
Computing Vertex-Disjoint Paths in Large Graphs using
MAOs

Johanna E. Preißer∗
Institute of Mathematics

TU Ilmenau

Jens M. Schmidt∗
Institute of Mathematics

TU Ilmenau

Abstract
We consider the problem of computing k ∈ N internally vertex-disjoint paths

between special vertex pairs of simple connected graphs. For general vertex
pairs, the best deterministic time bound is, since 42 years, O(min{k,

√
n}m) for

each pair by using traditional flow-based methods.
The restriction of our vertex pairs comes from the machinery of maximal

adjacency orderings (MAOs). Henzinger showed for every MAO and every
1 ≤ k ≤ δ (where δ is the minimum degree of the graph) the existence of k
internally vertex-disjoint paths between every pair of the last δ − k + 2 vertices
of this MAO. Later, Nagamochi generalized this result by using the machinery
of mixed connectivity. Both results are however inherently non-constructive.

We present the first algorithm that computes these k internally vertex-
disjoint paths in linear time O(m), which improves the previously best time
O(min{k,

√
n}m). Due to the linear running time, this algorithm is suitable for

large graphs. The algorithm is simple, works directly on the MAO structure,
and completes a long history of purely existential proofs with a constructive
method. We extend our algorithm to compute several other path systems and
discuss its impact for certifying algorithms.

1 Introduction
Vertex-connectivity is a fundamental parameter of graphs that, by a result due to
Menger [12], can be characterized by the existence of internally vertex-disjoint paths
between vertex pairs. Thus, much work has been devoted to the following question:
Given a number k, a simple graph G = (V,E), and two vertices of G, compute k
internally vertex-disjoint paths between these vertices if such paths exist. Despite
all further efforts, the traditional flow-based approach by Even and Tarjan [3] and
Karzanov [7] gives still the best deterministic bound O(min{k,

√
n}m) for this task,

where n := |V | and m := |E|.
∗This research is supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation).

1

Our research is driven by the question whether k internally vertex-disjoint paths
can be computed faster deterministically. This question has particular impact for
large graphs, as we aim for linear-time algorithms. We have no general answer,
but show for specific pairs of vertices that this can actually be done using maximal
adjacency orderings (MAOs, also known under the name maximum cardinality search).
MAOs order the vertices of a graph and can be computed in time O(n+m) [18] (we
will define MAOs in detail in Section 2).

One of the key properties of MAOs is that their last vertices are highly vertex-
connected, i.e., have pairwise many internally vertex-disjoint paths. In more detail,
let G be a simple unweighted graph of minimum degree δ and let < be a MAO of
G. Then < decomposes G into edge-disjoint forests F1, . . . , Fm in a natural way (we
will give the precise background on MAOs and such forest decompositions later). Let
a subset of vertices be k-connected if G contains k internally vertex-disjoint paths
between every two vertices of this subset. Henzinger proved for every 1 ≤ k ≤ δ that
the last δ − k + 2 vertices of < are k-connected [6].

In order to appreciate Henzinger’s result, it is important to mention that its
special case k = δ alone was predated by many results in the (weaker) realm of
edge-connectivity: a well-known line of research [14, 4, 17] proved that the last two
vertices of < are δ-edge-connected. In fact, we exhibit the following forgotten link
to a result by Mader [10, 9] in 1971, who used a preliminary variant of MAOs over
one decade before MAOs were introduced and proved that their last two vertices are
even δ-connected (we show some details of this approach in the appendix). In 2006,
Nagamochi generalized all the mentioned results as follows.

Theorem 1 ([13][15, Thm. 2.28]). Let < be a MAO of a simple graph G and let
F1, . . . , Fm be the forests into which < partitions E. For every two vertices s and t
that are in the same component of some Fk, G contains k internally vertex-disjoint
paths between s and t.

Theorem 1 specializes to Henzinger’s result by taking the component Tk of Fk
that contains the last vertex of < (this tree contains the last δ− k+ 2 vertices of <).
Its proof depends heavily on the machinery of mixed connectivity, and so does its
most general statement (which we omit here, although all our results extend to this
setting). Theorem 1 may be seen as the currently strongest result on MAOs regarding
vertex-connectivity. However, all proofs known so far about vertex-connectivity in
MAOs (including the ones by Henzinger and Nagamochi) are non-constructive and
thus do not give any faster algorithm than the flow-based one for the initial question
of computing internally vertex-disjoint paths.

