
Edge-Orders

Lena Schlipf
LG Theoretische Informatik

FernUniversität in Hagen, Germany

Jens M. Schmidt∗
Institute of Mathematics
TU Ilmenau, Germany

Abstract

Canonical orderings and their relatives such as st-numberings have been used as a key
tool in algorithmic graph theory for the last decades. Recently, a unifying link behind all
these orders has been shown that links them to well-known graph decompositions into parts
that have a prescribed vertex-connectivity.

Despite extensive interest in canonical orderings, no analogue of this unifying concept is
known for edge-connectivity. In this paper, we establish such a concept named edge-orders and
show how to compute (1,1)-edge-orders of 2-edge-connected graphs as well as (2,1)-edge-orders
of 3-edge-connected graphs in linear time, respectively. While the former can be seen as the
edge-variants of st-numberings, the latter are the edge-variants of Mondshein sequences and
non-separating ear decompositions. The methods that we use for obtaining such edge-orders
differ considerably in almost all details from the ones used for their vertex-counterparts, as
different graph-theoretic constructions are used in the inductive proof and standard reductions
from edge- to vertex-connectivity are bound to fail.

As a first application, we consider the famous Edge-Independent Spanning Tree Conjecture,
which asserts that every k-edge-connected graph contains k rooted spanning trees that are
pairwise edge-independent. We illustrate the impact of the above edge-orders by deducing
algorithms that construct 2- and 3-edge independent spanning trees of 2- and 3-edge-connected
graphs, the latter of which improves the best known running time from O(n2) to linear time.

1 Introduction
Canonical orderings serve as a fundamental tool in various fields of algorithmic graph theory,
see [2, 30] for a wealth of applications. Under this name, canonical orderings were published in
1988 for maximal planar graphs [8] and soon after generalized to 3-connected planar graphs [18].
Interestingly, it turned out only recently [30] that the well-known non-separating ear decom-
positions [6] are in fact strict generalizations of canonical orderings to arbitrary 3-connected
graphs, and that this generalization was, independently, already known as (2,1)-sequences [23] in
1971 long before canonical orderings were even proposed (anticipating many of their later planar
features).

Mondshein [23] characterized (2,1)-sequences, or (2,1)-orders, as we will call them, by
decomposing a graph into 2-connected and connected parts. Indeed, the unifying link above
allows to describe any canonical ordering of a graph G = (V,E) as a total order on V such that
for certain i, the first i vertices induce a 2-connected graph and the remaining vertices induce a

∗This research is supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation).
An extended abstract of this paper appeared at ICALP’17.

1

connected graph in G [30] (note that this does not use any reference to planarity). The general
concept behind canonical orderings is thus connectivity, with all of its implications for planarity,
instead of planarity itself.

Several publications [24, 7, 4] extended this approach by proving a (k, `)-order for specific
pairs (k, `) 6= (2, 1). Such (k, `)-orders may be described canonically as total orders on V such
that for certain i, the first i vertices induce a k-connected graph and the remaining vertices
induce an `-connected graph (a related description for planar triangulations is given in [4]). In
order to make this precise, “certain i” has to be quantified for every particular pair (k, `). For
such (k, `), this is usually done in dependence of a graph decomposition: e.g. for (2, 1)-orders, i
ranges over every vertex that completes an ear (with the predecessors of that vertex) in a fixed
open ear decomposition of G. Clearly, such decompositions tends to become more complex for
higher k or `.

Several other well-known structures than canonical orderings fit into the context of (k, `)-
orders: st-numberings and st-orientations are actually (1,1)-orders of 2-connected graphs (where
i ranges over all vertices), the chain decompositions of [7] are (2,2)-orders of 4-connected graphs,
and more orders on restricted graph classes such as planar graphs and triangulations are known
(see Table 1 left).

k\` 1 2
1 st-numbering [10] O(m)
2 Mondshein sequence [29]

O(m)
Chain decomposition [7] O(n2m);
if planar [25] O(m)

3 (3,1)-order for tri-
angulations [4] O(m)

5-canonical decomposition for tri-
angulations [24] O(m)

4 open open

k\` 1
1 st-edge-numbering [1]

O(m) (+in this paper)
2 (2,1)-edge-order O(m)

(in this paper)
3 open
4 open

Table 1: Left: (k, `)-orders of (k+ `)-connected graphs known so far and the best-known running
times for constructing them. Right: (k, `)-edge-orders of (k + `)-edge-connected graphs (this
paper).

The purpose of this paper is to extend this unifying view further to (k, `)-edge-orders, each
of which can be described as a total order on E such that for certain i, the first i edges induce a
k-edge-connected graph and the remaining edges induce a `-edge-connected graph. Despite the
many known vertex-orders above, these natural edge-variants do not seem to be well-studied.
In fact, we are only aware of one technical report by Annexstein et al. [1], which deals with
(1,1)-edge-orders (under the name st-edge-orderings), but lacks proof details of their existence.
For the (1, 1)-edge-order that we present, i ranges over all edges except st; for the (2, 1)-edge-order
that we present, i ranges over all edges that, in a fixed ear decomposition of G, complete an ear
with the predecessors of i.

We show a simple algorithm that computes a (1,1)-edge-order of a 2-edge-connected graph
and prove that it has running time O(m). Our main contribution is then an algorithm that
computes a (2,1)-edge-order of a 3-edge-connected graph in time O(m) (see Table 1 right), of
which the corresponding result for the vertex-counterpart took over 40 years.

Just like (2,1)-orders, which immediately led to improvements on the best-known running
time for five applications [5, 30], (2,1)-edge-orders seem to be an important and useful tool
for many graph algorithms. We give an application of them, which is related to the edge-
independent spanning tree conjecture [17]: By using a (2,1)-edge-order, we show that three
edge-independent spanning trees of 3-edge-connected graphs can be computed in time O(m),

2

improving the best-known running time O(n2) by Gopalan et al. [14].
Using the approach presented in this paper, Hoyer and Thomas [15] could meanwhile show a

(2,2)-edge-order of 4-edge-connected graphs, which implies that every 4-edge-connected graph
has four edge-independent spanning trees.

After giving preliminary facts on ear decompositions, we explain the linear-time algorithms
for computing (1,1)- and (2,1)-edge-orders in Sections 3–5. Section 6 then shows algorithms for
computing two and three edge-independent spanning trees.

Vertex-connectivity vs. edge-connectivity. In many cases, the vertex-variant of a connec-
tivity problem is more challenging than its edge-variant, as the latter may be reduced to the
former by taking its line-graph or by using the reduction from k-edge- to k-vertex-connectivity of
Galil and Italiano [12]. From a top-level perspective, our (2,1)-edge-order algorithm follows the
proof outline of its vertex-counterpart in [30]. Thus, it needs to be motivated that there is no
obvious linear-time reduction to [30] that produces the results of this paper (of course there is a
non-obvious reduction that just takes the algorithm of this paper and does not invoke [30] at all).

