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WHICH POINT SETS ADMIT A k-ANGULATION?∗

Michael S. Payne,† Jens M. Schmidt,‡ and David R. Wood§

Abstract. For k ≥ 3, a k-angulation is a 2-connected plane graph in which every internal
face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line
drawing of G that maps V (G) onto P and has the same facial cycles and outer face as G.
We investigate the conditions under which a point set P admits a k-angulation and find
that, for sets containing at least 2k2 points, the only obstructions are those that follow from
Euler’s formula.

1 Introduction

A point set P of size n admits an n-vertex plane graph G if there is a straight-line drawing of
G on P that has the same facial cycles and outer face as G. Consider the following general
problems. Firstly, given a class C of plane graphs and a set P of points in the plane, does
P admit some graph in C? Secondly, classify all (general position) point sets that admit
at least one graph in C. In the present paper we consider the case where C is the set of
k-angulations.

For k ≥ 3, a k-angulation is a 2-connected plane graph in which every internal face
is a k-gon. 2-connectedness is a natural property to require because it is equivalent to all
the faces being bounded by simple cycles (see for example [16]). Let conv(P ) denote the
convex hull of P . Note that the outer face of a k-angulation as defined here need not be the
complement of conv(P ). A point in P is an interior point of P if it is not on the boundary
of conv(P ). Our main result is that all point sets in general position with at least 2k2

points admit a k-angulation unless they have too few interior points, which is a necessary
condition that follows from Euler’s formula. More precisely, we prove the following theorem.
We abbreviate a ≡ b mod c as a ≡c b.

Theorem 1. Let n ≥ 2k2 and j ≡k−2 k−n with 0 ≤ j ≤ k−3. A set of n points in general
position in the plane admits a k-angulation if and only if it has at least j interior points.

In related work, Bose and Toussaint [3, 4, 17] showed that P admits a quadran-
gulation with the complement of conv(P ) as the outer face if and only if the number of
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points on the boundary of conv(P ) is even. Moreover, they showed that all point sets admit
such k-angulations when the addition of at most k − 3 extra points to P is allowed. We
are not aware of any results for k-angulations in which the complement of the outer face is
allowed to be non-convex. In our work we do not allow the addition of extra points. In a
similar vein, Gritzmann et al. [14] showed that every point set P admits every |P |-vertex
outerplanar graph (Castañeda and Urrutia [6] rediscovered this result). Bose [2] gave near
optimal algorithms for achieving this.

Dey et al. [8] characterised the point sets with three vertices on the convex hull
boundary that admit a 4- or 5-connected triangulation. They also noted that the only
point sets P that do not admit a 3-connected graph (if |P | > 3) are the ones in convex
position (the same characterization holds for 3-edge-connected graphs). García et al. [13]
determined the minimum number of edges in a 3-connected graph on P and characterised the
point sets P that admit 3-regular 3-connected graphs. Schmidt and Valtr [15] characterised
the point sets that admit 3-regular graphs and obtained a polynomial time algorithm that
constructs such a 3-regular graph if one exists.

Regarding the complexity of embedding a given graph G on a given point set P , Ca-
bello [5] showed that deciding whether P admits a straight line drawing of G is NP-complete.
His construction used 2-connected graphs which may have many different drawings. Biedl
and Vatshelle [1] proved NP-completeness in the 3-connected case. For more on drawing
planar graphs on a given point set see [9, 10, 11, 12].

2 Preliminaries

So as to avoid any potential confusion, we begin by formally defining some terms used in
the introduction. A planar drawing of a graph G is a function ϕ that maps each vertex
v ∈ V (G) to a unique point in the plane and each edge ab ∈ E(G) to a simple curve in
the plane that connects ϕ(a) to ϕ(b), such that the curves only intersect each other and
ϕ(V (G)) at their endpoints. A straight-line drawing is a planar drawing that maps each
edge to a straight line segment. A planar drawing of G determines a set of closed facial
walks including one distinguished as the outer face. Two planar drawings of G are equivalent
if they determine the same set of facial walks and they have the same outer face. Formally,
a plane graph is a planar graph G together with an equivalence class ϕ̃ of planar drawings
under this equivalence relation. Informally, a plane graph is an embedded planar graph
with a nominated outer face. An internal vertex of a plane graph is a vertex not on the
outer face. We say that a point set P admits a plane graph (G, ϕ̃) if there is a straight-line
drawing of G that maps V (G) onto P and is a member of ϕ̃. Throughout this paper, let
P be a set of at least 3 points in general position in the plane; that is, no three points of
P are collinear. One direction of Theorem 1 is straightforward to prove. In fact we can
strengthen it to apply for all n.