The main result of this paper is an algorithm that computes the k paths of
Theorem 1 in linear time O(n+m). This improves upon the previously best time
O(min{k,

√
n}m). To our surprise, its key idea is simple; the details of its correctness

proof however are subtle. We therefore explain the algorithm in two incremental
variants: The slightly weaker variant in Section 3 computes internally vertex-disjoint

2

paths between one vertex s and a fixed set of k vertices of the forest decomposition;
it does so by performing a right-to-left sweep through the MAO, in which the k
paths are switched cyclically whenever one of the k paths would be lost. Section 4
then invokes two of these computations (one for s and one for t) in parallel in order
to obtain our main result. We show also how the computation can be extended to
find the k internally vertex-disjoint paths between a vertex and a vertex set, and
between two vertex sets, whose existence was shown by Menger [12].

It is not easy to quantify for how many vertex pairs our faster algorithm can be
applied. If we require δ internally vertex-disjoint paths, there are δ-regular graphs
for which the only component of Fδ consists of one vertex pair joined by an edge
and Fδ+1 = · · · = Fm = ∅. In this case, we can apply our algorithm only to a single
vertex pair. However, in practice, many more of these sets occur and each of them
may have a much larger size. If k < δ internally vertex-disjoint paths are sufficient,
all pairs of a much larger set of size δ − k + 2 can be taken (even in the worst case),
at the expense of the linearly decreased pairwise connectivity k.

Certifying Algorithms. Being able to compute k internally vertex-disjoint paths
has a benefit that purely existential proofs and algorithms that only argue about
vertex separators do not have: It certifies the connectivity between the two vertices.
For related problems on edge-connectivity, this has already been used to make
algorithms certifying (in the sense of [11]).

The perhaps most prominent such result is the minimum cut algorithm of
Nagamochi and Ibaraki [14], which refines the work of Mader [10, 9], and was
simplified by Frank [4] and by Stoer and Wagner [17]. This algorithm computes
iteratively a MAO and then contracts the last two δ(-edge)-connected vertices of
it. For unweighted multigraphs, this is easily made certifying by storing the k
edge-disjoint paths between these last two vertices in every step; the global k-edge-
connectivity then follows by transitivity. In fact, the desired k edge-disjoint paths
for every MAO can be obtained by just taking, for every 1 ≤ i ≤ k, the unique
s-t-path in the tree Ti of Fi that contains t. Using more involved methods, Arikati
and Mehlhorn [1] made the algorithm of Nagamochi and Ibaraki certifying even for
weighted graphs, again without increasing the quadratic asymptotic running time
and space.

For the problem of recognizing k-connectivity, linear-time certifying algorithms
are known for every k ≤ 3 [19, 16]. For arbitrary k, the best known deterministic
certifying algorithm is still the traditional flow-based one [3, 5], which achieves a
running time of O((k+

√
n)k
√
nm). By using a geometric characterization of graphs,

also a non-deterministic certifying algorithm with running time O(n5/2 + k5/2n) is
known [8]. For designing faster certifying algorithms, finding a good certificate for
k-connectivity seems to be the crucial open graph-theoretic problem, even when k is
fixed:
Open Problem. For every k ∈ N, find a small and easy-to-verify certificate that proves

3

the k-vertex-connectivity of simple graphs.
Our main result plays the same important role for certifying the vertex-connectivity

between two vertices, as s-t-flows do for certifying the edge-connectivity between s
and t in the results described above. For example, the 2-approximation algorithm for
vertex-connectivity [6] by Henzinger can be made certifying using our new algorithm.

2 Maximal Adjacency Orderings
Throughout this paper, our input graph G = (V,E) is simple, unweighted and of
minimum degree δ. We assume standard graph theoretic notation as in [2]. A
maximal adjacency ordering < of G is a total order 1, . . . , n on V such that, for every
two vertices v < w, v has at least as many neighbors in {1, . . . , v − 1} as w has. For
ease of notation, we always identify the vertices of G with their position in <.

Every MAO < decomposes G into edge-disjoint forests F1, . . . , Fm (some of which
may be empty)1 as follows: If v > 1 is a vertex of G and w1 < · · · < wl are the
neighbors of v in {1, . . . , v − 1}, the edge {wi, v} belongs to Fi for all i ∈ {1, . . . , l}.
For every i, the graph (V, Fi) is an edge-maximal forest of G \ {E(F1), . . . , E(Fi−1)}
(we refer to [15, Section 2.2] for a proof). For the sake of conciseness, we identify this
forest with its edge set Fi. The partition of E into the non-empty forests is called
the forest decomposition of <. For vertices v < w, we say v is left of w. If there is
an edge between v and w, we call this a left-edge of w.