Clearly, a reduction to line-graphs is not possible, as this may involve a quadratic blow-up in
the graph size and thus in the running time. Another reduction is the one of Galil and Italiano [12],
which reduces a 3-edge-connected graph G to a 3-vertex-connected graph G′ in linear time. In
short, the reduction works as follows. Every vertex v of degree i in G is transformed to a wheel
graph with i spokes in G′, in which the hub represents v. Figure 1 gives an example of such
a reduction, and shows a (2,1)-order of G′, which can be computed in linear time using [30].
The figure shows that there is no obvious way of transforming the (2,1)-order of G′ back to a
(2,1)-edge-order of G.

r

t

u

v

3

2

6

5

7

4

1

(a) A 3-edge-connected graph G.

P0
3

r 2

P1

P2

6

t

u

v5

7

4
P5

P4

P3

1 P6

(b) The 3-connected graph G′ obtained from
G by applying [12], and a (2, 1)-order D of G′

through r3 and avoiding r1 (see [30] for nota-
tional details). Every short ear is depicted in
gray and, in order to be able to distinguish
between individual ears, every ear is drawn
with small gaps to its endpoints. Here, the
open ears P1, . . . , P6 of D do not correspond
to ears of G.

Figure 1: Reduction attempt to (2, 1)-orders of 3-connected graphs.

Another hint that such a reduction might be elusive is given by our application to edge-
independent spanning trees. Despite extensive research, it is still not known how to reduce these
to vertex-independent spanning trees (which may in turn be computed from a (2,1)-order [30]),
not even for the corresponding existence results. In fact, an attempt trying to prove this turned

3

out to be false [13]. If there was a reduction to (2,1)-orders, it would directly imply a reduction
to vertex-independent spanning trees.

Hence, there is no obvious way of producing our results using old ones. Indeed, the different
parts of our proof require substantially new ideas and non-trivial formalizations in comparison
to [30]: Mader-sequences differ from the (BG)-sequences used in [30] (and, although they are
not too far apart, it took a 27-page paper to show that the former can be computed in linear
time as well [22]), the notions of non-separateness and Gi differ considerably, and, here, we need
last-values in addition to just birth-values.

2 Preliminaries
We use standard graph-theoretic terminology and consider only graphs that are finite and
undirected, but may contain parallel edges and self-loops. In particular, cycles may have length
one or two. A separator of size one is called a cut-vertex. The 2-connected components of a graph
are its inclusion-wise maximal connected subgraphs having no cut-vertex. For k ≥ 1, let a graph
G be k-edge-connected if n := |V | ≥ 2 and G has no edge-cut of size less than k.

Definition 1 ([19, 31]). An ear decomposition of a graph G = (V,E) is a sequence (P0, P1, . . . , Pk)
of subgraphs of G that partition E such that (i) P0 is a cycle that is no self-loop and (ii) every
Pi, 1 ≤ i ≤ k, is either a path that intersects P0 ∪ · · · ∪ Pi−1 in its endpoints or a cycle that
intersects P0 ∪ · · · ∪Pi−1 in a unique vertex qi (which we call endpoint as well). Each Pi is called
an ear. An ear is short if it is an edge and long otherwise.

Theorem 2 ([26]). A graph is 2-edge-connected if and only if it has an ear decomposition.

According to Whitney [31], every ear decomposition has exactly m− n+ 1 ears (m := |E|).
For any i, let Gi = (Vi, Ei) := P0 ∪ · · · ∪Pi and Ei := E −Ei. We denote the subgraph of G that
is induced by Ei as Gi = (Vi, Ei). Clearly, Gj ⊂ Gi for every i < j. We note that this definition
of Gi differs from the definition Gi := G− Vi that was used for (2,1)-vertex-orders [30], due to
the weaker edge-connectivity assumption.

For any ear Pi, let inner(Pi) := V (Pi)− V (Gi−1) be the set of inner vertices of Pi (for P0,
every vertex is an inner vertex). Hence, for a cycle Pi 6= P0, inner(Pi) = V (Pi)−qi. Every vertex
of G is an inner vertex of exactly one long ear, which implies that, in an ear decomposition, the
inner vertex sets of the long ears partition V .

Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge e, let
birthD(e) be the index i such that Pi contains e. For a vertex v, let birthD(v) be the index i
such that Pi contains v as inner vertex and let lastD(v) be the maximal index birthD(vw) over
all neighbors w of v. Whenever D is clear from the context, we will omit the subscript D.

Thus, Plast(v) is the last ear that contains v and, seen from another perspective, the first
ear Pi such that Gi does not contain v. Clearly, a vertex v is contained in Gi if and only if
last(v) > i.

3 The (1,1)-edge-order
Although (1,1)-edge-orders can be seen as edge-counterparts of st-numberings, they do not seem
to be well-known. Let two edges be neighbors if they share a common vertex. Annexstein et al.
gave essentially the following definition.

4

Definition 4 ([1]). Let G = (V,E) be a graph with an edge st that is not a self-loop. A
(1,1)-edge-order through st of G is a total order < on the edge set E − st such that m ≥ 2,

– every edge e, except for one incident to s, has a neighbor e′ with e′ < e and
– every edge e, except for one incident to t, has a neighbor e′ with e < e′.

Hence, < is a total order on E − st such that for all i, the first i edges and the remaining
edges induce a connected graph. The two exceptional edges incident to s and t must therefore be
the minimal and maximal edge of E − st with respect to <. Clearly, if G has a (1,1)-edge-order
through st, G is 2-edge-connected, as neither st nor any other edge can be a bridge of G (note
that this requires m ≥ 2). The converse statement was shown in [1, Prop. 4] using a special
type of ear decompositions based on breadth-first-search (however, without giving details of
the linear-time algorithm). Here, we aim for a simple, constructive and direct (unlike, e.g.,
reducing to (1,1)-orders via line-graphs) exposition of the underlying idea and show that any ear
decomposition can be transformed to a (1,1)-edge-order in linear time.

We will use the incremental list order-maintenance problem, which maintains a total order
subject to the operations of (i) inserting an element after a given element and (ii) comparing two
distinct given elements by returning the one that is smaller in the order. Bender et al. [3] show a
simple solution for an even more general problem with amortized constant time per operation;
we will call this the order data structure.

Lemma 5. Let G be a 2-edge-connected graph with an edge st that is not a self-loop. Then a
(1,1)-edge-order through st can be computed in time O(m).

Proof. We compute an ear decomposition D of G such that st ∈ P0. This can be done in linear
time by any text-book algorithm; see [28] for a simple one. Let <0 be the total order that
orders the edges in P0 − st consecutively from s to t. Thus, every edge has a smaller and a
larger neighbor, except for st and the two exceptional edges incident to s and t. Clearly, <0 is a
(1,1)-edge-order through st of the 2-edge-connected graph G0. We extend <i−1 iteratively to a
(1,1)-edge-order <i of Gi by adding the next ear Pi of D; then <m−n gives the claim.

