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Abstract We investigate a new structural property of Schnyder woods:5

every minimal Schnyder wood of a 3-connected planar graph of order n6

has a tree of depth at least log2(n)/(3 log2(3)). This bound is tight. Our7

result directly implies that such a graph has an induced path of length8

at least log2(n)/(3 log2(3)), improving the previous best lower bound on9

the length of such a path.10
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1 Introduction13

Already in 1986, Erdős et al. [5] investigated the problem of finding long induced14

paths. Let p(G) be the size, i.e., the number of vertices, of a longest induced path15

of G. For a connected graph G with radius r(G), Erdős et al. [5] showed that16

p(G) ≥ 2r(G) − 1. Fourteen years later, Arocha and Valencia [1] gave the lower17

bound log∆(n) on the diameter (and hence on p(G)) for a 3-connected planar18

graph G of order n with bounded maximum degree ∆. For unbounded ∆, they19

gave an induced path of size
√

log3(∆). In 2016, Di Giacomo et al. [4] showed20

that p(G) ≥ log2(n)
12 log2 log2(n) for 3-connected planar graphs G. And they gave an21

upper bound showing p(G) ≤ 1.3 log2(n) + 5 for a family of specific 3-connected22

planar graphs. The same year, Esperet et al. [6] improved the lower bound to23

(log2(n) − 3 log2 log2(n))/6 with a similar approach. Recently, we [15] improved24

the lower bound to (1/6) log2(n) using a new technique based on deep trees in25

Schnyder woods.26

In this paper, we give a better lower bound of p(G) ≥ log2(n)/(3 log2(3)) ≥27

(1/4.76) log2(n). We approach the problem via deep trees in minimal Schnyder28

woods.29

Given a planar embedding of a 3-connected planar graph and a minimal30

Schnyder wood on this embedding (Formal definitions are given in Section 2.),31

we show that at least one of the three trees has depth at least log2(n)/(3 log2(3)).32

We also show that this bound is tight, i.e., for every 0 < ε < 1 there exists a33

3-connected planar graph with a minimal Schnyder wood such that every tree of34
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(i) A Schnyder wood of the suspension of
a 3-connected planar graph.
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(ii) Example for Definition 1(iii) at a ver-
tex in a Schnyder wood.

Figure 1: Illustrations for the definition of Schnyder woods.

this Schnyder wood has depth at most log2(n)/(3(1 − ε) log2(3)) + 1. Actually,35

the 3-connected planar graph that we need for our lower bound has a unique36

Schnyder wood for our choice of the outer face. Thus, our bound is tight not only37

for minimal but also for arbitrary Schnyder woods of 3-connected plane graphs,38

that is, planar graphs with a fixed embedding. As mentioned above, the lower39

bound directly implies that p(G) ≥ log2(n)/(3 log2(3)). As stated in [15], this40

new structural property of Schnyder woods is not only of theoretical interest, but41

also comes with the following additional benefits.42

We have an easy linear time algorithm that computes those long induced43

paths. Furthermore, we obtain that there are at least f/(2∆) different such paths,44

where f is the number of faces and ∆ the maximum degree. And, for every such45

path, there exists a planar grid drawing such that this path is monotone in both46

coordinates.47

The paper is organized as follows. In Section 2, we give basic definitions and48

lemmas. In Section 3, we define the graph Gk and use it to give an upper bound49

on the depth of a tree in a minimal Schnyder wood. In Section 4, we give a50

procedure that transforms any 3-connected planar graph to Gk for a suitable k.51

This we use to give our lower bound. A section about dual Schnyder woods and52

the minimal Schnyder wood for 3-connected planar graphs, the omitted proofs53

and the proofs that are only sketched are provided in the appendix.54

2 Schnyder Woods55

We only consider simple undirected graphs. A graph is plane if it is planar and56

embedded into the Euclidean plane. Although parts of this paper use orientation57

on edges, we will always let vw denote the undirected edge {v, w}.58

Let σ := {r1, r2, r3} be a set of three vertices of the outer face boundary of a59

plane graph G in clockwise order (but not necessarily consecutive). We call r1,60

r2 and r3 roots. The suspension Gσ of G is the graph obtained from G by adding61

at each root of σ a half-edge pointing into the outer face. With a little abuse62

of notation, we define a half-edge as an arc that has a start vertex but no end63

vertex.64
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Definition 1 (Felsner [7]). Let σ = {r1, r2, r3} and Gσ be the suspension of65