For any k, we allow to compute k internally vertex-disjoint paths between any
two vertices that are contained in a tree Tk of the forest Fk. Hence, throughout the
paper, let s > 1 be an arbitrary but fixed vertex of G and let k be a positive integer
that is at most the number of left-edges of s. The vertex s will be the start vertex of
the k internally vertex-disjoint paths to find (the end vertex will be left of s). E.g.,
if we choose s as the last vertex of the MAO (or any other vertex with at least that
many left-edges), k can be chosen as any value that is at most the degree of vertex
n; in particular, k can be chosen arbitrary in the range 1, . . . , δ, as claimed in the
introduction.

For i ∈ {1, . . . , k}, let Ti be the component of Fi that contains s. As i ≤ k, Ti is
a tree on at least two vertices. Let the smallest vertex ri of Ti with respect to < be
the root of Ti. For the purpose of this paper, it suffices to consider the subgraph of
G induced by the edges of T1, . . . , Tk.

Lemma 2 ([15, Lemma 2.25]). Let i ∈ {1, . . . , k}. Then V (Ti) consists of the
consecutive vertices ri, ri + 1, . . . , w in < such that s ≤ w. Moreover, for each vertex
v ∈ Ti \ {ri}, the vertex set {ri, ri + 1, . . . , v} induces a connected subgraph of Ti.

Hence, for every i ∈ {1, . . . , k}, every vertex v > ri of Ti has exactly one left-edge
that is in Ti and thus at least i left-edges that are in G. Let lefti(v) be the end

1In fact, every forest Fi that satisfies i > n is empty, as G is simple.

4

vertex of the left-edge of v in Fi. The root ri of Ti has left-degree exactly i− 1, as if
it had more, ri would have a left-edge in Fi and thus not be the root of Ti and, if it
had less, the left-degree of ri + 1 cannot be at least i, as this violates the MAO (this
uses that G is simple). We conclude that r1 < r2 · · · < rk. Thus, the definition of Fi
and Lemma 2 imply the following corollary.

Corollary 3. Let i < j ≤ k and let v be a vertex with rj < v < s. Then v is in Tj
and Ti, ri ≤ lefti(v) < leftj(v) < v and rj ≤ leftj(v).

For a vertex-subset S ⊆ V , let S := V \ S. For convenience, we will denote
sets {v} by v. For a vertex-subset S ⊆ V , a set of paths is S-disjoint if no two of
them intersect in a vertex that is contained in S. Thus, V -disjointness is the usual
vertex-disjointness and a set of paths is v-disjoint if every two of them intersect in
either the vertex v or not at all. We represent paths as lists of vertices. The length
of a path is the number of edges it contains. For a path A, let end(A) be the last
vertex of this list and, if the path has length at least one, let sec(A) be the second
to last vertex of this list.

3 The Loose Ends Algorithm
We first consider the slightly weaker problem of computing k internally vertex-disjoint
paths between s and the root set {r1, . . . , rk}. We will extend this to compute k
internally vertex-disjoint paths between two vertices in the next section.

Lemma 4. Algorithm 1 computes k s-disjoint paths in T1 ∪ · · · ∪ Tk from s to
{r1, . . . , rk} in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

The outline of our algorithm is as follows. We initialize each Ai to be the path
that consists of the two vertices s and lefti(s) (in that order). The vertices lefti(s)
are marked as active; throughout the algorithm, let a vertex be active if it is an end
vertex of an unfinished path Ai.

So far the Ai are s-disjoint. We aim for augmenting each Ai to ri. Step by
step, for every active vertex v from s− 1 down to r1 in <, we will modify the Ai to
longer paths, similar as in sweep line algorithms from computational geometry. The
modification done at an active vertex v is called a processing step. From a high-level
perspective, the end vertices of several paths Ai may be replaced or augmented by
new end vertices w such that ri ≤ w < v during the processing step of v. Such
vertices w are again marked as active, which results in a continuous modification
of each Ai to a longer path. By the above restriction on w, each path Ai will
have strictly decreasing vertices in < throughout the algorithm. At the end of the
processing step of v, we unmark v from being active.

Let v be the active vertex that is largest in <. Assume that v is the end vertex
of exactly one Ai. If v = ri, Ai is finished. Otherwise, we append the vertex lefti(v)
to Ai (see Algorithm 1). The important aspect of this approach is that the index of

5

the path Ai predetermines the vertex that augments Ai. Clearly, this way Ai will
reach ri at some point, according to Lemma 2.