The order itself is stored in the order data structure. For every vertex x in Gi−1, let min(x)
be the smaller of its two incident edges in Pbirth(x) with respect to <i−1 (for later arguments,
define max(x) analogously as the larger such edge); clearly, min(x) and max(x) can be computed
in constant time while adding Pbirth(x). When adding the ear Pi with (not necessarily distinct)
endpoints x and y, let e be the smallest edge in {min(x),min(y)} with respect to <i−1 (this
needs amortized constant time by using at most one comparison of the data structure). Consider
all edges of Pi in consecutive order starting with a neighbor of e. We obtain <i from <i−1 by
inserting these edges as one consecutive block immediately after the edge e (if Pi is a cycle
with endpoint s, the edges are inserted in front of the other edges); this takes amortized time
proportional to the length of Pi. Then the first edge of Pi has a smaller neighbor in <i while the
last has a larger neighbor in <i (for cycles Pi 6= P0, this exploits that qi has another incident
edge in Gi−1 or the exceptional edge incident to s (or t) might change), which implies that <i is
a (1,1)-edge-order.

This (special) (1,1)-edge-order will allow for a very easy computation of two edge-independent
spanning trees in Section 6 and serve as a building block for the computation of three such
trees. If one wants to keep the root-paths in two edge-independent spanning trees short, a
different (1,1)-edge-order [1] may be computed by maintaining min(x) as the incident edge of x
that is minimal in Gi in the above algorithm (this can be done efficiently by updating min(x)

5

whenever an ear with endpoint x is added). However, the latter order cannot be used for three
edge-independent spanning trees.

4 The (2,1)-edge-order
We define (2,1)-orders as special ear decompositions.

Definition 6. Let G be a graph with distinct edges rt and ru (t = u is possible). A (2,1)-
edge-order through rt and avoiding ru (see Figure 2) is an ear decomposition D of G such
that

1. rt ∈ P0,
2. Pm−n = ru, and . i.e., the last ear is the short ear ru
3. for every 0 ≤ i < m− n, Gi contains inner(Pi) and, if Pi is short, at least one endpoint of
Pi.

P0

P1

P2

P4

P3

P7

P9

P5
P6

P8

r

t

u

a

b

c

d

e

f

g

h

Figure 2: A (2,1)-edge-order of a 3-edge connected graph.

We will denote the Properties 1, 2, and 3 of Definition 6 as Properties 6.1, 6.2, and 6.3.
Property 6.2 implies that Gi contains the vertices r and u for every 0 ≤ i < m − n. We call
Property 6.3 the non-separateness of D. The non-separateness of D states that every inner
vertex of a long ear Pi has an incident edge in G that is in Gi, and that every short ear Pi (seen
as edge) has a neighbor in Gi. The name refers to the following helpful property.

Lemma 7. Let D be a (2,1)-edge-order. Then, for every 0 ≤ i < m− n, Gi is connected.

Proof. Consider any i < m− n and let e be any edge in Gi. By Property 6.2, r ∈ Gi. We show
that Gi contains a path from one of the endpoints of e to r. This gives the claim, as Gi is an
edge-induced graph and therefore does not contain isolated vertices.

Let Pj be the unique ear that contains e. If Pj is short, Pj = e and e has a neighbor in Gj

due to the non-separateness of D. If Pj is long, at least one endpoint of e must be an inner
vertex of Pj and e has a neighbor in Gj for the same reason. Hence, in both cases we find a
neighbor that is contained in an ear Pk with k > j. By applying induction on the indices of
these ears, we find a path that starts with an endpoint of e and ends with the only edge left in
Gm−n−1, namely ru.

As described in the introduction, a (2, 1)-edge-order is thus a total order on E such that for
each i that completes an ear with the predecessors of i in a fixed ear decomposition, the first i
edges induce a 2-edge-connected graph and the remaining edges induce a connected graph. Next,
we show that the existence of a (2,1)-edge-order proves the graph to be 3-edge-connected.

Lemma 8. If G has a (2,1)-edge-order, G is 3-edge-connected.

6

Proof. Let D be a (2,1)-edge-order through rt and avoiding ru. Consider any vertex v of G. By
transitivity of edge-connectivity, it suffices to show that G contains three edge-disjoint paths
between v and r. Let Pi be the ear that contains v as inner vertex. In particular i < m− n, as
Pi is long. Then Gi has an ear decomposition and, due to Theorem 2, contains two edge-disjoint
paths between v and r.

As Pm−n = ru and Gi contains inner(Pi) (Properties 6.2+3), Gi contains v and r. According
to Lemma 7, Gi is connected. Thus, Gi contains a third path between v and r, which is
edge-disjoint from the first two, as Gi and Gi are edge-disjoint.

Let G have a (2,1)-edge-order. Then Lemma 8 implies δ(G) ≥ 3. This in turn gives that, for
every vertex v, Plast(v) is not the first ear that contains v, which implies that Plast(v) must have
v as endpoint. In particular, if vw is an edge and last(v) = last(w) = birth(vw), Pbirth(vw) is
the short ear vw and, according to the non-separateness of D, we have i = m− n, which implies
vw = ru.

Lemma 9. For any vertex v, Plast(v) has v as an endpoint. For any edge vw satisfying last(v) =
last(w) = birth(vw), vw = ru.

The converse of Lemma 8 is also true: If G is 3-edge-connected, G has a (2,1)-edge-order.
This gives a full characterization of 3-edge-connected graphs; however, proving the latter direction
is more involved than Lemma 8. In the next section, we will prove the stronger statement that
such a (2,1)-edge-order does not only exist but can actually be computed efficiently.

5 Computing a (2,1)-edge-order
At the heart of our algorithm is the following classical construction of 3-edge-connected graphs
due to Mader.

Definition 10. The following operations on graphs are called Mader-operations (see Figure 3).
(a) vertex-vertex-addition: Add an edge between the not necessarily distinct vertices v and w

(possibly a parallel edge or, if v = w, a self-loop).
(b) edge-vertex-addition: Subdivide an edge ab with a vertex v and add the edge vw for a vertex

w.
(c) edge-edge-addition: Subdivide two distinct edges ab and cd with vertices v and w, respectively,

and add the edge vw.

v

w
⇒

v

w

(a) vertex-vertex-
addition: v = w is
allowed.

a bv

w
⇒

a b

w

(b) edge-vertex-addition:
w ∈ {a, b} is allowed.

⇒

a b

c d

v

w

a b

c d

(c) edge-edge-addition: a, b ∈
{c, d} is allowed.

Figure 3: Mader-operations.

The edge vw is called the added edge of the Mader-operation. Let K3
2 be the graph that

consists of exactly two vertices and three parallel edges.

7

Theorem 11 ([20]). A graph G is 3-edge-connected if and only if G can be constructed from K3
2

using Mader-operations.

According to Theorem 11, applying Mader-operations on 3-edge-connected graphs preserves 3-
edge-connectivity. We will call a sequence of Mader-operations that constructs a 3-edge-connected
graph a Mader-sequence. It has been shown that a Mader-sequence can be computed efficiently.