a 3-connected plane graph G. A Schnyder wood of Gσ is an orientation and66

coloring of the edges of Gσ (including the half-edges) with the colors 1,2,3 (red,67

green, blue) such that68

(i) Every edge e is oriented in one direction (we say e is unidirected) or in two69

opposite directions (we say e is bidirected). Every direction of an edge is70

colored with one of the three colors 1,2,3 (we say an edge is i-colored if one of71

its directions has color i) such that the two colors i and j of every bidirected72

edge are distinct (we call such an edge i-j-colored). Throughout the paper,73

we assume modular arithmetic on the colors 1,2,3 in such a way that i + 174

and i − 1 for a color i are defined as (i mod 3) + 1 and (i + 1 mod 3) + 1.75

For a vertex v, a uni- or bidirected edge is incoming (i-colored) in v if it has76

a direction (of color i) that is directed toward v, and outgoing (i-colored) of77

v if it has a direction (of color i) that is directed away from v.78

(ii) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.79

(iii) Every vertex v has exactly one outgoing edge of every color. The outgoing80

1-, 2-, 3-colored edges e1, e2, e3 of v occur in clockwise order around v. For81

every color i, every incoming i-colored edge of v is contained in the clockwise82

sector around v from ei+1 to ei−1 (Figure 1ii). This clockwise sector includes83

ei+1 and ei−1.84

(iv) No inner face boundary contains a directed cycle in one color.85

For an illustration of Definition 1 see Figure 1i.86

For a Schnyder wood and color i, let Ti be the directed graph that is induced87

by the directed edges of color i. The following result justifies the name of Schnyder88

woods.89

Lemma 1 ([9,18]). For every color i of a Schnyder wood of Gσ, Ti is a directed90

spanning tree of G in which all edges are oriented to the root ri.91

For a vertex v, we denote by depthi(v) the length of the v-ri-path in the tree92

Ti. For a directed graph H, we denote by H−1 the graph obtained from H by93

reversing the direction of all its edges.94

Lemma 2 (Felsner [8]). For every i ∈ {1, 2, 3}, T −1
i ∪ T −1

i+1 ∪ Ti+2 is acyclic.95

Using results on orientations with prescribed outdegrees on the respective96

completions, Felsner and Ossona de Mendez [9,14] showed that the set of Schnyder97

woods of a planar suspension Gσ forms a distributive lattice. The order relation98

of this lattice is defined on the superposition of the dual and the primal graph99

and also requires a Schnyder wood on the dual graph. We refer the interested100

reader to [17] for a definition of the minimal Schnyder wood for 3-connected101

planar graphs whose notation coincides with our notation.102

But, as we are mostly working on planar triangulations, we give those def-103

initions in the appendix and work with the following simpler statement. One104

can easily deduce from the result of Felsner and Ossona de Mendez [9, 14] that105

for triangulations the order relation of this lattice relates a Schnyder wood of106
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Gσ to a second Schnyder wood if the former can be obtained from the latter by107

reversing the orientation of a directed clockwise cycle. This yields the following108

lemma.109

Lemma 3 ([9,14]). Let G be a triangulated planar graph. The minimal element110

of the lattice of all Schnyder woods of Gσ contains no clockwise directed cycle.111

We call the minimal element of the lattice of all Schnyder woods of Gσ also112

the minimal Schnyder wood of Gσ. If the lattice has only one element, we say113

that the Schnyder wood is unique.114

3 Upper Bound on the Maximum Depth of a Tree115

In this section, we define a sequence of graphs with a minimal Schnyder wood116

such that for each 0 < ε < 1 there exists an N such that in each of those117

graphs of order n ≥ N each tree of the Schnyder wood has depth at most118

1/(3(1 − ε) log2(3)) log2(n) + 1.119

Those graphs are specific planar 3-trees. A planar 3-tree is a graph that can120

be constructed by the following procedure. Starting with a triangle, we iteratively121

select an internal face, add a new vertex v in its interior and connect this vertex122

with the three vertices of that face. During this construction, we assign a level to123

each newly added vertex v as follows. Every vertex on the outer face has level 0.124