Algorithm 1 LooseEnds(G,<, s, k)
1: for all i do . initialize all Ai
2: Ai := (s, lefti(s))
3: Mark lefti(s) as active
4: while there is a largest active vertex v do . process v
5: Let j1 < j2 < · · · < jl be the indices of the paths Aji that end at v
6: for i := 2 to l do . replace end vertices
7: Replace end(Aji) with leftji−1(sec(Aji))
8: Mark leftji−1(sec(Aji)) as active
9: Perform a cyclic downshift on Aj1 , . . . , Ajl . Aji := Aji+1 , Ajl := Aj1

10: if v = rjl then
11: Ajl is finished . rjl is reached
12: else
13: Append leftjl(v) to Ajl . append predetermined vertex
14: Mark leftjl(v) as active
15: Unmark v from being active
16: Output A1, . . . , Ak

However, if at least two paths end at v, this approach does not ensure vertex-
disjointness. Let Aj1 , . . . , Ajl be these l ≥ 2 paths and assume j1 < j2 < · · · < jl.
We first replace the end vertex v of Aji with the vertex leftji−1(sec(Aji)) for all i 6= 1.
We will show that these modified end vertices are strictly smaller than v, which will
re-establish the vertex-disjointness. The key idea of the algorithm is then to switch
the indices of the l paths appropriately such that the appended vertices are again
predetermined by the path index.

Let a cyclic downshift on Aj1 , . . . , Ajl replace the index of each path by the next
smaller index of a path in this set (where the next smaller index of j1 is jl), i.e. we
set Aji := Aji+1 for every i 6= l and then replace Ajl with the old path Aj1 . We
perform a cyclic downshift on Aj1 , . . . , Ajl . Note that we did not alter the path Ajl
(which was named Aj1 before) yet. If v = rjl , Ajl is finished; otherwise, we append
the vertex leftjl(v) to Ajl . See Algorithm 1 for a description of the algorithm in
pseudo-code. Figure 1 shows a run of Algorithm 1.

We prove the correctness of Algorithm 1. Before the processing step of any active
vertex v, the Ai satisfy several invariants, the most crucial of which are that they
are {v + 1, . . . , s− 1}-disjoint and that the vertices of every Ai are decreasing in <.
In detail, we have the following invariants.

Invariants. Let v < s be the largest active vertex, or v := 0 if there is no active
vertex left. Before processing v, the following invariants are satisfied for every

6

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(a) A MAO of a graph G and its forests F1 (green), F2 (red, dashed) and F3 (blue, dotted).

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(b) Paths A1 (green), A2 (red, dashed) and A3 (blue, dotted) after the initialization phase and
processing vertex 11. The paths A2 and A3 end at the largest active vertex 10.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(c) After processing vertex 10, the paths A2 and A3 have been shifted, which is here depicted by
a color change. The last vertex of A2 is then replaced, while A3 is extended in F3.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(d) After processing 9, the largest active vertex is 6.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(e) After shifting and extending A1 and A3, all three paths meet at the largest active vertex 4.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(f) Downshift: The old path A3 is now A2, the old A2 is now A1 and the old A1 is now A3.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(g) After processing root r3 = 3, A2 and A3 are shifted and A3 is finished.

1 = r1 2 = r2 3 = r3 4 5 6 7 8 9 10 11 12 = s

(h) After processing the roots r2 = 2 and r1 = 1, the paths A1 and A2 are finished.

Figure 1: A run of Algorithm 1 on the graph depicted in (a) when s = 12 and k = 3.

7

1 ≤ i ≤ k:

(1) The vertices of Ai start with s and are strictly decreasing in <.

(2) The path Ai is finished if and only if end(Ai) > v. In this case, end(Ai) = ri.
If Ai is not finished, ri ≤ end(Ai) ≤ v and the last edge of Ai is in Ti.

(3) sec(Ai) > v

(4) Every vertex w ∈ Ai satisfying v < w < s is not contained in any Aj 6= Ai.

(5) Ai ⊆ T1 ∪ · · · ∪ Tk

We first clarify the consequences. Invariant (2) implies that the algorithm has
finished all paths Ai precisely after processing r1, and that every Ai ends at ri. The
Invariants (1) and (3) are necessary to prove Invariant (4), which in turn implies that
the Ai are {v + 1, . . . , s − 1}-disjoint before processing an active vertex v. Hence,
the final paths Ai are s-disjoint. With Invariant (5) this gives the claim of Lemma 4.

It remains to prove Invariants (1)–(5). Immediately after initializing A1, . . . , Ak,
the next active vertex is end(Ak) < s. It is easy to see that all five invariants are
satisfied for v = end(Ak), i.e. before processing the first active vertex. We will prove
that processing any largest active vertex v preserves all five invariants for the active
vertex v′ that follows v (where v′ := 0 if v is the only remaining active vertex). For
this purpose, let A′i be the path with index i immediately before processing v′ and
let Ai be the path with index i before processing v; by hypothesis, the paths Ai
satisfy all invariants for v.