Theorem 12 ([22, Thm. 4]). A Mader-sequence of a 3-edge-connected graph can be computed in
time O(n+m).

Our algorithm for computing a (2,1)-edge-order works as follows. Assume we want a (2,1)-
edge-order of G through rt and avoiding ru. We first compute a suitable Mader-sequence of G
using Theorem 12 and start with a (2,1)-edge-order of its first graph K3

2 . This (2,1)-edge-order
is easy to find (see Figure 4). The crucial part of the algorithm is then to iteratively modify the
given (2,1)-edge-order to a (2,1)-edge-order of the next graph in the sequence efficiently.

rt ru

P0

r

t/u

P1

Figure 4: A (2,1)-edge-order of K3
2 through rt and avoiding ru.

There are several technical difficulties to master. First, the edges rt and ru may be contained
in different 2-connected components A′ and B′ (implying that r is a cut-vertex). As this
would raise problems in the computation of the initial K3

2 later, we perform in such a case the
following reduction in advance. Let A be the connected component of G \ {r} containing t,
A := G[V (A) ∪ {r}] and B := G \ V (A) (note that r may still be a cut-vertex of B). Since r
is a cut-vertex of G, A and B are still 3-edge-connected. We compute a (2,1)-edge-order DA

of A through rt avoiding an arbitrary edge ruA ∈ A′ \ {rt}, and a (2,1)-edge-order DB of B
through an arbitrary edge rtB ∈ B′ \ {ru} avoiding ru. Then concatenating DA with DB gives a
(2,1)-edge-order of G. Hence, we assume from now on that rt and ru are in the same 2-connected
component of the input graph G.

Second, the edge rt (and analogously ru) of G is not necessarily contained in the previous
graph of the Mader-sequence, as it may have been created by a Mader-operation that subdivided
a previous edge rt with the new vertex t (a more general view on this dynamics follows from the
bijection between the graphs H of the Mader-sequence and H-subdivisions that are contained
in G as subgraphs [22, Thm.+Cor. 1]; we refer to [27, Sections 2.3 and 4] for details of this
bijection). In such cases, we take t as replacement vertex for t (and likewise u for u) in the
previous graph, and iterate this procedure to obtain replacement vertices for t and u in the graph
before that previous graph, and so forth. This way, the replacement vertices t and u in any graph
of the Mader-sequence containing r are neighbors of r.

Now a special Mader-sequence is used to harness the dynamics of the vertices r, t and u:
Choose a DFS-tree of G with root r such that rt and ru are backedges (this is possible, since r
has degree at least three) and compute a Mader-sequence of this DFS-tree that contains these two
edges in its initial K3

2 (this is possible, since rt and ru are in the same 2-connected component
of G). This way the K3

2 consists of the two vertices r and t = u by the construction of [22, p. 6],

8

and thus all graphs in the Mader-sequence contain r (and t and u are always neighbors of r).
The vertices t and u are not present in this initial K3

2 unless they are identical to t = u (they are
however contained in the two paths from r to t = u of the K3

2 -subdivision the bijection maps
to). For every graph in the Mader-sequence, we will compute a (2,1)-edge-order through rt and
avoiding ru using the previous (2,1)-edge-order (which depends on the previous and possibly
different replacement vertices); then the choice of t and u ensures that the final (2,1)-edge-order
of G is indeed through rt and avoids ru, as desired.

Thus, consider a graph G of the above Mader-sequence for which we know a (2,1)-edge-order
D and let G′ be the next graph in that sequence. Then G′ is only one Mader-operation away
and we aim for an efficient modification of D into a (2,1)-edge-order D′ of G′. We will prove
that there is always a modification that is local in the sense that the only ears that are modified
are “near” the added edge of the Mader-operation.

Lemma 13. Let D = (P0, P1, . . . , Pm−n) be a (2,1)-edge-order of a 3-edge-connected graph G
through rt and avoiding ru for replacement vertices t and u. Let G′ be obtained from G by
applying one Mader-operation Γ and let t′ and u′ be the replacement vertices of G′. Then a
(2,1)-edge-order D′ of G′ through rt′ avoiding ru′ can be computed from D using only constantly
many amortized constant-time modifications.

Lemma 13 is our main technical contribution and we split its proof into the following three
sections. First, we introduce the operations leg, belly and head in order to combine several cases
that can be handled similarly for the different types of Γ. Second, we show how to modify D to
D′ and, third, we discuss computational issues.

For all three sections, let vw be the added edge of Γ such that v subdivides the edge ab ∈ E(G)
and w subdivides cd ∈ E(G) (if applicable). Thus, the vertex t′ in G′ is either t, v or w, and
the vertex u′ in G′ is either u, v or w (hence, t′r and ru′ will never be self-loops). In all three
sections, birth and last will always refer to D, unless stated otherwise.

Let Pi 6= P0 be an ear with a given orientation and let x be a vertex in Pi (the assumed
orientation will fix the start- and/or endvertex of ears in the following two definitions). If Pi

is a path, we define Pi[, x] and Pi[x,] as the maximal subpaths of Pi that end and start at x,
respectively; if Pi is a cycle, we take the same definition with the additional restriction that
Pi[, x] starts at qi and Pi[x,] ends at qi. Occasionally, the orientation of Pi will not matter; if
none is given, an arbitrary orientation can be taken. For paths A and B, let A + B be the
concatenation of A and B.

5.1 Legs, bellies and heads

While the operations leg and belly are inspired by the ones in [30], the operation head is new.
All three operations will show for some special cases how D can be modified to a (2,1)-edge-order
D′. A complete description for all cases (using these operations) will be given in the next section.

Legs. Let Γ be either an edge-vertex-addition such that ab 6= ru and last(w) < birth(ab) or
an edge-edge-addition such that ab 6= ru and birth(cd) < birth(ab). If Pbirth(ab) is long, at least
one of a and b is an inner vertex, say w.l.o.g. b. Otherwise, Pbirth(ab) = ab is short and, as D is
non-separating, at least one of a and b, say w.l.o.g. b, has an incident edge in Gbirth(ab) (note that
this requires ab 6= ru). In both cases, orient Pbirth(ab) from a to b. The operation leg constructs
D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears Pbirth(ab)[, a] +av+ vw
and vb+ Pbirth(ab)[b,] in that order and, if Γ is an edge-edge-addition, additionally subdividing

9

the edge cd in Pbirth(cd) with w (see Figure 5). Note that this definition is well-defined also for
cycles Pbirth(ab), including self-loops.

a b

w

v

Figure 5: The result of operation leg (dashed lines), black vertices are in Gbirth(ab)−1.

We claim that D′ is a (2,1)-edge-order through rt′ avoiding ru′. Assume first that Γ is
an edge-vertex-addition. Since last(w) < birth(ab), we conclude that w /∈ Pbirth(ab) (w has no
incident edge “left” in Gbirth(ab)−1). For the same reason, birth(ab) > 0. Hence, no matter
whether Pbirth(ab) is a path or a cycle, w and the one or two endpoints of Pbirth(ab) are contained
in Gbirth(ab)−1. Since D′ partitions E(G′), this implies that D′ is an ear decomposition. If Γ is
an edge-edge-addition, birth(cd) ≤ birth(ab) gives a very similar argument.