And for v, we define level(v) := max{level(w) | w is adjacent to v} + 1. Observe125

that planar 3-trees are triangulated. Define the complete planar 3-tree of level k126

to be the 3-tree with the maximum number of vertices such that every vertex127

has level at most k. And let an internal leaf be a leaf of a tree of the Schnyder128

wood that is not on the boundary of the outer face. This construction procedure129

motivates the following lemma.130

Lemma 4. Let G be a triangulated plane graph and S be a Schnyder wood of131

Gσ. Let v be an internal leaf of the tree Ti for some i ∈ {1, 2, 3}. Let vp and vq132

be the outgoing (i + 1)-colored edge and the outgoing (i + 2)-colored edge at v,133

respectively. Let f be the internal face that has vp and vq on its boundary.134

If we add a vertex w in f and connect it to the vertices v, p and q, then there135

is exactly one way to augment S to a Schnyder wood of the suspension of G + w.136

If S is minimal or unique, then the resulting Schnyder wood is minimal or unique137

(w.r.t. the choice of the roots), respectively. Also, depthi(w) = depthi(v) + 1,138

depthi+1(w) = depthi+1(v), depthi+2(w) = depthi+2(v) and v is not a leaf of Ti139

in the resulting Schnyder wood.140

For every k ≥ 1, define Gk to be the planar 3-tree non-isomorphic to the141

triangle (as the triangle does not have internal leaves) such that in every tree of142

the Schnyder wood of its suspension every internal leaf has depth k. Observe that143

this is a valid definition. Let v be a leaf of w.l.o.g. T3 in the Schnyder wood of the144

suspension of a planar 3-tree. Then, there exists a face that has v, its outgoing145

1-colored edge vp and its outgoing 2-colored edge vq on its boundary. By Lemma 4,146
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we can now add a vertex w in that face, connect it to p, q and v and color the new147

edges such that we obtain a Schnyder wood. In the resulting Schnyder wood, we148

have depth1(w) = depth1(v), depth2(w) = depth2(v), depth3(w) = depth3(v) + 1149

and v is not a leaf in T3 anymore. If we iterate this for every leaf of depth smaller150

than k, we eventually arrive at the graph Gk (Figure 2 and 3). Observe that the151

number of vertices in Gk rapidly increases. This in turn yields that the depth of152

the deepest tree in the Schnyder wood is small in terms of the number of vertices.153

Figure 2: Illustration for the definition of Gk. G2 together with its Schnyder wood.
G2 has 19 vertices. The path marked in yellow maps to the sequence (3, 1, 2).

Lemma 5. Gk has 3 +
∑

s,t,r=0,...,k−1
(

s+t+r
s

)(
t+r

t

)
vertices. And for every 0 <154

ε < 1 and c > 0 there exists a K ≥ 0 such that |V (Gk)| ≥ c · 33(1−ε)(k−1) for155

every k ≥ K.156

Proof (Sketch). We give a bijection between the interior vertices of Gk and the157

sequences of the numbers 1, 2 and 3 in which each number appears at most k − 1158

times. Counting those sequences then shows the claimed statement.159

By the definition of planar 3-trees, we have that every internal vertex v of160

Gk is adjacent to at least one vertex u such that level(v) = level(u) + 1. It is161

possible to show that for every internal vertex v except for the one vertex x that162

is adjacent to the three vertices on the outer face there exists exactly one such163

vertex u. Also, x is the only vertex of level 1. Hence, for every such vertex v,164

there is exactly one path Pv = (v0, . . . , vl) with x = v0 and v = vl such that165

level(vs) = level(vs−1) + 1 for every s = 1, . . . , l. This path maps to a sequence166

via f(Pv) = (c(v0v1), . . . , c(vl−1vl)) where c(e) refers to the color of the edge e167

(Figure 2). It is possible to show that f is a bijection between the interior vertices168

of Gk and the sequences of the numbers 1, 2 and 3 in which each number appears169

at most k − 1 times.170

Thus, we are left to count those sequences. We also count the vertices on the171

outer face, we use Stirling’s formula and some 0 < ε < 1 and obtain that172

|V (Gk)| = 3 +
∑

s,t,r=0,...,k−1

(
s + t + r

s

)(
t + r

t

)
≥ (3k − 3)!

((k − 1)!)3

≥ exp

(
− 96k − 21

432k2 − 852k + 420

)
·

√
3

2π
· 1

k − 1 · 33ε(k−1) · 33(1−ε)(k−1).
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Figure 3: Illustration for the definition of Gk. G3 together with its Schnyder wood.
G3 has 274 vertices.