For Lines 7 and 13 in the processing step of v, we have to prove the existence of
leftji−1(sec(Aji)) and leftjl(v) respectively. In Line 7, we have i ≥ 2 and end(Aji) = v
as can be seen in the pseudo-code. Then Invariant (2) implies that Aji is not finished
and v = end(Aji) = leftji(sec(Aji)). Thus, leftji−1(sec(Aji)) exists. In Line 13, we
have v 6= rjl and end(Ajl) = v (here, Ajl refers by definition to the path with index
jl before the cyclic downshift; note this is not the path dealt with in Line 13). Then
Invariant (2) implies that rjl ≤ v. This proves rjl < v and the existence of leftjl(v).

We prove v′ < v next. Consider the vertices that are newly marked as active in
the processing step of v. According to Line 5 of Algorithm 1, every such vertex is
the new end vertex of some path Aji with end vertex v that was modified in the
processing step of v (we do not count index transformations as modifications). There
are exactly two cases how Aji may have been modified, namely either by Line 7
(then 2 ≤ i ≤ l and leftji−1(sec(Aji)) is the vertex that is newly marked as active) or
by Line 13 (then leftjl(v) is the vertex that is newly marked as active); in particular,
Aji was not modified by both lines. In the first case, Aji satisfies Invariant (2) before
the processing step of v by hypothesis. In fact, we have rji ≤ v, as v < rji implies
that Aji is finished and since end(Aji) > v would contradict end(Aji) = v.

Hence, the last edge of Aji is in Tji , which shows v = leftji(sec(Aji)). Since
ji−1 < ji by Line 5 and due to Corollary 3, we conclude leftji−1(sec(Aji)) < v. In

8

the second case, Corollary 3 implies leftjl(v) < v. Thus, in both cases, every new
active vertex is strictly smaller than v, which proves v′ < v.

This gives Invariant (1), as every A′ji starts with s and every new vertex is left of
its predecessor in the path by Corollary 3.

For Invariant (2), consider the path A′i for any i. First, assume that A′i is finished.
Then either Ai is finished or v = ri, according to Line 11 of Algorithm 1 in the
processing step of v. In the former case, Ai satisfies Invariant (2) for v and so does
A′i for v′ < v. In the latter case, we have v′ < v = ri and end(A′i) = end(Aj1) = v.

Second, assume that A′i was not modified in the processing step of v and is not
finished. Then end(A′i) < v, as every path with end vertex at least v is modified or
finished in the processing step of v or finished before. In particular, processing v did
not change the index of Ai = A′i. As Ai satisfies Invariant (2) for v by hypothesis, the
only condition of Invariant (2) that may be violated for v′ is end(A′i) ≤ v′. However,
as end(A′i) < v was marked as active in some previous step of Algorithm 1 and since
v′ is the largest active vertex, end(A′i) ≤ v′. Thus, A′i satisfies Invariant (2) for v′.

Third, assume that A′ji was modified in the processing step of v and is not finished.
Then A′ji was modified either by Line 7 or 13. If A′ji was modified by Line 7, we
have i < l and 2 ≤ l after the cyclic downshift, as the path Aj1 is not modified by
Line 7. In addition, we know end(A′ji) = leftji(sec(Aji+1)) < leftji+1(sec(Aji+1)) = v
by Corollary 3 and that the last edge of A′ji is in Tji . Thus, rji ≤ end(A′ji). If A

′
ji

was modified by Line 13, we have i = l and rjl ≤ leftjl(v) = end(A′jl) by Corollary 3.
Then the last edge of A′jl is in Tjl . In both cases, end(A′jl) is active before processing
v′ and it follows end(A′jl) ≤ v

′.
For Invariant (3), assume to the contrary that sec(A′i) ≤ v′. Since v′ < v < sec(Aj)

for all j ∈ {1, . . . , k}, a new end vertex was appended to A′i in the processing step of
v (the end vertex was not replaced, as this would not have changed sec(A′i)). This
must have been done in Line 13 of Algorithm 1 and we conclude v′ < v = sec(A′i),
which contradicts the assumption.

For Invariant (4), consider Line 7 of the processing step of v. As showed in
the proof of v′ < v above, we have leftji−1(sec(Aji)) < v for all 1 < i ≤ l. Thus,
Invariants (1) and (3) imply that exactly the path A′jl of the paths A′1, . . . , A′k
contains v.

Invariant (5) follows directly from the definition of lefti. This concludes the
correctness part of the proof of Lemma 4.

