) < low(qi) < high(qi), e′′ is
a larger neighbor of er. Now let pi = s. Then the number assigned to e1 is smaller
than any number assigned to an edge in Gi and, hence, e1 becomes the exceptional
edge incident to s that has no smaller neighbor. The previous exceptional edge
incident to s has now e1 as smaller neighbor. The argumentation that er has a
larger neighbor is the same as in the first case.

(ii) Case low(pi) > low(qi) (see P4, P5 in Figure 3).
We number the edges of Pi decreasingly from e1 to er as follows: π(e1) := end(pi)−1
and, for every 1 < j ≤ r, π(ej) := π(ej−1)−1−w(v), where v is the common vertex of
ej and ej−1. Since this uses all values in [π(er), end(pi)−1], we set end(pi) := π(er).
Clearly, this preserves Invariants 1 and 2. It remains to show that this obtains an
st-edge-numbering of Gi.
Since every edge e /∈ {e1, er} of Pi has clearly smaller and larger neighbors by
construction, we aim for finding a smaller neighbor of er and a larger neighbor of e1.
We distinguish between two cases. First, let pi 6= t. By Invariants 1 and 2 for pi, e1
has a neighbor e′ ∈ Pbirth(pi) that satisfies π(e′) = high(pi) > π(e1) and is therefore
larger. Similarly, er has a neighbor e′′ ∈ Pbirth(qi) that satisfies π(e′′) = low(qi).
Since π(er) = end(pi) > low(pi) > low(qi), e′′ is a smaller neighbor of er. Now
let pi = t. If end(t) = high(t), e1 has the largest number that is assigned to an
edge in Gi and therefore becomes the exceptional edge incident to t that has no
larger neighbor. The previous exceptional edge incident to t has now e1 as larger
neighbor. If end(t) < high(t), then e1 has a neighbor e′ that is incident to t, satisfies
π(e′) = high(t)− 1 > π(e1) and is therefore larger than e1. The argumentation that
er has a smaller neighbor is the same as in the first case.

We note that using this approach, the two exceptional edges of Definition 4 may change
over time, e.g. whenever Pi is a cycle with representative pi = s. Since every step can be
computed in constant time and numbers every ear consecutively, we obtain the claim.

7

5 Implementation Details and Discussion
In this section, we give the pseudo-codes of both algorithms presented in the paper, and
discuss the linear-time algorithm that computes st-numberings using the order data struc-
ture of [15] and [3]. For the pseudo-codes, see Algorithms 1 and 2.

We now give a concise description of the computation of st-numberings using the order
data structure. Let D = (P0, P1, . . . , Pm−n) be an open ear decomposition of a graph G
such that st ∈ P0 (e.g., computed by Theorem 2). Orient the cycle P0 from s to t. For
every next open ear Pi with endpoints p and q, orient Pi from p to q if and only if the
orientation of Gi−1 does not contain a directed path from q to p, and from q to p otherwise.

For 0 ≤ i ≤ m−n, consider the order relation on the vertices of the oriented subgraph
Gi with respect to reachability. For i = 0, this relation is clearly a poset. By construction,
it is also a poset for all 0 ≤ i ≤ m − n. Thus, all orientations are cycle-free and the
orientation O of Gm−n is an st-orientation of G (from which an st-numbering consistent
with D can be easily obtained as shown in the introduction).

Most algorithms for st-numberings are in fact based on this approach and differ only
in the various ways how reachability is computed (a common trick is to use special ear
decompositions that allow to choose the orientations in dependence of the orientation of
former ears). The following more general approach uses an order data structure instead.

Theorem 6. Let D = (P0, P1, . . . , Pm−n) be an open ear decomposition of a graph G.
Then an st-numbering of G that is consistent with D can be computed in time O(m).

Proof. We refine the approach above slightly by maintaining an st-numbering <i for the
vertices of every Gi in the following way. For G0, let <0 be the total order that orders the
vertices of the path P0 − st consecutively from s to t. For every 1 ≤ i ≤ m− n, let p and
q be the endpoints of Pi such that p <i−1 q and orient Pi from p to q (this strictly refines
the approach above). Now obtain <i from <i−1 by adding the set of inner vertices of Pi

immediately after p, ordered by the orientation of Pi. Then <m−n is an st-numbering of
G, as shown above.

It remains to show that the running time is O(m). We use the incremental order
data structure, which maintains a total order subject to the operations of (i) inserting an
element after a given element and (ii) comparing two distinct given elements by returning
the one that is smaller in the order. Tsakalidis [15] and Bender et al. [3] showed such a
data structure with amortized constant time per operation (the latter result also supports
additional deletions of elements). We use the order data structure to maintain the orders
<i−1. For every new open ear Pi, this allows to compute the minimum of p and q with
respect to <i−1 in amortized constant time and thus to augment <i−1 in amortized time
proportional to |V (Pi)|.

Theorem 6 is not meant to give the simplest algorithm known for computing an st-
numbering, as the order data structure itself is somewhat involved. Its beauty stems
rather from the fact that it directly transforms the above approach with st-orientations
into a linear-time algorithm in an conceptually easy way. This makes this algorithm also
worthwhile for teaching in undergraduate classes; in fact, we experienced positive student

8

feedback for first teaching Theorem 6 (to set the stage) and then Algorithm 1 (to avoid
the order data structure).