It remains to prove that D′ satisfies Properties 6.1–3. The first is true, as rt ∈ P0 is only
affected when birth(cd) = 0 and when rt is subdivided by w; then w = t′ in G′ and rt′ ∈ P ′0, as
claimed. The second is true, as cd 6= ru and, by assumption, ab 6= ru; hence, the last ear ru does
not change. For the non-separateness of D′, it suffices to consider the two modified ears Pbirth(cd)
and Pbirth(ab), as all other ears still satisfy non-separateness. Since the only new inner vertex w
in P ′birth(cd) is incident to the edge wv ∈ G′birth(cd), P

′
birth(cd) is also non-separating. It remains to

consider the two new ears P ′birth(ab) = Pbirth(ab)[, a] + av+ vw and P ′birth(ab)+1 = vb+Pbirth(ab)[b,].
All inner vertices of these ears except for the new vertex v inherit their non-separateness directly
from Pbirth(ab). Since v is incident to vb, the long ear P ′birth(ab) is non-separating and, if P ′birth(ab)+1
is long, P ′birth(ab)+1 is non-separating as well. Otherwise P ′birth(ab)+1 = vb is short and Pbirth(ab)
cannot be long due to our assumed orientation. Hence, Pbirth(ab) = ab and the assumed orientation
implies that b has an incident edge in Gbirth(ab), which gives that P ′birth(ab)+1 is non-separating
as well.

Bellies. Let Γ be either an edge-vertex-addition such that last(w) = birth(ab) and w /∈ {a, b}
or an edge-edge-addition such that birth(cd) = birth(ab) (note that c, d ∈ {a, b} is allowed.)
Consider the shortest path in Pbirth(ab) from an endpoint to one of the vertices {a, b}, say w.l.o.g.
b, such that w is contained in this path. We orient Pbirth(ab) from a to b. Pbirth(ab) is a long ear
with b as inner vertex. If Γ is an edge-edge-addition, one of the vertices {c, d}, say w.l.o.g. c, is
contained in Pbirth(ab)[, w].

If birth(ab) > 0, the operation belly constructsD′ fromD by replacing the ear Pbirth(ab) ofD by
the two consecutive ears Pbirth(ab)[, a]+av+vw+Pbirth(ab)[w,] and vb+Pbirth(ab)[b, w] in that order
(if edge-vertex-addition) and by the two consecutive ears Pbirth(ab)[, a]+av+vw+wd+Pbirth(ab)[d,]
and vb + Pbirth(ab)[b, c] + cw (if edge-edge-addition), see Figure 6. Note that this definition is
well-defined also if Pbirth(ab) is a cycle. If birth(ab) = 0, the vertices v and w cut P0 in two distinct
paths P0,1 and P0,2 having endpoints v and w. Let P0,1 be the path containing r. Then the
operation belly constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive
ears P0,1 + vw and P0,2 in this order. If rt ∈ {ab, cd}, then either v = t′ or w = t′, respectively.

We claim that D′ is a (2,1)-edge-order through rt′ avoiding ru′. No matter whether Pbirth(ab)
is a path or a cycle, the one or two endpoints of it are contained in Gbirth(ab)−1 and D′ partitions
E(G′), so clearly D′ is an ear decomposition.

10

a v b

c
w

a v b

c
w

r
P0,1 P0,2

Figure 6: The result of the operation belly (dashed lines).

It remains to prove that D′ satisfies Properties 6.1–3. The first is true, as rt ∈ P0 is
only affected when birth(ab) = 0. Then, if rt is subdivided by v or w, v = t′ or w = t′

in G′, and rt′ ∈ P ′0, as claimed. The second is true, as ru /∈ {ab, cd} (Pbirth(ab) 6= {ru} as
it is a long ear and birth(cd) = birth(ab)); hence, the last ear ru does not change. For the
non-separateness of D′, it again suffices to consider the modified ear Pbirth(ab). First, assume
birth(ab) > 0. Consider the two new ears P ′birth(ab) = Pbirth(ab)[, a] + av + vw + Pbirth(ab)[w,]
(respectively, P ′birth(ab) = Pbirth(ab)[, a] + av + vw + wd + Pbirth(ab)[d,] if edge-edge-addition)
and P ′birth(ab)+1 = vb + Pbirth(ab)[b, w] (respectively, P ′birth(ab)+1 = vb + Pbirth(ab)[b, c] + cw if
edge-vertex-addition). All inner vertices of these ears except for the new vertex v (and w, if
edge-edge-addition) inherit their non-separateness directly from Pbirth(ab). Since v is incident
to vb (and w is incident to wc, if edge-edge-addition), the long ear P ′birth(ab) is non-separating
and P ′birth(ab)+1, which is long as it contains b as inner vertex, is non-separating as well. If
birth(ab) = 0, very similar arguments show the non-separateness of the new ears.

Heads. Let Γ be an edge-vertex-addition such that w ∈ {a, b}, last(a) = birth(ab) and, if
ab = ru, then r 6= a. W.l.o.g. let w = a. Then a is an endpoint of Pbirth(ab) (Pbirth(ab) cannot
be a self-loop, as last(a) = birth(ab)). We orient Pbirth(ab) from a to b. The operation head
constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears av + va
and vb+ Pbirth(ab)[b,] in that order (see Figure 7). Note that this definition is well-defined also
for cycles Pbirth(ab).

ba v

Figure 7: The dashed lines show the result of the operation head.

We claim that D′ is a (2,1)-edge-order through rt′ avoiding ru′. Clearly, D′ is an ear
decomposition. Property 6.1 is true, as birth(ab) = last(a) > 0 and, hence, the first ear does
not change. Property 6.2 is true, as the last ear is only affected when birth(ab) = ru and r 6= a;
then v = u′ in G′ and the last ear in D′ is ru′, as claimed. For the non-separateness of D′, we
consider the two new ears P ′birth(ab) = av + va and P ′birth(ab)+1 = vb+ Pbirth(ab)[b,]. P ′birth(ab) is
a long ear with v as only inner vertex. Since v is incident to vb, P ′birth(ab) is non-separating.
All inner vertices of P ′birth(ab)+1 inherit their non-separateness directly from Pbirth(ab) and so,
if P ′birth(ab)+1 is long, P ′birth(ab)+1 is non-separating as well. Otherwise, if P ′birth(ab)+1 = vb is
short, then either last(b) > last(a) and so b has an incident edge in Gbirth(ab), which gives that
P ′birth(ab)+1 is non-separating as well. If last(b) = last(a) then ab = ru (Lemma 9) and the ear
P ′birth(ab)+1 is the last ear of D′ and does not have to satisfy the non-separateness.