So far we have shown an algorithmic proof for the existence of k s-disjoint paths
from s to the roots r1, . . . , rk. It remains to show the running time for Lemma 4. At
every point in time, we maintain the order A1 < · · · < Ai on our i ≤ k internally
vertex-disjoint paths, where i is the index of the root vertex ri that will be visited
next. This ordered list can be updated in constant time after each cyclic downshift
by modifying the position of one element.

Let v be the currently active vertex and let ri ≤ v be the root vertex that will be
visited next. Consider the ordered list of unfinished paths A1 < · · · < Ai just before

9

invoking Line 5. For Line 5, we need to sort the subset Aj1 , . . . , Ajl (jl ≤ i) of such
paths paths ending at v according to <. In order to do this, we run through the i
paths A1 < · · · < Ai in that order, check for each entry whether its end vertex is v,
and if so, append it to the sorted list Aj1 < Aj2 < Since v has precisely i (or i−1
in case of v = ri) left-edges in T1 ∪ · · · ∪ Tk ⊆ G, this running time is upper-bounded
by the number of such left-edges plus one. Summing the number of these left-edges
for every visited v thus gives a running time bound of O(|E(T1 ∪ · · · ∪ Tk)|) for all
invocations of Line 5. Since the algorithm visits every edge only a constant number
of times, this implies a total running time of O(|E(T1 ∪ · · · ∪ Tk)|) = O(n+m).

4 Computing Vertex-Disjoint Paths Between Two Ver-
tices

We use the algorithm of the last section to prove our following main result.

Theorem 5. Let t < s be a vertex in Tk. Then k internally vertex-disjoint paths
between s and t can be computed in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

This theorem is directly implied by the following lemma.

Lemma 6. Let t < s be a vertex in Tk. Then there are k paths A1, . . . , Ak with
start vertex s and k paths B1, . . . , Bk with start vertex t such that end(Ai) = end(Bi)
for every i and {A1 ∪B1, . . . , Ak ∪Bk} is a set of k internally vertex disjoint paths
from s to t. Moreover, all paths are contained in T1 ∪ · · · ∪ Tk and can be computed
by Algorithm 2 in time O(|E(T1 ∪ · · · ∪ Tk)|).

A first idea would be to use the loose ends-algorithm twice, once for the start
vertex s and once for the start vertex t, in order to find the paths Ai and Bi for
all i. However, in general this is bound to fail. In some cases, the union of both
outputs is a graph in which s and t are not k-connected. A second idea would be
to try to finish two paths Ai and Bj whenever they end at the same active vertex.
However, this may fail when i 6= j, as then two single paths Ai′ and Bj′ may remain
that end at the respective roots ri′ and rj′ > ri′ such that Bj′ cannot be extended
to ri′ without violating the index scheme of Invariant (2) (we refer to the appendix
for further details).

We will nevertheless use Algorithm 1 to prove Lemma 6, but in a more subtle
way, as outlined next. First, we compute the paths A1, . . . , Ak with start vertex s
using Algorithm 1, until the largest active vertex v is less or equal t (i.e. the parts
of the Ai between s and t are just computed by Algorithm 1). As soon as v ≤ t,
we additionally construct a second set of paths B1, . . . , Bk with start vertex t using
Algorithm 1.

The main difference to Algorithm 1 from this point on is that we extend the paths
Ai and the paths Bi in parallel (i.e. we take the largest active vertex of both running

10

constructions) such that, after the processing step of v, the vertex v is not contained
in any two paths Ai and Bj with i 6= j. This ensures the vertex-disjointness.

If no A-path or no B-path ends at v, we again just perform Algorithm 1; then at
most one path contains v after the processing step. Otherwise, some A-path and
some B-path ends at v. After the processing step at v, we want to have exactly two
paths Aj and Bj (i.e. having the same index) that end at v; such a pair of paths is
then finished. In order to ensure this, we choose j as the largest index such that Aj
or Bj ends at v before processing v. If both Aj and Bj end at v, we perform one
processing step of Algorithm 1 at v for the A-paths and the B-paths, respectively,
which implies that no other path is ending at v.

Otherwise, exactly one of the paths Aj and Bj ends at v, say Aj . Then Bj is not
finished, as we finish only paths having the same index, and the last edge of Bj is in
Fj . By assumption, there is an index i < j such that Bi ends at v. We then apply a
processing step of Algorithm 1 (including a cyclic downshift) on Bj and all B-paths
that end at v, and one on all A-paths, respectively. Then the new paths Aj and
Bj (due to cyclic downshifts, these correspond to the former A- and B-paths with
lowest index ending at v) end at v afterward, but no other A- or B-path, as desired.
Note that the replacement of the last edge of (the old) Bj , which did not end at v
but, say, at a vertex w, may cause w to be active although neither an A-path nor a
B-path ends at w.