Proposition 2. Suppose a point set P with n = |P | ≥ k admits a k-angulation G. Let
j ≡k−2 k − n with 0 ≤ j ≤ k − 3. Then P contains at least j interior points.

Proof. Since G is 2-connected the boundary of the outer face is a cycle C; say it has
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r vertices. P has at least n − r interior points since every internal vertex must be an
interior point. Let e be the number of edges and f be the number of faces in G. Thus
2e = k(f−1)+r. Euler’s formula states that n−e+f = 2. Thus, n−r = n−2e+k(f−1) =
n− 2(n+ f − 2) + k(f − 1) = k − n+ (f − 2)(k − 2). Hence n− r ≡k−2 k − n. Since n− r
is non-negative, P contains at least j interior points.

Note that in the case k = 3 this proposition gives no information about the point set
P because every P admits a triangulation. In the case k = 4, if P admits a k-angulation,
then if n is even there may be no interior points, but if n is odd there is at least one.

The proof of the other direction of Theorem 1 takes a lot more work, beginning with
some more definitions. The dual graph of a 2-connected plane graph G is the multigraph
with the faces of G as vertex set (including the outer face), and an edge between any two
faces for each edge of G that they share. Thus, every edge in the primal graph G has a
corresponding dual edge in the dual graph, and vice versa. Also, the dual of a 2-connected
plane graph has no loops. The weak dual graph of G is obtained from the dual graph by
deleting the outer face vertex.

Our general approach for finding k-angulations is to construct a triangulation G
of P that can be made into a k-angulation by removing some edges. Thus each internal
face of the k-angulation will be the union of some triangular faces of G. To determine the
edges to be removed, it is most convenient to consider the weak dual G∗. Note that the
weak dual of a triangulation does not have parallel edges, since two triangular faces share
at most one edge. We aim to partition G∗ into disjoint connected subgraphs that cover all
the vertices of G∗. We call these connected subgraphs of G∗ blocks1 and such a partition a
block partition of G∗. For any block partition of G∗, the corresponding subgraph of G is the
subgraph formed by removing the edges that correspond (by duality) to the edges of each
block. The order of a block, and the order of a graph in general, is the number of vertices
it has.

Proposition 3. Let G be a triangulation of P and suppose that the weak dual G∗ is par-
titioned into blocks of order k − 2. Let G′ be the subgraph of G corresponding to this block
partition. If G′ is 2-connected, then it is a k-angulation of P .

Proof. Since G′ is 2-connected, all its faces are bounded by simple cycles. It remains to
show that the internal faces are bounded by k-cycles. Each internal face of G′ corresponds
to a block with k − 2 vertices in G∗. If a block contains a cycle, then the boundary of the
corresponding face is not connected. Therefore, every block is a tree. Thus the number of
edges in every block is k − 3. This implies that the number of edges in the boundary of
every internal face is 3(k − 2)− 2(k − 3) = k.

Except when P is in convex position, we begin with the wheel triangulation, which
is constructed as follows. Choose an interior point z of P , insert an edge from z to each
point in P \ {z}, then add the cycle that passes through P \ {z} in radial order about z.
This gives a 3-connected triangulation of P whose weak dual is a cycle Z (see Figure 1).

1Not to be confused with the common usage of the term ‘block’ meaning a maximal 2-connected subgraph.
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z

Figure 1: A wheel triangulation. The black vertices induce a maximal bad convex path.

We then add triangles one by one to the outside of the wheel triangulation. In the weak
dual, this corresponds to pasting binary trees onto Z by their leaves. Next some flipping
operations in the primal graph (called building pontoons) are used to connect these trees by
paths separate from the (now modified) inner cycle. The result is the triangulation which
is to be partitioned into blocks to yield a k-angulation.

The points of P are classified according to their role in the wheel triangulation. Let
C be the outer cycle of the wheel triangulation. Then exactly n− 1 vertices are contained
in C and we call the only vertex z that is not in C the central vertex. A vertex v in C is
called reflex if its exterior angle is less than π. Otherwise, its exterior angle is greater than
π and v is called non-reflex. A non-empty path in C whose vertices are all non-reflex is
called a convex path.