Observe that

exp

(
− 96k − 21

432k2 − 852k + 420

)
·

√
3

2π
· 1

k − 1 · 33ε(k−1) −→ ∞, for k −→ ∞.

Hence, for every 0 < ε < 1 and c > 0, there exists a K ≥ 0 such that

exp

(
− 96k − 21

432k2 − 852k + 420

)
·

√
3

2π
· 1

k − 1 · 33ε(k−1) ≥ c

for every k ≥ K. This concludes the proof.173

Theorem 1. For every 0 < ε < 1 and n sufficiently large (n depends on ε),174

there exists a planar graph of order n with a unique, and thus, minimal Schnyder175

wood such that every tree of the Schnyder wood has depth at most 1/(3(1 −176

ε) log2(3)) log2(n)+1. For ε small enough, we obtain 1/(3(1−ε) log2(3)) log2(n)+177

1 < 1/4.75 log2(n) + 1.178

Proof (Sketch). Remember that Gk and the Schnyder wood of its suspension are179

defined such that every tree of the Schnyder wood has depth k. It is possible to180
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show that this Schnyder wood is also unique and thus minimal. By Lemma 5, for181

every 0 < ε < 1 there exists a K > 0 such that n := |V (Gk)| ≥ 1 · 33(1−ε)(k−1)
182

for every k ≥ K. Thus, we obtain183

33(1−ε)(k−1) ≤ n ⇔ k ≤ 1
3(1 − ε) log2(3) log2(n) + 1.

Since 3 log2(3) > 4.75, we can choose ε such that 3(1 − ε) log2(3) > 4.75. Hence,184

k ≤ 1/4.75 log2(n) + 1 for n sufficiently large.185

4 Lower Bound186

In this section, G always refers to a 3-connected plane graph such that S is the187

minimal Schnyder wood of Gσ. G might have additional structural properties if188

explicitly stated. We show that S has a tree of depth at least 1/(3 log2(3))·log2(n).189

Define the depth of G to be the maximum depth of a tree of S and denote it190

by depth(G). In our proof, we essentially show that Gk is indeed the worst case191

example. We give a procedure that transforms every given graph G to Gk for some192

k ≤ depth(G). Throughout this procedure, we only increase the number of vertices193

and decrease the depth of the deepest tree. In the end, we obtain that depth(G) ≥194

depth(Gk) ≥ 1/(3 log2(3)) · log2(|V (Gk)|) ≥ 1/(3 log2(3)) · log2(|V (G)|). Hence,195

we need a lower bound on the depth of Gk.196

Lemma 6. We have that n := |V (Gk)| ≤ 1/2·33k−2−1/2, and thus, depth(Gk) =197

k > 1/(3 log2(3)) · log2(n).198

Proof. By Lemma 5, n − 3 equals the number of sequences of the colors 1, 2 and199

3 such that each color appears at most k − 1 times. This is clearly upper bounded200

by the number of sequences of length at most 3k − 3 such that the colors appear201

an arbitrary number of times. Hence, we obtain that202

n − 3 ≤
3k−3∑
l=0

3l = 33k−2 − 1
3 − 1 ⇒ 1

3 log2(3) log2(n) < k.

Lemma 7 (Di Battista et al. [3]). The boundary of every internal face f of G203

can be partitioned into six paths P1,3, p2,3, P2,1, p3,1, P3,2 and p1,2 which appear204

in that clockwise order. For those paths the following holds (Figure 4).205

(i) Pi,j consists of one edge which is either unidirected i-colored, unidirected206

j-colored or i-j-colored. Color i is directed in clockwise direction and color j207

in counterclockwise direction around f .208

(ii) pi,j consists of a possibly empty sequence of i-j-colored edges such that color209

i is directed clockwise around f .210

Lemma 8. Let S be a minimal Schnyder wood and P be the counterclockwise211

3-colored path on the boundary of some internal face. By Lemma 7, P consists of212

p2,3 (a possibly empty sequence of 2-3-colored edges) and possibly P1,3 (an edge213

which is either unidirected 1-colored, unidirected 3-colored or 1-3-colored). If p2,3214

is non-empty, then P1,3 is either unidirected 3-colored or 3-1-colored.215
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f

P1,3

p2,3

P2,1

p3,1

P3,2

p1,2

Figure 4: Illustration for Lemma 7. A face f and the paths on its boundary.

