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Abstract We investigate a new structural property of Schnyder woods:
every minimal Schnyder wood of a 3-connected planar graph of order n
has a tree of depth at least log,(n)/(3log,(3)). This bound is tight. Our
result directly implies that such a graph has an induced path of length
at least log,(n)/(3log,(3)), improving the previous best lower bound on
the length of such a path.
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1 Introduction

Already in 1986, Erdés et al. [5] investigated the problem of finding long induced
paths. Let p(G) be the size, i.e., the number of vertices, of a longest induced path
of G. For a connected graph G with radius r(G), Erdés et al. [5] showed that
p(G) > 2r(G) — 1. Fourteen years later, Arocha and Valencia [1] gave the lower
bound log 5 (n) on the diameter (and hence on p(G)) for a 3-connected planar
graph G of order n with bounded maximum degree A. For unbounded A, they
gave an induced path of size \/logs(A). In 2016, Di Giacomo et al. [4] showed

that p(G) > #gg(n) for 3-connected planar graphs GG. And they gave an

upper bound showing p(G) < 1.3logy(n) + 5 for a family of specific 3-connected
planar graphs. The same year, Esperet et al. [6] improved the lower bound to
(logy(n) — 3logy logy(n))/6 with a similar approach. Recently, we [15] improved
the lower bound to (1/6)log,(n) using a new technique based on deep trees in
Schnyder woods.

In this paper, we give a better lower bound of p(G) > logy(n)/(3log,(3)) >
(1/4.76) logy(n). We approach the problem via deep trees in minimal Schnyder
woods.

Given a planar embedding of a 3-connected planar graph and a minimal
Schnyder wood on this embedding (Formal definitions are given in Section 2.),
we show that at least one of the three trees has depth at least logy(n)/(31og,(3)).
We also show that this bound is tight, i.e., for every 0 < € < 1 there exists a
3-connected planar graph with a minimal Schnyder wood such that every tree of
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Figure 1: Hlustrations for the definition of Schnyder woods.

this Schnyder wood has depth at most log,(n)/(3(1 — ) log,(3)) + 1. Actually,
the 3-connected planar graph that we need for our lower bound has a unique
Schnyder wood for our choice of the outer face. Thus, our bound is tight not only
for minimal but also for arbitrary Schnyder woods of 3-connected plane graphs,
that is, planar graphs with a fixed embedding. As mentioned above, the lower
bound directly implies that p(G) > log,(n)/(3log,(3)). As stated in [15], this
new structural property of Schnyder woods is not only of theoretical interest, but
also comes with the following additional benefits.

We have an easy linear time algorithm that computes those long induced
paths. Furthermore, we obtain that there are at least f/(24) different such paths,
where f is the number of faces and A the maximum degree. And, for every such
path, there exists a planar grid drawing such that this path is monotone in both
coordinates.

The paper is organized as follows. In Section 2, we give basic definitions and
lemmas. In Section 3, we define the graph G* and use it to give an upper bound
on the depth of a tree in a minimal Schnyder wood. In Section 4, we give a
procedure that transforms any 3-connected planar graph to G* for a suitable k.
This we use to give our lower bound. A section about dual Schnyder woods and
the minimal Schnyder wood for 3-connected planar graphs, the omitted proofs
and the proofs that are only sketched are provided in the appendix.

2 Schnyder Woods

We only consider simple undirected graphs. A graph is plane if it is planar and
embedded into the Euclidean plane. Although parts of this paper use orientation
on edges, we will always let vw denote the undirected edge {v, w}.