For a non-empty path A in C, let p(A) be the vertex in C that is the clockwise
predecessor of A and let s(A) be the vertex in C that is the clockwise successor of A. Let
the closure of A, denoted Ā, be the path in C from p(A) through A to s(A). If A has order
n− 2 or n− 1 then Ā is the whole cycle C. A convex path A ⊆ C such that z ∈ conv(Ā) is
called bad (see Figure 1); otherwise it is called good (see Figure 2(a)).

Lemma 4. There is at most one maximal bad convex path in C.

Proof. Let B be an inclusion maximal bad convex path in C. By definition, z is contained
strictly inside the convex hull of B̄. Thus, B̄ covers an angle of more than π at z. Since B
is maximal convex, any other maximal bad convex path must be disjoint from B̄, but this
would exceed the total angle 2π at z.

Note that for a good convex path A, the vertices p(A) and s(A) must be distinct,
and C \ Ā must contain at least one vertex since z 6∈ conv(Ā). Moreover, the points in
Ā ∪ {z} are in convex position (see Figure 2(a)). For any good convex path A, we now
define a special retriangulation of conv(Ā ∪ {z}) called a pontoon over A. First delete the
edges of the initial wheel triangulation that lie in the interior of conv(Ā ∪ {z}). Then add
all edges from s(A) to other vertices in Ā ∪ {z} (see Figure 2(b)). The order of a pontoon
is the order of the path over which it is built. Note that a pontoon cannot be built over a
bad convex path. The reason for the name of this construction will become apparent in the
proof of Theorem 1, where it is used to connect triangles added outside of C by a structure
similar to a bridge or pontoon in the weak dual.
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(a) A good convex path A, depicted with black
vertices. The grey triangles will be added to the
triangulation to find a k-angulation later.
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(b) A pontoon is built over A by retriangulating
conv(Ā ∪ {z}). The weak dual is depicted with
dotted edges.

Figure 2: Building Pontoons

3 Proof

We are now ready to begin the proof of the other direction of Theorem 1, namely:

Theorem 5. Let n ≥ 2k2 and j ≡k−2 k − n with 0 ≤ j ≤ k − 3. Every set P of n points
in general position in the plane with at least j interior points admits a k-angulation.

Proof. If j = 0, then n ≡k−2 k. There exists an outerplanar k-angulation with f faces for
every f , and the number of vertices is k+ (f −2)(k−2) ≡k−2 k. Therefore, using the result
of Gritzmann et al. [14] mentioned above, a k-angulation can be drawn on P .

If j > 0 then there is at least one interior point. Select an arbitrary interior point
z and construct the wheel triangulation with z as the central vertex. If j = 1 then the
number of triangles in the wheel triangulation is n − 1 ≡k−2 k − j − 1 = k − 2. The weak
dual is a cycle on n − 1 = c(k − 2) vertices, where c ≥ 2 since n ≥ 2k2. This cycle can be
partitioned into c blocks, each of which is a path of order k− 2. The subgraph of the wheel
triangulation corresponding to this block partition is a subdivision of a wheel graph with c
spokes, and is therefore 2-connected. Hence, by Proposition 3, it is a k-angulation.

Now assume 2 ≤ j ≤ k−3. We start by using Algorithm 1 to addm := j−1 triangles
to the wheel triangulation. Note that m is the number of triangles we must add to the n−1
triangles of the wheel triangulation to make the total number of triangles a multiple of k−2.
As triangles are added, the current outer cycle is denoted C ′. Reflex and non-reflex vertices
on C ′ are defined analogously to those on C. Each time a triangle is added, a reflex vertex
of C ′ becomes an internal vertex. In this way, we may identify each triangle with a unique
vertex, and each triangulation (which extends the wheel triangulation) with a sequence of
vertices.

Algorithm 1 is initialised at a non-reflex vertex on C ′ := C. Moreover, if there is
a maximal bad convex path B, it is initialised at a non-reflex vertex inside B. It then
proceeds clockwise around C ′ (see Figure 3). Each time it encounters a reflex vertex of
C ′, it adds a triangle there, proceeds to the next vertex clockwise around C ′, and then
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updates C ′. Algorithm 1 stops when it has added m triangles. The output is the sequence
S := (s1, . . . , sm) of vertices in C where triangles were added.