Lemma 8 allows for the following definition of τ(G). The definition is similar216

to the definition of τ(G) in [16]. The two graphs only differ on the outer face. A217

similar construction, but in the reverse direction, is used by Bonichon et al. [2].218

Definition 2. Define τ(G) to be a triangulation of G obtained as follows (Fig-219

ure 5). First, add the edges r1r2, r2r3 and r3r1 if they are not yet in E(G).220

Change the coloring of the edges incident to the roots such that the resulting221

orientation and coloring is still a Schnyder wood. If we add for example r1r2,222

then r1r2 is incoming 1-colored and outgoing 2-colored at r1. And hence, the edge223

incident to r1 that is 1-2-colored before we add r1r2 becomes unidirected 1-colored224

and incoming at r1. Similarly, the edge incident to r2 that is 1-2-colored before225

we add r1r2 becomes unidirected 2-colored and incoming at r2.226

Let f be an internal face of G. Let P be the counterclockwise 3-colored path227

on the boundary of f and let v1, . . . , vk be its vertices in counterclockwise order228

around f . If k ≥ 3, proceed as follows. Add 3-colored edges v1vk, . . . , vk−2vk229

directed towards vk and for j = 2, . . . , k − 1 change the color and orientation of230

vjvj+1 such that vjvj+1 is 2-colored and directed towards vj. Proceed the same231

way for the counterclockwise 1-colored path and the counterclockwise 2-colored232

path on the boundary of f .233

v1v4

vk = v5

v2v3

e

(i) An internal face of G.

v1v4

vk = v5

v2v3

(ii) The corresponding subgraph of τ(G).

Figure 5: Illustration for the definition of τ(G). The counterclockwise 3-colored
path P on the boundary of the face of G is highlighted in yellow.

Lemma 9. The orientation and coloring S′ of the suspension of τ(G) we ob-234

tain by Definition 2 is a minimal Schnyder wood. And we have depth(τ(G)) ≤235

depth(G).236
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For the subsequent proofs to work, we need that every internal leaf has the237

same depth. Hence, we give the following definition. By Lemma 4, this can easily238

be achieved.239

Definition 3. Let G be triangulated and of depth k. Define G to be the graph240

obtained from G by the following iterative process. For all i ∈ {1, 2, 3}, whenever241

there is an internal leaf v in Ti that does not have depth k, we add a vertex u in242

the face delimited by the outgoing edge vp of v in color i + 1, the outgoing edge243

vq of v in color i + 2 and pq. We orient and color the edges incident to u such244

that we obtain a Schnyder wood, i.e., the edges uv, up and uq are outgoing at u245

and i-, (i + 1)- and (i + 2)-colored, respectively.246

Remark 1. Observe that in the setting of Definition 3, we obtain the following. By247

Lemma 4, depthi(u) = depthi(v) + 1, depthi+1(u) = depthi+1(v), depthi+2(u) =248

depthi+2(v) and v is not a leaf of Ti anymore. Hence, in G, every internal leaf249

has depth k. Also, by Lemma 4, the resulting Schnyder wood is still minimal.250

Lemma 10. Let L1 be the set of internal leaves of T1 in G. Let C be a facial251

cycle, i.e., a cycle that forms the boundary of a face, of G − L1. Then, there252

is no 3-colored edge e in G with head w in the interior of C and tail v on C.253

Symmetrically, this holds for the colors 2 and 3.254

Lemma 11 (folklore). Let G be a triangulated plane graph of order n. Denote255

by l◦
i the number of internal leaves of the tree Ti and by f◦ the number of internal256

faces of G. Then,
∑3

i=1 l◦
i ≤ f◦ = 2n − 5.257

Lemma 10 allows for the following definition.258

Definition 4. Let G be of depth k. Define G1 to be the graph obtained by the259

following process. First, triangulate G as described in Definition 2 obtaining τ(G).260

Then, add vertices as described in Definition 3 obtaining τ(G).261

Let L1 be the set of internal leaves of τ(G) of the tree T1. Let G1 = τ(G)−L1.262

Now, for every facial cycle C of G1 that is not a triangle do the following. For263

every vertex z on C with an outgoing 2-colored edge zy such that zy ∈ E(τ(G))264

and y ∈ L1 is in the interior of C, let vz be the vertex where the 2-colored path265

in τ(G) from z to the root r2 first meets C. Add the edge zvz, color it with color266

2 and orient it from z to vz. In order to guarantee that all internal leaves of T2267

and T3 in G1 have depth k and all internal leaves of T1 have depth k − 1, we268

iteratively add vertices as in Definition 3. G2 and G3 are defined symmetrically.269