11

5.2 Modifying D to D’

We will now show how to obtain a (2,1)-edge-order D′ through rt′ avoiding ru′ from D. By
symmetry, assume w.l.o.g. that birth(ab) ≥ birth(cd). Note that applying the operations belly,
leg and head preserves all properties of a (2, 1)-edge-order. Recall that, for every subdivision the
Mader-sequences does on rt or ru, respectively, the subdividing vertex is t′ or u′, as explained
after Figure 4. We have the following case distinctions:

1. Γ is a vertex-vertex-addition (see Figure 3a)
(a) vw is a self-loop at v (v = w): Obtain D′ from D by adding the new short ear vv

directly after the ear Plast(v)−1. This ensures that the new ear is non-separating.
(b) v 6= w and vw 6= {rt, ru}: If last(v) ≤ last(w), D′ is obtained from D by adding

the new short ear vw directly after the ear Plast(w)−1, ensuring that the new ear is
non-separating. If last(v) > last(w), the new short ear vw is added directly after the
ear Plast(v)−1.

(c) vw = rt (the added edge is a parallel edge): the Mader-sequence gives us the
information whether rt is rt′ or the new added edge is rt′. If rt = rt′ then add the new
edge immediately after the ear Plast(t)−1. Otherwise obtain D′ from D by replacing
rt with rt′ in P0 and adding the old edge rt as an short ear immediately after the ear
Plast(t)−1.

(d) vw = ru (the added edge is a parallel edge): the Mader-sequence gives us the
information whether ru is ru′ or the new added edge is ru′. Depending on this
information, obtain D′ from D by either adding the new edge directly before or
directly after the last ear of D.

2. Γ is an edge-vertex-addition (see Figure 3b)
(a) birth(ab) < last(w): Obtain D′ from D by adding the new short ear vw directly

after the ear Plast(w)−1 and subdivide the ear Pbirth(ab) with v. This operation is also
well-defined when Pbirth(ab) is a cycle or self-loop. Also, the new ear is non-separating
and, since v is incident to w, the ear Pbirth(ab) remains non-separating.

(b) last(w) < birth(ab) and ab 6= ru: Apply leg
(c) birth(ab) = last(w) and w /∈ {a, b}: Apply belly.
(d) birth(ab) = last(w) and w ∈ {a, b}; if ab = ru, then r 6= w: Apply head.
(e) ab = ru and if birth(ab) = last(w) and w ∈ {a, b} then r = w: Obtain D′ from D by

replacing the ear ru by the two consecutive ears wv + vu and rv.
3. Γ is an edge-edge-addition (see Figure 3c)

(a) birth(ab) = birth(cd): Apply belly.
(b) birth(ab) > birth(cd) and ab 6= ru: Apply leg.
(c) ab = ru: Let w.l.o.g. r = a. Obtain D′ from D by replacing the last ear of D by the

two consecutive ears bv + vw and rv in this order.

In all cases, D′ is clearly an ear decomposition. Properties 6.1–3 are satisfied due to the
given case distinction and the mentioned properties. Hence, D′ is a (2, 1)-edge-order through rt′
avoiding ru′.

5.3 Computational complexity

The reduction to a graph G that contains rt and ru in the same 2-connected component can be
computed in time O(m) by using the block-cut-tree (i.e., the tree of 2-connected components) of

12

the input graph. The desired Mader-sequence of G can be computed by Theorem 12 in time
O(m), when the initial DFS-tree is chosen as described above.

For proving Lemma 13, it remains to show that each of the constantly many modifications
above can be computed in constant amortized time. Note that ears may become arbitrarily long
in the process and therefore may contain up to Θ(n) vertices. Moreover, we have to maintain
the birth- and last-values in order to compute which subcase of the last section applies. Thus,
we cannot use the standard approach of storing the ears of D explicitly by using doubly-linked
lists, as then the birth-values of linearly many vertices may change for every modification.

Instead, we will represent the ears as sets in a data structure for set splitting, which maintains
disjoint sets online under an intermixed sequence of find and split operations. Gabow and
Tarjan [11] discovered the first such data structure with linear space and constant amortized
time per operation. Their and our model of computation is the standard unit-cost word-RAM.
Imai and Asano [16] enhanced this data structure to an incremental variant, which additionally
supports adding single elements to certain sets in constant amortized time. In both results, all
sets are restricted to be intervals of some total order. To represent the (2,1)-edge-order D in the
path replacement process, we will use the following more general data structure due to Djidjev [9,
Section 3.2], which is not limited to total orders and still supports the add-operation.

The data structure maintains a collection P of edge-disjoint paths under the following
operations:
new_path(x,y): Creates a new path that consists of the edge xy. The edge xy must not be in

any other path of P .
find(e): Returns the integer-label of the path containing the edge e.
split(xy): Splits the path containing the edge xy into the two subpaths from x to one endpoint

and from x to the other endpoint of that path.
sub(x,e): Modifies the path containing e by subdividing e with vertex x.
replace(x,y,e): Neither x nor y may be an endpoint of the path Z containing e. Cuts Z into

the subpath from x to y and into the path that consists of the two remaining subpaths of
Z joined by the new edge xy.

add(x,yz): The vertex y must be an endpoint of the path Z containing the edge yz and x is
either a new vertex or not in Z. Adds the new edge xy to Z.

Note that all ears are not only edge-disjoint but also internally disjoint. Djidjev proved
that each of the above operations can be computed in constant amortized time [9, Theorem 1].
We will only represent long ears in the data structure; the remaining short ears can be simply
maintained as edges. As the data structure can only store paths, we store every cycle Pi as the
union of two paths in Pi of which one is an edge with endpoint qi (for P0, with endpoint r). For
all paths of length at least two, including all long paths Pi, we store its two endpoints at its
find()-label. Thus, the endpoints of all ears can be be accessed and updated in constant time.

This way, we store the ears of the initial (2,1)-edge-order of K3
2 in constant total time. Every

modification of Section 5.2 can then be realized with a constant number of operations of the
data structure, and hence in amortized constant time.

Additionally, we need to maintain the order of the ears in D. Lemma 13 moves and inserts in
every step only a constant number of ears to specified locations of D. Hence, we can maintain
the order of ears in D by applying the order data structure (as defined for (1,1)-edge-oders) to
the find()-labels of ears; this costs amortized constant time per step.

So far we could have maintained the order of ears also by using doubly-linked lists. However,
for deciding which of the subcases in Section 5.2 applies, we additionally need to compare birth-

13

and last-values of the vertices and edges involved in Γ. In fact, it suffices to support the queries
“birth(x) < birth(y)” and “birth(x) = birth(y)”, where x and y may be edges or vertices, and
analogous queries on the last-values of vertices. If x and y are edges, both birth-queries can be
computed in constant amortized time by comparing the labels find(x) and find(y) in the order
data structure. In order to allow birth-queries on vertices, we will store pointers at every vertex
x to the two edges e1 and e2 that are incident to x in Pbirth(x). The desired query involving
birth(x) can then be computed by comparing find(e1) in the order data structure.