Algorithm 1 may complete many laps around C ′. If at some time no more triangles
can be added, then C ′ must be a convex polygon. In this case, all interior points of P have
been removed from C ′, so at least m triangles have been added. Therefore Algorithm 1
always terminates.

Algorithm 1 Adds m triangles to a wheel triangulation G of P
1: t← 1; C ′ ← C
2: if there exists a bad convex path B then
3: select a vertex v ∈ B
4: else
5: v ← any non-reflex vertex
6: end if
7: while t ≤ m do
8: let u be the vertex anticlockwise from v on C ′
9: let w be the vertex clockwise from v on C ′

10: if v is reflex in C ′ then
11: add uw to G
12: C ′ ← (C ′ \ {uv, vw}) ∪ {uw}
13: st ← v
14: t← t+ 1
15: end if
16: v ← w
17: end while
18: return (s1, . . . , sm)

A complete binary tree2 is a tree with a unique root of degree 2 or 0, and all other
vertices of degree 3 or 1. A complete binary forest is a disjoint collection of complete binary
trees. Let Gt be the triangulation and G∗t the weak dual after Algorithm 1 has added t
triangles. Recall that Z is the cycle in G∗t corresponding to the initial wheel triangulation.
Claim 1. G∗t −E(Z) is a complete binary forest with all leaves and isolated vertices in V (Z).
Furthermore, for each component tree T in this forest, the leaves of T are consecutive in Z.

Proof. For the first statement, do induction on t. For t = 0, G∗0 − E(Z) = Z − E(Z) is a
set of isolated vertices. Now suppose G∗t −E(Z) is a complete binary forest with all leaves
and isolated vertices in V (Z). In the primal graph, each new triangle is added at a reflex
vertex, using two existing edges and adding one new edge. This corresponds to connecting
a new degree 2 vertex to two vertices v and w of degree 2 in G∗t . (There are no degree 1
vertices in G∗t , and degree 3 vertices correspond to triangles that do not share an edge with
C ′.) Removing the edges of Z reduces the degree of each vertex by 0 or 2. Hence v and w
have degree 0 or 2 in G∗t −E(Z), and are therefore roots. Since each tree has one root, each
vertex addition joins two separate trees, giving them a new root. A new leaf is created only

2We do not require these trees to be balanced, that is, for each leaf to have similar or equal depth.
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Figure 3: Algorithm 1 starts at a inside the bad path B and adds the grey triangles to the
wheel triangulation in the given order. The black vertices depict S. Dashed edges depict
the weak dual graph with four trees pasted onto Z.

if one of these trees was an isolated vertex. Thus G∗t+1 − E(Z) is also a complete binary
forest with leaves and isolated vertices in V (Z).

To see that the leaves of a given tree T are consecutive in Z, suppose they are not.
Then there are two leaves l1 and l2 of T , and two vertices v1 and v2 in Z \ T , such that v1
and v2 separate l1 and l2 in Z. Moreover, there is a cycle Z̃ in G∗t that passes from l1 to l2
through T and back to l1 through Z and contains either v1 or v2 in its interior, say v1. Since
the trees cover all vertices of G∗t , v1 is in a different tree T ′. The triangle corresponding
to the root of T ′ has an edge in the outer face, but T ′ is separated from the outer face by
Z̃.

The order of the sequence S is required to completely specify the triangulation
found by Algorithm 1. However, once this triangulation has been constructed, it is more
convenient to treat S as an unordered set of vertices. Consider the collection of paths
induced by the set S in C. Each such path contains a reflex vertex of C, otherwise it would
be a convex path and no triangle could be added on it. Therefore, for every convex path
X, X \ S is a single path.

Let L be the subgraph induced in C by the set of vertices that are visited by
Algorithm 1. L is either a path or all of C. An original reflex vertex of C remains a reflex
vertex of C ′, unless it is added to S. So Algorithm 1 never passes over a reflex vertex of C
without adding it to S. Therefore, even if S does not contain all the reflex vertices of C,
there must exist a path in L that

(1) contains every vertex in S,
(2) contains no reflex vertices in C \ S and
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Figure 4: The graph of Figure 3 after building all pontoons in Case 1(a) (and a schematic
drawing depicting J and Z ′). The thick edges in the weak dual depict the Hamiltonian
path H that is partitioned into blocks.