Lemma 12. Gi is a planar triangulated graph and the Schnyder wood we obtain270

for Gσ
i is a minimal Schnyder wood for all i ∈ {1, 2, 3}.271

Proof (Sketch). We argued in Remark 1 and Lemma 4 that adding vertices in the272

manner of Definition 3 preserves the minimality of the Schnyder wood. Hence, in273

the following, we only consider the graph before we add those vertices. W.l.o.g.274

let i = 1. As described in Remark 1 and Lemma 9, the orientation and coloring275

of τ(G) is a minimal Schnyder wood. First, observe that adding the 2-colored276
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edges to τ(G) − L1 does not create multi-edges by Lemma 2, i.e., for every pair277

of vertices there is at most one edge incident to both.278

Second, we show that G1 is indeed planar. Assume that G1 is not planar.279

Then, there exists a facial cycle C in τ(G) − L1 with four vertices x, v, y, u ∈ C280

in that clockwise order such that there are 2-colored edges xy, vu ∈ E(G1). This281

implies that there are 2-colored paths Pxy and Pvu in τ(G) in the interior of C282

connecting x with y and v with u, respectively. Those paths need to intersect.283

Let p be the last vertex of this intersection in the direction of color 2. At p284

Definition 1(iii) is violated, a contradiction. This implies that G1 is planar.285

Lemma 10 yields that our construction does not split 3-colored paths from286

a vertex to the root. Since we do only delete leaves of T1, we also do not split287

1-colored paths. And if we split a 2-colored path, then we patch this path with288

a 2-colored edge. These are the key observations in order to show that our289

construction yields a Schnyder wood. Finally, it is also possible to show that this290

Schnyder wood of Gσ
1 is minimal.291

In the following, we need to deal with multiple graphs and their Schnyder292

woods. If needed, we add a specifier. We refer for example by r1(G1) to the root293

of the 1-colored tree of the Schnyder wood of Gσ
1 .294

Definition 5. Define H(G) to be the graph with a Schnyder wood obtained by295

the following procedure. Take G1, G2 and G3. Identify the edges on the outer296

face, recolor and reorient those edges as follows. Identify r1(G3)r3(G3) with297

r1(G2)r2(G2), color it with color 1 and orient it towards r1(G2) = r1(G3).298

Identify r2(G3)r3(G3) with r1(G1)r2(G1), color it with color 2 and orient it299

towards r2(G1) = r2(G3). Identify r1(G1)r3(G1) with r2(G2)r3(G2), color it with300

color 3 and orient it towards r3(G1) = r3(G2) (Figure 6). Delete redundant301

half-edges.302

r1(G2) = r1(G3)

r2(G1) = r2(G3)r3(G2) = r3(G1) G1

G2 G3

x

Figure 6: Illustration for Definition 5. Here x = r1(G1) = r2(G2) = r3(G3).

Lemma 13. H(G) is triangulated and its orientation and coloring yields a min-303

imal Schnyder wood of its suspension. Furthermore, depth(G) ≥ depth(τ(G)) =304

depth(H(G)) and |V (G)| ≤ |V (H(G))|.305

Proof. H(G) is triangulated by construction. As observed in Lemma 12, the306

orientations and colorings of G1, G2 and G3 are minimal Schnyder woods. Hence,307
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by construction the orientation and coloring of H(G) is a Schnyder wood. Assume,308

for the sake of contradiction, that there is a clockwise cycle C in H(G). Observe309

that C cannot contain a vertex on the outer face of H(G). Since all the outgoing310

edges of the vertex x = r1(G1) = r2(G2) = r3(G3) end at vertices that are on311

the outer face of H(G), C cannot contain x. Thus, C is completely contained312

in w.l.o.g. G1, contradicting the minimality of the Schnyder wood of Gσ
1 . And313

hence, the Schnyder wood of the suspension of H(G) is minimal.314

Let us consider the depth. By Lemma 9, depth(G) ≥ depth(τ(G)). By Defini-315

tion 3, depth(τ(G)) = depth(τ(G)). For i ∈ {2, 3}, by Definition 4, the depth of316

the i-colored tree of τ(G) equals the depth of the i-colored tree in G1 and, by317