References
[1] F. Annexstein, K. Berman, and R. Swaminathan. Independent spanning trees with

small stretch factors. Technical Report 96-13, DIMACS, June 1996.

[2] G. D. Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of disjoint
paths. Algorithmica, 23(4):302–340, 1999.

[3] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simpli-
fied algorithms for maintaining order in a list. In Proceedings of the 10th European
Symposium on Algorithms (ESA’02), pages 152–164, 2002.

[4] U. Brandes. Eager st-Ordering. In Proceedings of the 10th European Symposium of
Algorithms (ESA’02), pages 247–256, 2002.

[5] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles and inde-
pendent spanning trees in 3-connected graphs. Journal of Algorithms, 9(4):507–537,
1988.

[6] J. Ebert. st-Ordering the vertices of biconnected graphs. Computing, 30:19–33, 1983.

[7] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci.,
2(3):339–344, 1976.

[8] S. Even and R. E. Tarjan. Corrigendum: Computing an st-Numbering (TCS
2(1976):339-344). Theor. Comput. Sci., 4(1):123, 1977.

[9] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and
st-numbering in graphs. Theoretical Computer Science, 47:277–298, 1986.

[10] C. Papamanthou and I. G. Tollis. Algorithms for computing a parameterized st-
orientation. Theoretical Computer Science, 408(2-3):224–240, 2008. Excursions in
Algorithmics: A Collection of Papers in Honor of Franco P. Preparata.

[11] L. Schlipf and J. M. Schmidt. Edge-orders. In Proceedings of the 44th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’17), pages
75:1–75:14, 2017.

[12] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information
Processing Letters, 113(7):241–244, 2013.

[13] J. M. Schmidt. Mondshein sequences (a.k.a. (2,1)-orders). SIAM Journal on Com-
puting, 45(6):1985–2003, 2016.

[14] R. E. Tarjan. Two streamlined depth-first search algorithms. Fund. Inf., 9:85–94,
1986.

9

[15] A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica,
21(1):101–112, 1984.

[16] H. Whitney. Non-separable and planar graphs. Transactions of the American Math-
ematical Society, 34(1):339–362, 1932.

10

Algorithm 1 Compute an st-numbering of a 2-connected graph G
1: Compute an open ear decomposition D = (P0, . . . , Pm−n) of G.

For every path Pi, let pi = vi
0, . . . , v

i
ki
, vi

ki+1 = qi be the vertices of Pi.
2: for all v ∈ V (G) do w(v) := 0
3: for i← m− n to 1 do . compute the weights
4: w(pi) := w(pi) + |inner(V (Pi))|+

∑
v∈inner(Pi)w(v)

5: I(s) := [1, 1 + w(s)] . initialize intervals for P0
6: for j ← 2 to |V (P0)| in the path P0 − {st} do
7: I(v0

j) := [Imax(v0
j−1) + 1, Imax(v0

j−1) + 1 + w(v0
j)]

8: for i← 1 to m− n do . compute intervals for Gi

9: if pi < qi then
10: I(vi

ki
) := [Imax(pi)− w(vi

ki
), Imax(pi)]

11: for j ← ki − 1 to 1 do
12: I(vi

j) := [Imin(vi
j+1)− 1− w(vi

j), Imin(vi
j+1)− 1]

13: Imax(pi) := Imin(vi
1)− 1

14: else . pi > qi

15: I(vi
ki

) := [Imin(pi), Imin(pi) + w(vi
ki

)]
16: for j ← ki − 1 to 1 do
17: I(vi

j) := [Imax(vi
j+1) + 1, Imax(vi

j+1) + 1 + w(vi
j)]

18: Imin(pi) := Imax(vi
1) + 1

11

Algorithm 2 Compute an st-edge-numbering of a 2-edge-connected graph G
1: Compute an ear decomposition D = {P0, . . . , Pm−n} of G.
2: for all v ∈ V (G) do w(v) := 0
3: for i← m− n to 1 do . compute the weights
4: w(pi) = w(pi) + |E(Pi)|+

∑
v∈inner(Pi)w(v)

5: Let E(P0) = {e1, . . . , er}.
6: Set π(e1) := high(s) := 1 + w(s), low(s) := 0, low(t) := π(er) and high(t) :=
π(er) + 1 + w(t).

7: for j ← 2 to r do . number E(P0)
8: π(ej) := π(ej−1) + 1 + w(v0

j)
9: Set low(v) and high(v) for all v ∈ V − {s, t}. Set end(v) := high(v) for all v ∈ V .

10: for i← 1 to m− n do . number E(Pi)
11: Let e1, . . . , er be the consecutive edges of Pi from pi to qi.
12: if low(pi) ≤ low(qi) then
13: π(er) := end(pi)− 1
14: for j ← r − 1 to 1 do
15: π(ej) := π(ej+1)− 1− w(v), where v is the common vertex of ej and ej+1

16: Update high and low-values for inner(Pi) and set end(pi) := π(e1).
17: else . low(pi) < low(qi)
18: π(e1) := end(pi)− 1
19: for j ← 2 to r do
20: π(ej) := π(ej−1)− 1− w(v), where v is the common vertex of ej and ej−1

21: Update high and low for inner(Pi) and set end(pi) := π(er).

12

	Introduction
	Preliminaries
	st-Numberings from Open Ear Decompositions
	st-Edge-Numberings from Ear Decompositions
	Implementation Details and Discussion