(3) does not intersect the path B \ S (if a maximal bad convex path B exists).
Since Algorithm 1 begins inside B, L is either a cycle, or does not cover all of B. Hence
(3) is satisfiable. Let A be the shortest path with these three properties. By (2) and (3),
the components of A \S are good convex paths, so it is possible to construct pontoons over
them. Since A is shortest possible, the end points of A are in S.

Let U be the longest path in C \ S. Thus

|U | ≥ 2k2 − 1−m
m

>
2k2 − 1
k − 2 − 1 > 2k.

We distinguish the following cases.

Case 1: All triangles added by Algorithm 1 share an edge with C.

In this case, when Algorithm 1 terminates, the weak dual consists of the cycle Z along with
m vertices adjacent to Z corresponding to the added triangles. These m vertices induce a
collection of paths.

Case 1(a): First suppose U is not contained in A. Build a pontoon over each component
of A \ S. Let G be the triangulation after the pontoons are built, and let G∗ be its weak
dual. When building the pontoons, the cycle Z shrinks to a smaller cycle called the inner
cycle Z ′ in G∗. The triangles of the pontoons connect the m added triangles, so G∗ − Z ′
is a path J (see Figure 4). J starts and ends at the vertices corresponding to the triangles
added at the first and last vertices of A respectively.

G∗ contains a Hamiltonian path H that begins at the start of J , then traverses J
and passes from the last vertex of J to the inner cycle Z ′, visiting the rest of the vertices
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in clockwise order. We call this a spiral path. Since |G∗| = n − 1 + m ≡k−2 0, the path H
can be partitioned into blocks consisting of paths each with k − 2 vertices.

We now show that the subgraph of G corresponding to this block partition of G∗ is
2-connected, and hence a k-angulation of P by Proposition 3. In the wheel triangulation,
all vertices in the outer cycle C are neighbours of z. In the final triangulation G there are
two large cycles, the new outer cycle C ′, and the cycle through the neighbours of z, call it
Cz. Within A, the addition of triangles over the vertices of S removes them from the outer
cycle, so they are not in C ′. Once the pontoons are built, the vertices in A\S are no longer
adjacent to z, so they are not in Cz. The vertices in P \ (A∪ {z}) make up3 U and remain
in both C ′ and Cz. Hence these two cycles intersect in the path U , which has order at least
2k.

Now consider the subgraph G′ of G corresponding to the block partition described
above. Since U has order at least 2k, there is at least one edge left from z to a vertex
u in U that is neither the first or last vertex of U . There is also an edge from z to the
clockwise last point al in A, where the last block in H ends. All edges of the cycles C ′ and
Cz remain except for possibly the edge from al to the first vertex uf in U . Therefore, there
is a 2-connected spanning subgraph of G′ consisting of the union of C ′, Cz − aluf and the
path alzu. This subgraph is a θ-graph, a graph consisting of two vertices joined by three
internally disjoint paths. The two special vertices are u and the clockwise last vertex of U .
Note that every θ-graph is 2-connected.

Case 1(b): Now suppose U is contained in A. Then U is a good convex path of order at
least 2k. Building pontoons over all of A \ S (including U) may remove too many vertices
from Z, causing the spiral path method used in the previous case to fail to create a 2-
connected graph. Instead, first build pontoons over the components of A \ (S ∪ U). Then
build a pontoon R (the order of which will be determined later) over at most half of U at
the clockwise extreme.

The weak dual graph G∗ now consists of the inner cycle Z ′, and the remaining outer
section J := G∗ − Z ′. As before, the triangles of the pontoons form paths connecting the
paths induced by the m added triangles. However this time J consists of two separate paths
because the pontoon R does not cover all of U and C \A is not empty. Let J1 be the path
containing R, and let J2 be the second path.

We now describe two disjoint paths that together cover all the vertices of G∗. The
first path H1 begins at the clockwise first vertex in R, traverses J1 then passes to Z ′,
continues clockwise until it can pass to the clockwise first vertex of J2 and then continues
to the end of J2. Note that augmenting the pontoon R by one triangle moves a vertex from
Z ′ to J1 and therefore enlarges H1 by one vertex. Since |U | > 2k, we can choose the order
of R such that the number of vertices in H1 is a multiple of k − 2 and still leave at least k
vertices in Z ′. The remaining vertices form a second path H2 that is contained in Z ′. Since
the total number of vertices in G∗ is a multiple of k − 2, the order of H2 must also be a
multiple of k − 2. Thus, both paths can be partitioned into blocks.