For a precise description of the approach, see Algorithm 2. The following
observations follow directly from Algorithm 2.

Observation 7. Throughout Algorithm 2 the paths A1, . . . , Ak, B1, . . . , Bk satisfy
the following properties.

(1) For every i ∈ {1, . . . , k}, Ai and Bi are both finished or both unfinished.

(2) As long as the largest active vertex is larger than t, B1 = B2 = · · · = Bk = (t).

(3) The end vertex of every unfinished path is active.

Before the processing step of any active vertex v, the paths Ai and Bi satisfy
several invariants, the most crucial of which are that they are {v + 1, . . . , s− 1}\{t}-
disjoint and that the vertices of every Ai and Bi are decreasing in <.

Invariants. Let v < s be the largest active vertex, or v := 0 if there is no active
vertex left. Before processing v, the following invariants are satisfied for every
1 ≤ i ≤ k:

(1) Ai starts with s, Bi starts with t, and the vertices of both paths are strictly
decreasing in <.

(2) The paths Ai and Bi are finished if and only if v < end(Ai) = end(Bi). If Ai
and Bi are not finished, then ri ≤ end(Ai) ≤ v, ri ≤ end(Bi) ≤ v, and the last
edge of Ai as well as the last edge of Bi (if Bi has length at least 1) are in Ti.

11

Algorithm 2 MatchingEnds(G,<, s, t, k) . t is a vertex in Tk, t < s

1: for all i do . initialize all Ai and Bi
2: Ai := (s, lefti(s))
3: Mark lefti(s) as active
4: Bi := (t)
5: Mark t as active
6: while there is a largest active vertex v do . process v
7: if v=t then
8: for all i do . initialize all Ai
9: if end(Ai) = t then

10: Ai, Bi are finished
11: else
12: Append lefti(t) to Bi
13: Mark lefti(t) as active
14: Unmark t from being active
15: else
16: IA := {i|end(Ai) = v}
17: IB := {i|end(Bi) = v}
18: if IA and IB are empty then
19: Unmark v from being active and go to Line 6
20: j := max(IA ∪ IB)
21: for all pairs (i1, i2) of consecutive indices i1 < i2 in IA ∪ {j} do
22: Replace end(Ai2) with lefti1(sec(Ai2)) . replace ends
23: Mark lefti1(sec(Ai2)) as active
24: for all pairs (i1, i2) of consecutive indices i1 < i2 in IB ∪ {j} do
25: Replace end(Bi2) with lefti1(sec(Bi2)) . replace ends
26: Mark lefti1(sec(Bi2)) as active
27: Perform a cyclic downshift on all Ai with i ∈ IA ∪ j
28: Perform a cyclic downshift on all Bi with i ∈ IB ∪ j
29: if v = end(Aj) = end(Bj) then . if and only if IA 6= ∅ 6= IB
30: Aj , Bj are finished
31: else if v = end(Aj) then
32: Append leftj(v) to Aj . append predetermined vertex
33: Mark leftj(v) as active
34: else if v = end(Bj) then
35: Append leftj(v) to Bj . append predetermined vertex
36: Mark leftj(v) as active
37: Unmark v from being active
38: Output A1, . . . , Ak, B1, . . . , Bk

12

(3) sec(Ai) > v. If v ≥ t, Bi = (t). If v < t, either Bi is finished with Bi = (t) or
Bi has length at least 1 such that sec(Bi) > v.

(4) Let w 6= t be a vertex with v < w < s. If w ∈ Ai ∪Bi, w is neither contained in
a path Aj 6= Ai nor in a path Bj 6= Bi. If w ∈ Ai ∩Bi, Ai and Bi are finished
with w = end(Ai) = end(Bi).

(5) Ai ∪Bi ⊆ T1 ∪ · · · ∪ Tk

Invariant (2) implies that the algorithm has finished all paths when v = 0 and that
the end vertices of Ai and Bi match for all i. Invariants (1) and (3) will be necessary
to prove Invariant (4), which in turn implies that the paths A1 ∪ B1, . . . , Ak ∪ Bk
are internally vertex-disjoint. Invariant (5) settles the first part of the second claim
of Lemma 6. We continue with further consequences of some of these invariants,
which can be used to prove the invariants for the next largest active vertex v′ after
processing v.

Observation 8. Let v < s be the largest active vertex, or v := 0 if there is no active
vertex left. Before processing v, we have the following observations:

(1) Assume Invariants (1) and (3). Then, for every 1 ≤ i ≤ k, all vertices of the
paths Ai and Bi except end(Ai) and end(Bi) are greater than v before processing
v.