Let o := {ry,7r2,r3} be a set of three vertices of the outer face boundary of a
plane graph G in clockwise order (but not necessarily consecutive). We call rq,
ro and 73 roots. The suspension G of G is the graph obtained from G by adding
at each root of ¢ a half-edge pointing into the outer face. With a little abuse
of notation, we define a half-edge as an arc that has a start vertex but no end
vertex.
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Definition 1 (Felsner [7]). Let 0 = {r1,r2,73} and G be the suspension of
a 3-connected plane graph G. A Schnyder wood of G is an orientation and
coloring of the edges of G° (including the half-edges) with the colors 1,2,3 (red,
green, blue) such that

(i) Every edge e is oriented in one direction (we say e is unidirected) or in two
opposite directions (we say e is bidirected). Every direction of an edge is
colored with one of the three colors 1,2,3 (we say an edge is i-colored if one of
its directions has color i) such that the two colors i and j of every bidirected
edge are distinct (we call such an edge i-j-colored). Throughout the paper,
we assume modular arithmetic on the colors 1,2,3 in such a way that 1 + 1
and i — 1 for a color i are defined as (i mod 3) +1 and (i +1 mod 3) + 1.
For a vertex v, a uni- or bidirected edge is incoming (i-colored) in v if it has
a direction (of color i) that is directed toward v, and outgoing (i-colored) of
v if it has a direction (of color i) that is directed away from v.

(ii) For every color i, the half-edge at r; is unidirected, outgoing and i-colored.

(iii) Every vertex v has exactly one outgoing edge of every color. The outgoing
1-, 2-, 3-colored edges ey, es,e3 of v occur in clockwise order around v. For
every color i, every incoming i-colored edge of v is contained in the clockwise
sector around v from e;y1 to e;—q1 (Figure 1ii). This clockwise sector includes
€i+1 and €;i—1-

(iv) No inner face boundary contains a directed cycle in one color.

For an illustration of Definition 1 see Figure 1i.

For a Schnyder wood and color ¢, let T; be the directed graph that is induced
by the directed edges of color ¢. The following result justifies the name of Schnyder
woods.

Lemma 1 ([9,18]). For every color i of a Schnyder wood of G°, T; is a directed
spanning tree of G in which all edges are oriented to the root r;.

For a vertex v, we denote by depth;(v) the length of the v-r;-path in the tree
T;. For a directed graph H, we denote by H~! the graph obtained from H by
reversing the direction of all its edges.

Lemma 2 (Felsner [8]). For every i € {1,2,3}, T; ' UT; .} UT;12 is acyclic.

Using results on orientations with prescribed outdegrees on the respective
completions, Felsner and Ossona de Mendez [9,14] showed that the set of Schnyder
woods of a planar suspension G forms a distributive lattice. The order relation
of this lattice is defined on the superposition of the dual and the primal graph
and also requires a Schnyder wood on the dual graph. We refer the interested
reader to [17] for a definition of the minimal Schnyder wood for 3-connected
planar graphs whose notation coincides with our notation.

But, as we are mostly working on planar triangulations, we give those def-
initions in the appendix and work with the following simpler statement. One
can easily deduce from the result of Felsner and Ossona de Mendez [9, 14] that
for triangulations the order relation of this lattice relates a Schnyder wood of
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G? to a second Schnyder wood if the former can be obtained from the latter by
reversing the orientation of a directed clockwise cycle. This yields the following
lemma.

Lemma 3 ([9,14]). Let G be a triangulated planar graph. The minimal element
of the lattice of all Schnyder woods of G° contains no clockwise directed cycle.

We call the minimal element of the lattice of all Schnyder woods of G also
the minimal Schnyder wood of G?. If the lattice has only one element, we say
that the Schnyder wood is unique.

3 Upper Bound on the Maximum Depth of a Tree

In this section, we define a sequence of graphs with a minimal Schnyder wood
such that for each 0 < ¢ < 1 there exists an N such that in each of those
graphs of order n > N each tree of the Schnyder wood has depth at most
1/(3(1 — <) logy(3)) log, () + 1.

Those graphs are specific planar 3-trees. A planar 3-tree is a graph that can
be constructed by the following procedure. Starting with a triangle, we iteratively
select an internal face, add a new vertex v in its interior and connect this vertex
with the three vertices of that face. During this construction, we assign a level to
each newly added vertex v as follows. Every vertex on the outer face has level 0.
And for v, we define level(v) := max{level(w) | w is adjacent to v} + 1. Observe
that planar 3-trees are triangulated. Define the complete planar 3-tree of level k
to be the 3-tree with the maximum number of vertices such that every vertex
has level at most k. And let an internal leaf be a leaf of a tree of the Schnyder
wood that is not on the boundary of the outer face. This construction procedure
motivates the following lemma.