3Since the endpoints of A are in S, U is maximal in C \ S, and U is not contained in A, it follows that
U is the complement of A ∪ {z}.
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Figure 5: Case 1(b). The only vertex in C \A is v. The thick edges in the weak dual show
the paths that are partitioned into blocks. There need not exist a bad path B.

We again show that the subgraph G′ of G corresponding to this block partition of
G∗ is 2-connected, and hence a k-angulation of P by Proposition 3. The outer cycle C ′ is
a simple cycle. The internal vertices all lie on the boundary between the blocks of H1 and
the blocks of H2. This boundary forms a path D starting at the clockwise last vertex u of
U that is not covered by the pontoon R, then proceeding clockwise through the neighbours
of z to the last vertex al of A, then passing to z, then to the first vertex af of A, and then
proceeding clockwise through the neighbours of z until the first vertex uf of U . Thus C ′∪D
forms a spanning subgraph of G′ which is again a θ-graph.

Case 2: Some triangle added by Algorithm 1 shares no edge with C.

Suppose a triangle added at a vertex v ∈ C shares no edge with C. Then both the prede-
cessor and successor of v in C must have had triangles added to them. This implies that
Algorithm 1 has visited every vertex of C, and so all reflex vertices of C are in S. Therefore,
all components of C \S (including U) are convex paths, one of which is not contained in A.
By Claim 1, after Algorithm 1 has terminated, G∗m − E(Z) is a collection of binary trees
T ′1, . . . , T

′
l′ and the leaves of each tree are consecutive vertices on Z. Let T1, . . . , Tl be these

trees minus their leaves, that is, the components of G∗m − V (Z).
Before giving the full details, we sketch the remainder of the proof. We will begin by

building pontoons between the trees {Ti}. Our goal is to partition the trees and pontoons
into blocks separately from the inner cycle. Difficulties may arise from the fact that (unlike
the paths in Case 1) trees cannot in general be split into two components of arbitrary size.
To avoid this problem, we will require that each tree is contained in a block (recall that no
tree is larger than a block). This is possible if there are enough choices for where to start
the first block. To this end, we build an additional pontoon at the start of the outer section
of the weak dual. The order of this pontoon is chosen so that no block starts inside a tree.
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Figure 6: Case 2(a). U is not contained in A. The partition is done in a spiral manner. R
prevents blocks from starting inside the trees.

We now give a detailed account of this method.

Case 2(a): First suppose U is not contained in A. As in Case 1(a), build a pontoon over
each component of A \ S. Even if U is bad, it is possible to build a pontoon over at least
half of its vertices, as either the first half or the last half must make an angle of less than
π at z, and hence form a good convex path. Since |U | > 2k, without loss of generality, it is
possible to build a pontoon R of order between 0 and k − 3 at the clockwise extreme of U .
The precise order of R will be determined later. Let G be the resulting triangulation once
all pontoons are built.

The weak dual G∗ now consists of two sections, the inner cycle Z ′ and the connected
subgraph J := G∗−Z ′ consisting of the trees and the pontoons (see Figure 6). The vertices
of the trees have an ordering given by the clockwise order of their corresponding vertices
in A, and the vertices of the pontoons have a clockwise ordering in J . Let σ be a linear
ordering of the vertices of J that is consistent with these orderings, and where the intervals
corresponding to each tree and pontoon are concatenated in the order they appear in J .
That is, σ begins with the vertices of R, then continues with the vertices of the first tree,
then the next pontoon, then the second tree, and so on.

The partition of G∗ into blocks is done in a spiral manner similar to Case 1(a),
starting with J then passing to Z ′. J is partitioned according to σ, taking the first k − 2
vertices, then the next k− 2 and so on. The order of the initial pontoon R may be between
0 and k − 3. Adjusting the order of R shifts the blocks in σ, and each order determines a
set of block starting points. These sets partition σ \ R. A block must not start inside a
tree (though it may start at the first vertex of a tree), so there are less than m places in σ
where a block may not start. Since m < k − 2, there must be some set of block starting
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Figure 7: Case 2(b). U is contained in A. The partition is done in two sections. R prevents
blocks from starting inside the trees, then L finishes a block.

points that avoids these obstructions. This implies that there exists a feasible order for R
such that all trees lie inside a block.