(2) Assume Invariant (2). Then no finished path is modified while processing v, as
Algorithm 2 modifies Ai or Bi, 1 ≤ i ≤ k, only if at least one of them ends at v.

(3) Assume Invariants (2) and (3). Then the largest active vertex after processing
v > 0 is smaller than v.

For concise proofs of the Invariants (1)–(5) and Observation 8.(3), we refer to
the full version of this extended abstract in the appendix.

As in the loose ends algorithm, the running time of Algorithm 2 is upper bounded
by O(|E(T1 ∪ · · · ∪ Tk)|) and thus by O(n+m), as it suffices to visit every edge in
the trees T1, . . . , Tk a constant number of times.

4.1 Variants

Several variants of Menger’s theorem [12] are known. Instead of computing k paths
between two vertices, we can compute paths between a vertex and a set of vertices
(fan variant) and between two sets of vertices (set variant). Our algorithm extends
to these variants.

Theorem 9. Let G be a simple graph and <, s and T1, . . . , Tk be defined as in
Section 2.

13

(i) (Fan variant) Let T = {t1, . . . , tk} be a subset of V such that ri ≤ ti < s
for every i. Then k internally vertex-disjoint paths between s and T can be
computed in time O(|E(T1 ∪ · · · ∪ Tk)|) ⊆ O(n+m).

(ii) (Set variant) Let T = {t1, . . . , tk} and S = {s1, . . . , sk} be disjoint vertex sets
such that ri ≤ ti < s and ri ≤ si ≤ s for every i. Then k internally vertex-
disjoint paths between S and T can be computed in time O(|E(T1∪ · · · ∪Tk)|) ⊆
O(n+m).

Let α : V → N+ be a weight function. In the area of mixed connectivity, a set of
paths connecting two vertices s and t of G is called α-independent if every vertex
v /∈ {s, t} is contained in at most α(v) of these paths. For suitable multigraphs
G, Nagamochi [13] generalized Theorem 1 by showing that these contain k α-
independent s-t-paths. Algorithm 2 can be modified to compute also these paths
without increasing its running time, by replacing the two cyclic downshifts by a more
complicated algorithm that transforms the path indices.

Acknowledgments. We wish to thank On-Hei S. Lo for pointing out a connection
between MAOs and Mader’s proof about pendant pairs.

References
[1] S. R. Arikati and K. Mehlhorn. A correctness certificate for the Stoer-Wagner

min-cut algorithm. Information Processing Letters, 70(5):251–254, 1999.

[2] R. Diestel. Graph Theory. Springer, fourth edition, 2010.

[3] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM
Journal on Computing, 4(4):507–518, 1975.

[4] A. Frank. On the edge-connectivity algorithm of Nagamochi and Ibaraki.
Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble, March 1994.

[5] Z. Galil. Finding the vertex connectivity of graphs. SIAM Journal on Computing,
9(1):197–199, 1980.

[6] M. R. Henzinger. A static 2-approximation algorithm for vertex connectivity
and incremental approximation algorithms for edge and vertex connectivity.
Journal of Algorithms, 24:194–220, 1997.

[7] A. V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo
vida i nekotorykh prilozheniyakh (in Russian; On finding a maximum flow in a
network with special structure and some applications). Matematicheskie Voprosy
Upravleniya Proizvodstvom, 5:81–94, 1973.

14

[8] N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embeddings and
graph connectivity. Combinatorica, 8(1):91–102, 1988.

[9] W. Mader. Existenz gewisser Konfigurationen in n-gesättigten Graphen und in
Graphen genügend großer Kantendichte. Mathematische Annalen, 194:295–312,
1971.

[10] W. Mader. Grad und lokaler Zusammenhang in endlichen Graphen. Mathema-
tische Annalen, 205:9–11, 1973.

[11] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying
algorithms. Computer Science Review, 5(2):119–161, 2011.

[12] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–
115, 1927.

[13] H. Nagamochi. Sparse connectivity certificates via MA orderings in graphs.
Discrete Applied Mathematics, 154(16):2411–2417, 2006.

[14] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992.

[15] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity.
Cambridge University Press, 2008.

[16] J. M. Schmidt. Contractions, removals and certifying 3-connectivity in linear
time. SIAM Journal on Computing, 42(2):494–535, 2013.

[17] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.

[18] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[19] H. Whitney. Non-separable and planar graphs. Transactions of the American
Mathematical Society, 34(1):339–362, 1932.

15

	Introduction
	Maximal Adjacency Orderings
	The Loose Ends Algorithm
	Computing Vertex-Disjoint Paths Between Two Vertices
	Variants