Lemma 4. Let G be a triangulated plane graph and S be a Schnyder wood of
G?. Let v be an internal leaf of the tree T; for some i € {1,2,3}. Let vp and vq
be the outgoing (i + 1)-colored edge and the outgoing (i 4+ 2)-colored edge at v,
respectively. Let f be the internal face that has vp and vq on its boundary.

If we add a vertex w in f and connect it to the vertices v, p and q, then there
is exactly one way to augment S to a Schnyder wood of the suspension of G + w.
If S is minimal or unique, then the resulting Schnyder wood is minimal or unique
(w.r.t. the choice of the roots), respectively. Also, depth;(w) = depth;(v) + 1,
depth;1(w) = depth;11(v), depth;1o(w) = depth;12(v) and v is not a leaf of T;
in the resulting Schnyder wood.

For every k > 1, define G* to be the planar 3-tree non-isomorphic to the
triangle (as the triangle does not have internal leaves) such that in every tree of
the Schnyder wood of its suspension every internal leaf has depth k. Observe that
this is a valid definition. Let v be a leaf of w.l.0.g. T3 in the Schnyder wood of the
suspension of a planar 3-tree. Then, there exists a face that has v, its outgoing
1-colored edge vp and its outgoing 2-colored edge vq on its boundary. By Lemma 4,
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we can now add a vertex w in that face, connect it to p, ¢ and v and color the new
edges such that we obtain a Schnyder wood. In the resulting Schnyder wood, we
have depth,(w) = depth;(v), depths(w) = depths(v), depths(w) = depths(v) + 1
and v is not a leaf in T3 anymore. If we iterate this for every leaf of depth smaller
than k, we eventually arrive at the graph G* (Figure 2 and 3). Observe that the
number of vertices in G* rapidly increases. This in turn yields that the depth of
the deepest tree in the Schnyder wood is small in terms of the number of vertices.

Figure 2: Illustration for the definition of G¥. G? together with its Schnyder wood.
G? has 19 vertices. The path marked in yellow maps to the sequence (3,1, 2).

Lemma 5. G* has 3 + D str=0, k1 (Hffr) (tJtrT) vertices. And for every 0 <

e <1 and c > 0 there exists a K > 0 such that |V(GF)| > ¢ - 33091 for
every k > K.

Proof (Sketch). We give a bijection between the interior vertices of G¥ and the
sequences of the numbers 1, 2 and 3 in which each number appears at most k — 1
times. Counting those sequences then shows the claimed statement.

By the definition of planar 3-trees, we have that every internal vertex v of
G* is adjacent to at least one vertex u such that level(v) = level(u) + 1. It is
possible to show that for every internal vertex v except for the one vertex x that
is adjacent to the three vertices on the outer face there exists exactly one such
vertex u. Also, x is the only vertex of level 1. Hence, for every such vertex v,
there is exactly one path P, = (vg,...,v) with = vy and v = v; such that
level(vs) = level(vs—_1) + 1 for every s = 1,...,1. This path maps to a sequence
via f(P,) = (c(vov1), ..., c(vi—1v;)) where c¢(e) refers to the color of the edge e
(Figure 2). It is possible to show that f is a bijection between the interior vertices
of G* and the sequences of the numbers 1, 2 and 3 in which each number appears
at most k£ — 1 times.

Thus, we are left to count those sequences. We also count the vertices on the
outer face, we use Stirling’s formula and some 0 < € < 1 and obtain that

ver=se 3 ()2

s,t,r=0,..., k—1

> eap [~ Ik~ 21 VB L ey | oo
- 432k? — 852k +420) 27 k-1 '
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Figure 3: Illustration for the definition of G¥. G together with its Schnyder wood.
G*® has 274 vertices.