Just as in Case 1(a), we now show that there is a 2-connected spanning subgraph of
the graph G′ corresponding to this block partition. Again there are two cycles C ′ and Cz,
but in this case their intersection is not the whole of U , but rather just the part of U not
covered by R. Nevertheless, this remainder has order greater than 2k − (k − 3) = k + 3,
so there is again an edge left from z to a vertex u inside it. There is also an edge from z
to al, the clockwise last vertex of A. All edges of C ′, and all but one of Cz remain, and
again there is a spanning θ-subgraph consisting of these edges and the path alzu. (The two
special vertices of the θ-subgraph are u and the clockwise last vertex of U not covered by
R.) Hence, by Proposition 3, G′ is a k-angulation.

Case 2(b): Now suppose U is contained in A. The goal is a partition of the weak dual into
blocks similar to that in Case 1(b). First build pontoons over all components of A\ (S∪U).
Next, at the clockwise extreme of U , build a pontoon R of order at most k − 3 which will
play a similar role as in Case 2(a), ensuring that blocks do not end inside the trees. Finally,
at the counter-clockwise extreme of U , build a pontoon L of order at most k − 3 which
will play a similar role as in Case 1(b), ensuring that the last block of the outer section has
exactly k − 2 vertices. Now G∗ consists of the inner cycle Z ′, the trees, and the pontoons
(see Figure 7). As in Case 1(b), the outer section J := G∗ − Z ′ has two components, J1
containing R, and J2 containing L. As in Case 2(a), define a linear ordering σ of the vertices
of J starting at the first vertex of R. This time σ consists of two intervals, σ1 covering J1,
and σ2 covering J2.

The partition of G∗ into blocks has two sections (similar to the two paths in
Case 1(b)). The first section starts at the first vertex of R, traverses J1 according to
the ordering σ1, then passes to Z ′, continuing clockwise until it can pass to the first vertex
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of J2, then continues according to the ordering σ2 to the last vertex of L. The order of R is
chosen so that no block ends inside a tree. Then the order of L is chosen so that the total
number of vertices in this section is divisible by k − 2. The second section of the partition
is the remainder of Z ′. Since |U | > 2k, and building each of L and R removes at most k− 3
vertices, there are at least 6 vertices of U not covered by L and R. This implies that the
remainder of Z ′ is non-empty, and thus contains at least one block.

Just as in Case 1(b), we now show that there is a 2-connected spanning subgraph of
the graph G′ corresponding to this block partition. As before, it consists of the outer cycle
C ′ and a path D covering the internal vertices. D starts at the clockwise last vertex u of
U that is not covered by the pontoon R, then proceeds clockwise through the neighbours
of z to the last vertex al of A, then passes to z, then to the first vertex af of A, and then
proceeds clockwise through the neighbours of z until the first vertex u′ of U that is not
covered by the pontoon L. Thus C ′ ∪ D forms a spanning θ-subgraph of G′, so G′ is a
k-angulation by Proposition 3. This concludes the proof of Theorem 1.

4 Remarks

We conjecture that Theorem 1 can be extended to hold for all n ≥ k.

Conjecture 6. Let n ≥ k and j ≡k−2 k − n with 0 ≤ j ≤ k − 3. A set P of n points in
general position in the plane admits a k-angulation if and only if it has at least j interior
points.

It is not too hard to prove this conjecture for k ≤ 6 using an approach similar to that of
this paper. Higher values of k seem to require a significant modification of our methods.

The proof of Theorem 1 is constructive in the sense that it gives an efficient algorithm
to compute k-angulations.

Theorem 7. Given an integer k ≥ 3 and a set P of n ≥ 2k2 points in general position in
the plane, there is an O(kn + n logn) time algorithm that either computes a k-angulation
on P or reports that no such k-angulation exists.

Proof. The proof of Theorem 1 describes the algorithm. Here we outline the complexity of
the main steps. The first step is to compute the convex hull boundary of P , a task that
can be done in O(n logn) time using standard methods (see for example [7]). If there are
less than j interior points the algorithm terminates here and reports that no k-angulation
exists (by Proposition 2).

The case j = 0 requires drawing an outerplanar k-angulation on P . If we select an
outerplanar k-angulation whose dual is a path, Bose [2] gives an O(n logn) time algorithm
to do this. For j ≥ 1, constructing the wheel triangulation, which requires sorting the points
radially about z, can be done in O(n logn) time. The case j = 1 is finished after the edges
are removed from the initial triangulation to make a k-angulation; this takes O(n) time.