For any new vertex x that is added to D, we can find e1 and e2 in constant time, as these
are in {av, vb, cw,wd, vw}. Since Pbirth(x) may change over time, we have to update e1 and e2.
The only situation in which Pbirth(x) may loose e1 or e2 (but not both) is a split or replace
operation on Pbirth(x) at x (the split operation must be followed by an add operation on x, as x is
always inner vertex of some ear). This cuts Pbirth(x) into two paths, each of which contains exactly
one edge in {e1, e2}. Checking find(e1)=find(e2) recognizes this case efficiently. Dependent
on the particular case, we compute a new consistent pair {e′1, e′2} that differs from {e1, e2} in
exactly one edge. Finally, the value last(x) for a vertex x can be maintained the same way as
birth(x) with the only difference that it links to (one edge of) the last ear containing x instead
of the first such ear. This allows to check the desired comparisons in amortized constant time.

We conclude that D′ can be computed from D in amortized constant time. This proves
Lemma 13 and implies the following theorem.

Theorem 14. Given edges tr and ru of a 3-edge-connected graph G, a (2,1)-edge-order D of G
through tr and avoiding ru can be computed in time O(m).

The proposed algorithms for (1,1)-edge-orders and (2,1)-edge-orders (as well as the computa-
tion of edge-independent spanning trees in the next section) are certifying in the sense of [21]:
For (1,1)-edge-orders through st, it suffices to check that every edge e 6= st has indeed a smaller
and larger neighboring edge. For (2,1)-edge-orders, it suffices to check in linear time that D is
an ear decomposition of G and that D satisfies Properties 6.1–3.

6 Edge-Independent Spanning Trees
Let k spanning trees of a graph be edge-independent if they all have the same root vertex r and,
for every vertex x 6= r, the paths from x to r in the k spanning trees are edge disjoint. The
following conjecture was given 1984 by Itai and Rodeh.

Conjecture (Edge-Independent Spanning Tree Conjecture [17]). Every k-edge-connected graph
contains k edge-independent spanning trees.

The conjecture has been proven constructively for k ≤ 2 [17] and k = 3 [14] with running
times O(m) and O(n2), respectively, for computing the corresponding edge-independent spanning
trees. Recently, by using the approach presented in this paper, the conjecture has also been
proven for k = 4 by the existence of a (2, 2)-edge-order [15]. For every k ≥ 5, the conjecture
is open. We first give a short description of an algorithm for k = 2 and then show the first
linear-time algorithm for k = 3.

For k = 2, compute the (1,1)-edge-order < through tr using Lemma 5. The first tree T1
consists of the edges min(x) for all vertices x 6= r (as defined in Lemma 5), while the second tree
T2 consists of tr and the edges max(x) for all vertices x /∈ {r, t}. Then T1 and T2 are spanning,
as no edge can be taken twice, and edge-independent, as, from every vertex x, the path of smaller

14

edges to r obtained by iteratively applying min() must be edge-disjoint from the path of larger
edges to r.

For k = 3, choose any vertex r and two distinct edges tr and ru in the 3-edge-connected graph
G. Compute a (2,1)-edge-order D through tr and avoiding ru in time O(m) using Theorem 14.
For every vertex x ∈ V , the idea is now to find two edge-disjoint paths from x to r in Gbirth(x)
(after all, Gbirth(x) is 2-edge-connected and thus contains a (1,1)-edge-order) and a third path
from x to r in Gbirth(x) using the non-separateness of D. The subtle part is to make this idea
precise: We have to construct the first tree T1 in such a consistent way that the paths of smaller
edges from x to r for all vertices x ∈ V are contained in T1 (and the same for T2 and paths of
larger edges).

For a (1,1)-edge-order < through tr of G, let a spanning tree T1 ⊆ G be down-consistent to a
given (2,1)-edge-order through tr if (a) every path in T1 to r is strictly decreasing in < and (b)
for every 0 ≤ i ≤ m− n, T1 ∩Gi is a spanning tree of Gi (analogously, up-consistent spanning
trees T2 of G − r are defined by strictly increasing paths to t). Now let a (1,1)-edge-order be
consistent to a given (2,1)-edge-order D′ if G contains r-rooted spanning trees T1 and T2 that
are down- and up-consistent to D′, respectively. By the very same argument as used for k = 2,
T1 and T2 + tr are edge-independent and, in addition, do not use any edge of Gbirth(x) for any
x ∈ V .

2 3

57

17
12

6

18

19

8

13
14

16

r

t

u

11

1

15

9

104a

b

c

d

e

f

g

h

(a) A consistent order < and the resulting
three edge-independent spanning trees.

2 3

511

17
12

10

18

19

9

13
14

16

r

t

u

6

1

15

7

8
4

a

b

c

d

e

f

g

h

(b) Although < is a (1,1)-edge-order for
every Gi, 0 ≤ i ≤ m−n, < is not consistent:
Any down-consistent tree contains the root-
paths 12, 11, 10, 2 in G2 and 6, 5, 3, 2 in G5,
which implies a cycle.

Figure 8: (1,1)-edge-orders that are consistent and not consistent to the (2,1)-edge-order of
Figure 2.

In fact, the special (1,1)-edge-order that is computed by Lemma 5 is consistent to D: There,
the trees T1 and T2 consist of the edges min(x) and max(x) for x ∈ V , which makes T1 down-
consistent and T2 + tr up-consistent to D (see Figure 8a). We note that a simpler definition of
consistent as used for the vertex-variant [6], i.e., as orders that remain (1,1)-edge-orders for all
subgraphs Gi, 0 ≤ i ≤ m− n, does not suffice here (see Figure 8b).

It remains to construct the third edge-independent spanning tree. For every edge e 6= ru of
G, we compute a pointer to an arbitrary neighboring edge e′ in Gbirth(e). This edge e′ exists, as
D is non-separating, and satisfies birth(e′) > birth(e). Similarly, for every vertex x ∈ V − r − u,
we compute a pointer to an incident edge e′ of x with birth(e′) > birth(x). Both computations
take linear total time by comparing birth values. The third edge-independent spanning tree is
then the union of ur and the u-rooted spanning tree of G − r that interprets the pointers as
parent edges. Hence, we obtain the following theorem.

Theorem 15. Given the two edges rt and ru of a 3-edge-connected graph G, three edge-
independent spanning trees of G rooted at r (such that two of them contain rt and ru as

15

unique root edges, respectively) can be computed in time O(m).

r

t u

b

a

1 2 3 4

5

6

9

8

7

(a) A 3-edge-connected graph G.

P0

P1

P2

P3

P4

P5

P6

P7

P8

r

2

t

t̂

5

6

û

7

8

9 u

b

a

3

(b) The 3-connected graph Ĝ to which G is reduced to
using [12], and a (2,1)-order of Ĝ through rt̂ avoiding
û (t and u have to be replaced, as Ĝ does not contain
rt and ru anymore). Gray lines depict short ears.

r

2

t

t̂

3

5

6

û

7

9 u

b

a

8

(c) The three vertex-independent spanning trees
T1, T2, T3 of Ĝ implied by the (2,1)-order of Ĝ [30].

r

t u

b

a

1 2 3 4

5

6

9

8

7

(d) The corresponding subgraphs
of T1, T2 and T3 in G. The red
subgraph contains a cycle.