Observe that

96k — 21 ) V3 o1

_ . 33€(k—1) for k .
“op ( 432k? — 852k + 420 o k-1 — o0, for k — o0

Hence, for every 0 < ¢ < 1 and ¢ > 0, there exists a K > 0 such that

can [ 96k — 21 V31
P\ " 432k2 — 852k + 420

for every k > K. This concludes the proof.

Theorem 1. For every 0 < ¢ < 1 and n sufficiently large (n depends on €),
there exists a planar graph of order n with a unique, and thus, minimal Schnyder
wood such that every tree of the Schnyder wood has depth at most 1/(3(1 —
) log,(3)) logy(n)+1. Fore small enough, we obtain 1/(3(1—¢)log,(3)) logy(n)+
1< 1/4.751logy(n) + 1.

Proof (Sketch). Remember that G* and the Schnyder wood of its suspension are
defined such that every tree of the Schnyder wood has depth k. It is possible to
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show that this Schnyder wood is also unique and thus minimal. By Lemma 5, for
every 0 < & < 1 there exists a K > 0 such that n := [V(GF)| > 1.330-)(k=1)
for every k > K. Thus, we obtain

1
Bk << — ] 1.
=" ~ 3(1 —¢)logy(3) 0g2(n) +
Since 3log,(3) > 4.75, we can choose ¢ such that 3(1 — ¢) log,(3) > 4.75. Hence,
k <1/4.75logy(n) + 1 for n sufficiently large.

4 Lower Bound

In this section, G always refers to a 3-connected plane graph such that S is the
minimal Schnyder wood of G?. G might have additional structural properties if
explicitly stated. We show that S has a tree of depth at least 1/(31og,(3))-logy(n).
Define the depth of G to be the maximum depth of a tree of S and denote it
by depth(G). In our proof, we essentially show that G* is indeed the worst case
example. We give a procedure that transforms every given graph G to G* for some
k < depth(G). Throughout this procedure, we only increase the number of vertices
and decrease the depth of the deepest tree. In the end, we obtain that depth(G) >
depth(G*) > 1/(310,(3)) - og, |V (G¥)]) > 1/(3log,(3)) - logs(|V(G)]). Henee,
we need a lower bound on the depth of G*.

Lemma 6. We have thatn := |V (G*)| < 1/2-33%=2-1/2, and thus, depth(G*) =
k> 1/(3logy(3)) - logy(n).

Proof. By Lemma 5, n — 3 equals the number of sequences of the colors 1, 2 and
3 such that each color appears at most k£ — 1 times. This is clearly upper bounded
by the number of sequences of length at most 3k — 3 such that the colors appear
an arbitrary number of times. Hence, we obtain that

3k—3

. 33k—2_1 1
-3< 3t = 1 k.
nTes ZZ; 551 7 3logy(3) 02 <

Lemma 7 (Di Battista et al. [3]). The boundary of every internal face f of G
can be partitioned into siz paths Py 3, p23, Po1, p3,1, P32 and pi 2 which appear
in that clockwise order. For those paths the following holds (Figure 4).

(i) P, ; consists of one edge which is either unidirected i-colored, unidirected
j-colored or i-j-colored. Color i is directed in clockwise direction and color j
in counterclockwise direction around f.

(it) pi; consists of a possibly empty sequence of i-j-colored edges such that color
i 1is directed clockwise around f.

Lemma 8. Let S be a minimal Schnyder wood and P be the counterclockwise
3-colored path on the boundary of some internal face. By Lemma 7, P consists of
D23 (a possibly empty sequence of 2-3-colored edges) and possibly Py 3 (an edge
which is either unidirected 1-colored, unidirected 3-colored or 1-3-colored). If ps 3
is non-empty, then Py 3 is either unidirected 3-colored or 3-1-colored.
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Figure 4: Mlustration for Lemma 7. A face f and the paths on its boundary.

Lemma 8 allows for the following definition of 7(G). The definition is similar
to the definition of 7(G) in [16]. The two graphs only differ on the outer face. A
similar construction, but in the reverse direction, is used by Bonichon et al. [2].