For j ≥ 2, we go through the major steps used in Algorithm 1 and in the construction
of the k-angulation. Whether an external vertex is reflex can be determined in O(1) time.
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Thus, a bad convex path B can be computed in O(n) time. In certain examples, Algorithm 1
may find as few as one triangle to add per lap around C, so the number of steps is O(kn).
Having determined the set S, the paths A and U , and thus the case distinction, can be
calculated in O(n) time.

Building a pontoon of order p takes O(p) time, so the pontoons joining parts of S
can be built in O(n) time. The dual graph can also be constructed with standard methods
in O(n) time. Computing the order of a pontoon such that the last block of the partition
contains exactly k−2 vertices can be done in O(n) time. In Cases 2(a) and 2(b), we need to
compute the order of a pontoon R such that all resulting blocks have valid starting points,
that is, starting points that are not inside a tree. The order of R may be between 0 and
k − 3. In these cases, we simply iterate through each of the k − 2 possibilities and check
if all the resulting blocks have valid starting points. This takes O(kn) time. The partition
of the dual graph into blocks can be computed by traversing the dual graph in the manner
described in O(n) time. Finally, removing the edges to form a k-angulation takes O(n)
time. In total, we get a running time of O(kn+ n logn).

References

[1] T. Biedl and M. Vatshelle. The point-set embeddability problem for plane graphs.
Tech. Report CS-2011-27, University of Waterloo, Canada, November 2011.

[2] P. Bose. On embedding an outer-planar graph in a point set. Comput. Geom. Theory
Appl., 23(3):303–312, 2002.

[3] P. Bose and G. Toussaint. No quadrangulation is extremely odd. In Algorithms and
Computations, volume 1004 of Lecture Notes in Computer Science, pages 372–381.
Springer, 1995.

[4] P. Bose and G. Toussaint. Characterizing and efficiently computing quadrangulations
of planar point sets. Computer Aided Geometric Design, 14(8):763–785, 1997.

[5] S. Cabello. Planar embeddability of the vertices of a graph using a fixed point set is
NP-hard. J. Graph Algorithms Appl., 10(2):353–363 (electronic), 2006.

[6] N. Castañeda and J. Urrutia. Straight line embeddings of planar graphs on point sets.
In Proc. Eighth Canadian Conference on Computational Geometry, pages 312–318,
1996.

[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational geometry.
Springer-Verlag, Berlin, third edition, 2008. Algorithms and applications.

[8] T. K. Dey, M. B. Dillencourt, S. K. Ghosh, and J. M. Cahill. Triangulating with high
connectivity. Comput. Geom. Theory Appl., 8(1):39–56, 1997.

[9] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Trotta, and S. K. Wismath.
k-colored point-set embeddability of outerplanar graphs. J. Graph Algorithms Appl.,
12(1):29–49, 2008.

http://jocg.org/


Journal of Computational Geometry jocg.org

[10] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, and S. K. Wismath. Con-
strained point-set embeddability of planar graphs. Internat. J. Comput. Geom. Appl.,
20(5):577–600, 2010.

[11] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Book embeddability of
series-parallel digraphs. Algorithmica, 45(4):531–547, 2006.

[12] E. Di Giacomo, G. Liotta, and F. Trotta. Drawing colored graphs with constrained
vertex positions and few bends per edge. Algorithmica, 57(4):796–818, 2010.

[13] A. García, F. Hurtado, C. Huemer, J. Tejel, and P. Valtr. On triconnected and cubic
plane graphs on given point sets. Comput. Geom. Theory Appl., 42:913–922, 2009.

[14] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Problems and Solutions: Solutions
of Elementary Problems: E3341. Amer. Math. Monthly, 98(2):165–166, 1991.

[15] J. M. Schmidt and P. Valtr. Cubic plane graphs on a given point set. In Proc. 28th
Annual Symposium on Computational Geometry (SoCG’12), pages 201–208, 2012.

[16] C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5(3):225–241, 1981.

[17] G. Toussaint. Quadrangulations of planar sets. In Algorithms and Data Structures,
volume 955 of Lecture Notes in Computer Science, pages 218–227. Springer, Berlin,
1995.

http://jocg.org/

	Introduction
	Preliminaries
	Proof
	Remarks