Figure 9: The reduction [12] cannot be applied to find edge-independent spanning trees directly,
as it may construct cycles.

Relation to vertex-independent spanning trees. The conjecture above has also received
considerable attention for the vertex-case. Recently, a linear-time algorithm for computing three
vertex-independent spanning trees of a 3-connected graph was given by [30]. Similarly as for
the more general (2,1)-edge-orders, one could be interested why the reduction from k-edge- to
k-vertex-connectivity by Galil and Italiano [12] cannot be applied to modify the 3-edge-connected
input graph G to a 3-connected one such that three vertex-independent spanning trees of the
latter give three edge-independent spanning trees of G.

The reason is that, although such a reduction attempt is able to give three edge-disjoint
paths between two given vertices, for multiple vertex pairs, the union of these paths may form

16

cycles (see Figure 9). As argued in the introduction, such a reduction could indeed be elusive, as
we do not know any way of reducing the existence of edge-independent spanning trees to the
existence of their vertex-counterpart.

Direct induction. It may also seem tempting to compute the spanning trees directly without
using a (2,1)-edge-order, e.g. by local replacements in an induction over either Mader-operations
or inverse contractions. However, without additional restrictions this is bound to fail, as shown
in Figure 10.

v

r

y zx

Figure 10: A 3-edge-connected graph G (some edges are not drawn). G is obtained from the 3-
edge-connected graph G′ := (G−v)∪xy by performing a Mader-operation (or inverse contraction)
that adds the vertex v (the added edge is thus vy). Two of the three edge-independent spanning
trees of G′ are given, rooted at r (thick edges). However, not both of them can be extended to v.

7 Conclusion
We established the new unifying concept of edge-orders, which is an analogue of canonical
orders and their generalizations for edge-connectivity. We showed that st-edge-numberings a.k.a.
(1, 1)-edge-orders fit into this concept, showed a simple linear-time algorithm for constructing
these, and proposed the first linear-time algorithm that computes (2, 1)-edge-orders.

Additionally, we gave a first application by presenting the first linear time algorithm to
compute three edge-independent spanning trees of a 3-edge-connected graph. As a crucial open
problem, we ask whether there are any pairs (k, `) other than (1, 1), (2, 1) and (2, 2) such that
every (k + `)-edge-connected graph has a (k, `)-edge-order (for an appropriate quantification of
i).

References
[1] F. Annexstein, K. Berman, and R. Swaminathan. Independent spanning trees with small

stretch factors. Technical Report 96-13, DIMACS, June 1996.

17

[2] M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph
Algorithms and Applications, 15(1):97–126, 2011.

[3] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In Proceedings of the 10th European Symposium
on Algorithms (ESA’02), pages 152–164, 2002.

[4] T. Biedl and M. Derka. The (3,1)-ordering for 4-connected planar triangulations. Journal
of Graph Algorithms and Applications, 20(2):347–362, 2016.

[5] T. Biedl and J. M. Schmidt. Small-area orthogonal drawings of 3-connected graphs. In
Proceedings of the 23rd International Symposium on Graph Drawing (GD’15), pages 153–165,
2015.

[6] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs. Journal of Algorithms, 9(4):507–537, 1988.

[7] S. Curran, O. Lee, and X. Yu. Chain decompositions of 4-connected graphs. SIAM J.
Discrete Math., 19(4):848–880, 2005.

[8] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting fary embeddings of planar
graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC
’88), pages 426–433, 1988.

[9] H. N. Djidjev. A linear-time algorithm for finding a maximal planar subgraph. SIAM J.
Discrete Math., 20(2):444–462, 2006.

[10] S. Even and R. E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci., 2(3):339–344,
1976.

[11] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[12] Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT
News, 22(1):57–61, 1991.

[13] A. Gopalan and S. Ramasubramanian. A counterexample for the proof of implication
conjecture on independent spanning trees. Information Processing Letters, 113(14-16):522–
526, 2013.

[14] A. Gopalan and S. Ramasubramanian. IP fast rerouting and disjoint multipath routing with
three edge-independent spanning trees. IEEE/ACM Trans. Netw., 24(3):1336–1349, 2016.

[15] A. Hoyer and R. Thomas. Four edge-independent spanning trees. SIAM Journal on Discrete
Mathematics, 32(1):233–248, 2018.

[16] H. Imai and T. Asano. Dynamic orthogonal segment intersection search. Journal of
Algorithms, 8(1):1–18, 1987.

[17] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. In
25th Annual Symposium on Foundations of Computer Science (FOCS’84), pages 137–147,
1984.

18

[18] G. Kant. Drawing planar graphs using the lmc-ordering. In Proceedings of the 33th Annual
Symposium on Foundations of Computer Science (FOCS’92), pages 101–110, 1992.

[19] L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS’85), pages 464–467, 1985.

[20] W. Mader. A reduction method for edge-connectivity in graphs. In B. Bollobás, editor,
Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 145–164.
North-Holland, 1978.

[21] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

[22] K. Mehlhorn, A. Neumann, and J. M. Schmidt. Certifying 3-edge-connectivity. Algorithmica,
77(2):309–335, 2017.

[23] L. F. Mondshein. Combinatorial Ordering and the Geometric Embedding of Graphs. PhD
thesis, M.I.T. Lincoln Laboratory / Harvard University, 1971. Technical Report available at
www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882.

[24] S. Nagai and S. Nakano. A linear-time algorithm to find independent spanning trees in
maximal planar graphs. In 26th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’00), pages 290–301, 2000.

[25] S. Nakano, M. S. Rahman, and T. Nishizeki. A linear-time algorithm for four-partitioning
four-connected planar graphs. Inf. Process. Lett., 62(6):315–322, 1997.

[26] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control.
The American Mathematical Monthly, 46(5):281–283, 1939.

[27] J. M. Schmidt. Construction sequences and certifying 3-connectedness. In Proceedings of the
27th Symposium on Theoretical Aspects of Computer Science (STACS’10), pages 633–644,
2010.

[28] J. M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information Processing
Letters, 113(7):241–244, 2013.

[29] J. M. Schmidt. The Mondshein sequence. In Proceedings of the 41st International Colloquium
on Automata, Languages and Programming (ICALP’14), pages 967–978, 2014.

[30] J. M. Schmidt. Mondshein sequences (a.k.a. (2,1)-orders). SIAM Journal on Computing,
45(6):1985–2003, 2016.

[31] H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical
Society, 34(1):339–362, 1932.

19

www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882

	Introduction
	Preliminaries
	The (1,1)-edge-order
	The (2,1)-edge-order
	Computing a (2,1)-edge-order
	Legs, bellies and heads
	Modifying D to D'
	Computational complexity

	Edge-Independent Spanning Trees
	Conclusion