Definition 2. Define 7(G) to be a triangulation of G obtained as follows (Fig-
ure 5). First, add the edges r1ro, Tors and r3ry if they are not yet in E(G).
Change the coloring of the edges incident to the roots such that the resulting
orientation and coloring is still a Schnyder wood. If we add for example rirs,
then ri7o is incoming 1-colored and outgoing 2-colored at r1. And hence, the edge
incident to ry that is 1-2-colored before we add rirs becomes unidirected 1-colored
and incoming at r1. Similarly, the edge incident to ro that is 1-2-colored before
we add r1ry becomes unidirected 2-colored and incoming at ro.

Let f be an internal face of G. Let P be the counterclockwise 3-colored path

on the boundary of f and let vy,..., v be its vertices in counterclockwise order
around f. If k > 3, proceed as follows. Add 3-colored edges vivg, ...,V 2V
directed towards vy and for j =2,...,k — 1 change the color and orientation of

v;Vj41 such that v;vi11 is 2-colored and directed towards v;. Proceed the same
way for the counterclockwise 1-colored path and the counterclockwise 2-colored
path on the boundary of f.

V4 V3 V2 U1
<O0><€<0>

VE = Vs

(i) An internal face of G. (ii) The corresponding subgraph of 7(G).

Figure 5: Illustration for the definition of 7(G). The counterclockwise 3-colored
path P on the boundary of the face of G is highlighted in yellow.

Lemma 9. The orientation and coloring S’ of the suspension of 7(G) we ob-
tain by Definition 2 is a minimal Schnyder wood. And we have depth(7(G)) <
depth(G).
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For the subsequent proofs to work, we need that every internal leaf has the
same depth. Hence, we give the following definition. By Lemma 4, this can easily
be achieved.

Definition 3. Let G be triangulated and of depth k. Define G to be the graph
obtained from G by the following iterative process. For alli € {1,2,3}, whenever
there is an internal leaf v in T; that does not have depth k, we add a vertex u in
the face delimited by the outgoing edge vp of v in color i + 1, the outgoing edge
vq of v in color i + 2 and pq. We orient and color the edges incident to u such
that we obtain a Schnyder wood, i.e., the edges uv, up and uq are outgoing at u
and i-, (i + 1)- and (i + 2)-colored, respectively.

Remark 1. Observe that in the setting of Definition 3, we obtain the following. By
Lemma 4, depth;(u) = depth;(v) + 1, depth;11(u) = depth;+1(v), depth;io(u) =
depth;,2(v) and v is not a leaf of T; anymore. Hence, in G, every internal leaf
has depth k. Also, by Lemma 4, the resulting Schnyder wood is still minimal.

Lemma 10. Let Ly be the set of internal leaves of Ty in G. Let C be a facial
cycle, i.e., a cycle that forms the boundary of a face, of G — Li. Then, there
is no 3-colored edge e in G with head w in the interior of C and tail v on C.
Symmetrically, this holds for the colors 2 and 3.

Lemma 11 (folklore). Let G be a triangulated plane graph of order n. Denote
by I the number of internal leaves of the tree T; and by f° the number of internal
faces of G. Then, Zle I < f°=2n-5.

Lemma 10 allows for the following definition.

Definition 4. Let G be of depth k. Define G to be the graph obtained by the
following process. First, triangulate G as described in Definition 2 obtaining 7(G).
Then, add vertices as described in Definition 3 obtaining 7(G). -

Let Ly be the set of internal leaves of 7(G) of the tree Ty. Let Gy = 7(G) — L.
Now, for every facial cycle C' of G that is not a triangle do the following. For
every vertex z on C with an outgoing 2-colored edge zy such that zy € E(1(Q))
and y € Ly is in the interior of C, let v, be the vertex where the 2-colored path
in 7(G) from z to the root ro first meets C. Add the edge zv,, color it with color
2 and orient it from z to v,. In order to guarantee that all internal leaves of Ts
and T3 in Gy have depth k and all internal leaves of T have depth k — 1, we
iteratively add vertices as in Definition 3. Go and Gs are defined symmetrically.