Definition 5, the root of the i-colored tree of G1 becomes the root of the i-colored318

tree of H(G). Also, by Definition 4, the depth of the 1-colored tree of G1 is by one319

smaller than the depth of the 1-colored tree of τ(G). And, by Definition 5, the320

root of the 1-colored tree of G1 has depth one in the 1-colored tree of H(G). This321

holds symmetrically for G2 and G3. This yields that depth(τ(G)) = depth(H(G)),322

and altogether, depth(G) ≥ depth(H(G)).323

It remains to show that |V (G)| ≤ |V (H(G))|. Using Lemma 11, we obtain324

that325

|V (H(G))| ≥ 1 + 3 + 3(|V (τ(G))| − 3) −
3∑

i=1
l◦
i (τ(G))

≥ 3|V (τ(G))| − 5 − 2|V (τ(G))| + 5
= |V (τ(G))|.

Here, f◦(τ(G)) and l◦
i (τ(G)) are the number of internal faces and the number326

of internal leaves of the i-colored tree of τ(G), respectively. Obviously, we have327

|V (τ(G))| ≥ |V (G)|, and thus, |V (H(G))| ≥ |V (G)|.328

Let A be a subgraph of G. Observe that we delete edges and vertices going329

from G to G1, G2 and G3. Hence, there only remain subgraphs of A in G1,330

G2 and G3. Let A′ be the subgraph of H(G) given by the union of the three331

subgraphs of A in G1, G2 and G3. We say that A′ originates from A. We define332

this relation to be transitive, i.e., if A originates from B and B originates from333

C, then A originates from C.334

Let D be the subgraph of τ(G) that is induced by its triangular outer face.335

Observe that the subgraph in H(G) that originates from D is the complete graph336

K4. We iterate this idea and finally obtain the following theorem.337

Theorem 2. Let G be a 3-connected planar graph with a minimal Schnyder
wood. Then,

depth(G) ≥ 1
3 log2(3) log2(|V (G)|).

338

Proof. Define Hs(G) := H(Hs−1(G)) for s ≥ 2 with H1(G) := H(G). The Schny-339

der wood we obtain for H(G) is the minimal Schnyder wood, by Lemma 13. Thus,340
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Figure 7: Let depth(τ(G)) = 2. From left to right we have the subgraphs of H(G),
H2(G), H3(G) and H4(G) that originate from the triangular outer face of τ(G).
Observe that the rightmost graph corresponds to G2, compare Figure 2.

Hs(G) is well-defined. Let t = depth(τ(G)). Since H(G) is already triangulated341

and all leaves of the three trees of the Schnyder wood have depth t, we have342

τ(H(G)) = H(G) and thus, by Lemma 13 and Definition 3, depth(H3t−2(G)) =343

depth(τ(G)) = t. One can show that H3t−2(G) = Gt (Figure 7). And hence,344

Lemma 6 and 13 yield345

depth(G) ≥ depth(H(G)) ≥ . . . ≥ depth(H3t−2(G)) = depth(Gt)

≥ 1
3 log2(3) log2(|V (Gt)|) = 1

3 log2(3) log2(|V (H3t−2(G))|) ≥ . . .

≥ 1
3 log2(3) log2(|V (G)|).

Corollary 1. Every 3-connected planar graph G on n vertices has an induced346

path of size at least ⌊1/(3 log2(3)) log2(n)⌋ + 1.347

Proof. Take a minimal Schnyder wood of Gσ. For a vertex v ∈ V (G) and348

i ∈ {1, 2, 3}, the v-ri-path Pi(v) in the tree Ti is always induced. Assume, for the349

sake of contradiction, that there exists a vertex v ∈ V (G) for which this does not350

hold. Then, there is a j-colored edge e = xy in G with x, y ∈ Pi(v), i, j ∈ {1, 2, 3}.351

By Lemma 1, Ti is a tree and hence i ≠ j. Now, either T −1
i ∪ Tj or Ti ∪ Tj has352

an oriented cycle, contradicting Lemma 2. Hence, Theorem 2 directly yields an353

induced path of size ⌊1/(3 log2(3)) log2(n)⌋ + 1.354

5 Conclusion355

In this paper, we gave a tight bound on the depth of a minimal Schnyder wood356

and used this bound to give a lower bound on the length of an induced path.357

Observe that the suspension of the graph Gk which we used to show that our358

lower bound is tight has a unique Schnyder wood for our choice of the outer face.359

Hence, if we want to exploit this method further, then we need to allow to choose360

the outer face.361
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