Lemma 12. G; is a planar triangulated graph and the Schnyder wood we obtain
for G is a minimal Schnyder wood for alli € {1,2,3}.

Proof (Sketch). We argued in Remark 1 and Lemma 4 that adding vertices in the
manner of Definition 3 preserves the minimality of the Schnyder wood. Hence, in
the following, we only consider the graph before we add those vertices. W.l.o.g.
let i = 1. As described in Remark 1 and Lemma 9, the orientation and coloring
of 7(G) is a minimal Schnyder wood. First, observe that adding the 2-colored
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edges to 7(G) — Ly does not create multi-edges by Lemma 2, i.e., for every pair
of vertices there is at most one edge incident to both.

Second, we show that G; is indeed planar. Assume that G; is not planar.
Then, there exists a facial cycle C' in 7(G) — Ly with four vertices z,v,y,u € C
in that clockwise order such that there are 2-colored edges zy,vu € E(G1). This
implies that there are 2-colored paths Py, and P,, in 7(G) in the interior of C
connecting x with y and v with u, respectively. Those paths need to intersect.
Let p be the last vertex of this intersection in the direction of color 2. At p
Definition 1(iii) is violated, a contradiction. This implies that G; is planar.

Lemma 10 yields that our construction does not split 3-colored paths from
a vertex to the root. Since we do only delete leaves of T}, we also do not split
1-colored paths. And if we split a 2-colored path, then we patch this path with
a 2-colored edge. These are the key observations in order to show that our
construction yields a Schnyder wood. Finally, it is also possible to show that this
Schnyder wood of G¢ is minimal.

In the following, we need to deal with multiple graphs and their Schnyder
woods. If needed, we add a specifier. We refer for example by r1(G1) to the root
of the 1-colored tree of the Schnyder wood of GY.

Definition 5. Define H(G) to be the graph with a Schnyder wood obtained by
the following procedure. Take G1, G5 and Gs. Identify the edges on the outer
face, recolor and reorient those edges as follows. Identify r(Gs)rs(Gs) with
r1(G2)r2(G2), color it with color 1 and orient it towards ri(Ga) = ri1(G3).
Identify r2(Gs)rs(Gs) with m1(G1)r2(G1), color it with color 2 and orient it
towards ro(G1) = ro(Gs). Identify r1(G1)rs(G1) with ro(G2)rs3(G2), color it with
color 3 and orient it towards r3(G1) = r3(G2) (Figure 6). Delete redundant
half-edges.

T1 (GQ) =T (Gg)

Ga Gg'j
7”3(G2) = 7”3(G1) Gy TQ(Gl) = TQ(GB)

Figure 6: Illustration for Definition 5. Here = r1(G1) = ro(G2) = r3(Gs).

Lemma 13. H(G) is triangulated and its orientation and coloring yields a min-
imal Schnyder wood of its suspension. Furthermore, depth(G) > depth(r(G)) =
depth(H(Q)) and |V(G)| < |[V(H(G))|.

Proof. H(G) is triangulated by construction. As observed in Lemma 12, the
orientations and colorings of G1, G5 and G3 are minimal Schnyder woods. Hence,
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by construction the orientation and coloring of H(G) is a Schnyder wood. Assume,
for the sake of contradiction, that there is a clockwise cycle C in H(G). Observe
that C' cannot contain a vertex on the outer face of H(G). Since all the outgoing
edges of the vertex © = r1(G1) = 12(G2) = r3(G3) end at vertices that are on
the outer face of H(G), C cannot contain 2. Thus, C' is completely contained
in w.l.o.g. Gy, contradicting the minimality of the Schnyder wood of G¢. And
hence, the Schnyder wood of the suspension of H(G) is minimal.

Let us consider the depth. By Lemma 9, depth(G) > depth(7(G)). By Defini-
tion 3, depth(7(G)) = depth(r(G)). For i € {2,3}, by Definition 4, the depth of
the i-colored tree of 7(G) equals the depth of the i-colored tree in G; and, by
Definition 5, the root of the i-colored tree of G; becomes the root of the i-colored
tree of H(G). Also, by Definition 4, the depth of the 1-colored tree of G is by one
smaller than the depth of the 1-colored tree of 7(G). And, by Definition 5, the
root of the 1-colored tree of G| has depth one in the 1-colored tree of H(G). This
holds symmetrically for Go and Gs. This yields that depth(7(G)) = depth(H(G)),
and altogether, depth(G) > depth(H(G)).

It remains to show that |V (G)| < |[V(H(G))|. Using Lemma 11, we obtain
that

3
V(H(G)) = 14+3+3(V(r(G)] - 3) - Zl?(T(G))

2 3V(T(G)] =5 = 2V(r(G)] +5

= [V(r(@))I

Here, f°(7(G)) and I$(7(G)) are the number of internal faces and the number
of internal leaves of the i-colored tree of 7(G), respectively. Obviously, we have

[V (r(@))] = [V(G)|, and thus, [V(H(G))| = [V(G)]-

Let A be a subgraph of G. Observe that we delete edges and vertices going
from G to Gy, G2 and G3. Hence, there only remain subgraphs of A in G,
G2 and G3. Let A’ be the subgraph of H(G) given by the union of the three
subgraphs of A in G1, G2 and G3. We say that A" originates from A. We define
this relation to be transitive, i.e., if A originates from B and B originates from
C, then A originates from C.

Let D be the subgraph of 7(G) that is induced by its triangular outer face.
Observe that the subgraph in H(G) that originates from D is the complete graph
K. We iterate this idea and finally obtain the following theorem.

Theorem 2. Let G be a 3-connected planar graph with a minimal Schnyder
wood. Then,

depth(G) > @ log, (IV(G)])-

Proof. Define H*(G) := H(H*"1(G)) for s > 2 with H(G) := H(G). The Schny-
der wood we obtain for H(G) is the minimal Schnyder wood, by Lemma 13. Thus,
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AVV. V.

Figure 7: Let depth(r = 2. From left to right we have the subgraphs of H(G
H?*(G), H3(G) and H4(G) that originate from the triangular outer face of T(G).
Observe that the rightmost graph corresponds to G2, compare Figure 2.

H?*(G) is well-defined. Let t = depth(7(G)). Since H(QG) is already triangulated
and all leaves of the three trees of the Schnyder wood have depth t, we have
7(H(G)) = H(G) and thus, by Lemma 13 and Definition 3, depth(H3'~2(Q)) =
depth(7(G)) = t. One can show that H3~2(G) = G* (Figure 7). And hence,
Lemma 6 and 13 yield

depth(G) > depth(H(G)) > ... > depth(H*%(G)) = depth(G")

> log,([V(G")]) = log, (|V(H**(G))]) = ...

1 1
3log,(3) 3log,(3)

1
m logy (|V(G))).-

Corollary 1. Every 3-connected planar graph G on n vertices has an induced
path of size at least |1/(3logy(3))logy(n)] + 1.

Proof. Take a minimal Schnyder wood of G?. For a vertex v € V(G) and
i € {1,2,3}, the v-r;-path P;(v) in the tree T; is always induced. Assume, for the
sake of contradiction, that there exists a vertex v € V(@) for which this does not
hold. Then, there is a j-colored edge e = zy in G with x,y € P;(v), i,j € {1,2,3}.
By Lemma 1, T; is a tree and hence i # j. Now, either Ti_1 UT; or T; UTj has
an oriented cycle, contradicting Lemma 2. Hence, Theorem 2 directly yields an
induced path of size [1/(31logy(3))logy(n)] + 1.

5 Conclusion

In this paper, we gave a tight bound on the depth of a minimal Schnyder wood
and used this bound to give a lower bound on the length of an induced path.
Observe that the suspension of the graph G* which we used to show that our
lower bound is tight has a unique Schnyder wood for our choice of the outer face.
Hence, if we want to exploit this method further, then we need to allow to choose
the outer face.
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