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 a b s t r a c t

Given a spanning tree 𝑇  of a planar graph 𝐺, the co-tree of 𝑇  is the spanning tree of the dual graph 
𝐺∗ with edge set (𝐸(𝐺) − 𝐸(𝑇 ))∗. Grünbaum conjectured in 1970 that every planar 3-connected 
graph 𝐺 contains a spanning tree 𝑇  such that both 𝑇  and its co-tree have maximum degree at 
most 3.
While Grünbaum’s conjecture remains open, Schmidt and the author recently improved the upper 
bound on the maximum degree from 5 (Biedl 2014) to 4.
In this paper, we modify this approach taking a further step towards Grünbaum’s conjecture. We 
again obtain a spanning tree 𝑇  such that both 𝑇  and its co-tree have maximum degree at most 4 
and, additionally, an upper bound on the number of vertices of degree 4 of 𝑇  and its co-tree.

1.  Introduction

Let a 𝑘-tree be a spanning tree whose maximum degree is at most 𝑘. In 1966, Barnette proved the fundamental theorem that every 
planar 3-connected graph contains a 3-tree [1]. Both assumptions of Barnette’s theorem are essential in the sense that the statement 
fails for arbitrary non-planar graphs (as the arbitrarily high degree in any spanning tree of the complete bipartite graphs 𝐾3,𝑛−3 shows) 
as well as for graphs that are not 3-connected (as the planar graphs 𝐾2,𝑛−2 show).

Since then, Barnette’s theorem has been extended and generalized in several directions [2–9]. Perhaps one of the most severe 
strengthenings is a long-standing and to the best of our knowledge still open conjecture made by Grünbaum in 1970. Since the planar 
dual 𝐺∗ of every (simple) planar 3-connected graph 𝐺 is again planar and 3-connected, 𝐺∗ contains a 3-tree as well. By the well-known 
cut-cycle duality, any spanning tree 𝑇  of 𝐺 implies that also (𝑉 ∗, (𝐸(𝐺) − 𝐸(𝑇 ))∗) is a spanning tree ¬𝑇 ∗ of 𝐺∗; we call ¬𝑇 ∗ the co-tree
of 𝑇 . Taking the best of these two worlds, Grünbaum made the following conjecture.
Conjecture  (Grünbaum [10, p. 1148], 1970). Every planar 3-connected graph 𝐺 contains a 3-tree 𝑇  whose co-tree ¬𝑇 ∗ is also a 3-tree.

While Grünbaum’s conjecture is to the best of our knowledge still unsolved, progress has been made by Biedl [7], who proved the 
existence of a 5-tree whose co-tree is a 5-tree. Exploiting insights into the structure of Schnyder woods, Schmidt and the author [11] 
proved the existence of a 4-tree whose co-tree is a 4-tree and for 4-connected graphs, the author [12] showed that there exists a 
3-tree whose co-tree is a 4-tree. In this paper, we improve on the result for 3-connected graphs by additionally giving upper bounds 
on the number of vertices of degree 4 in both the tree and the co-tree. The approach is similar to the one in [11]. We use a different 
candidate graph, show that it meets all necessary conditions and then apply a method similar to the one in [11]. We observe that 
only under specific local conditions vertices of degree 4 might arise. Thus, we are able to count them.

We fix a minimal Schnyder wood 𝑆 of 𝐺. 𝑆 gives rise to a Schnyder wood of the suspended dual (a graph that differs from the 
dual graph only on the outer face). Also, every Schnyder wood has three compatible ordered path partitions, denoted by 𝑗,𝑗+1, 
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𝑗 ∈ {1, 2, 3}. We define and explain those concepts in Section 2. The upper bound on the number of degree-4-vertices in 𝑇  and ¬𝑇 ∗ is 
then given by min{𝐵′

2,3, 𝑛
′ + 2 − 𝐴′

3,1, 𝑛
′ + 2 − 𝐴′

1,2} − 1 and min{𝐵2,3, 𝑛 − 𝐴3,1, 𝑛 − 𝐴1,2} − 1, respectively. Here 𝑛 (𝑛′) is the order of the 
primal (dual) graph, 𝐵𝑗,𝑗+1 (𝐵′

𝑗,𝑗+1) is the number of singletons in 𝑗,𝑗+1 of the primal (dual) graph and 𝐴𝑗,𝑗+1 (𝐴′
𝑗,𝑗+1) is the number 

of paths in 𝑗,𝑗+1 of the primal (dual) graph.
Our arguments work symmetrically for any choice of two colors. Thus, we obtain for example that if one of the compatible ordered 

path partitions of the minimal Schnyder wood of the dual graph has only one singleton (which is the smallest possible number of 
singletons), then the primal graph has a 3-tree such that its co-tree has maximum degree at most 4.

We discuss Schnyder woods, their lattice structure and ordered path partitions in Section 2 and our main result in Section 3.

2.  Schnyder woods and ordered path partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded into the Euclidean plane without 
intersecting edges. The neighborhood of a vertex set 𝐴 is the union of the neighborhoods of vertices in 𝐴. Although parts of this paper 
use orientation on edges, we will always let 𝑣𝑤 denote the undirected edge {𝑣,𝑤}.

2.1.  Schnyder woods

Let 𝜎 ∶= {𝑟1, 𝑟2, 𝑟3} be a set of three vertices of the outer face boundary of a plane graph 𝐺 in clockwise order (but not necessarily 
consecutive). We call 𝑟1, 𝑟2 and 𝑟3 roots. The suspension 𝐺𝜎 of 𝐺 is the graph obtained from 𝐺 by adding at each root of 𝜎 a half-edge 
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc starting at a vertex but with no defined end 
vertex. A plane graph 𝐺 is 𝜎-internally 3-connected if the graph obtained from the suspension 𝐺𝜎 of 𝐺 by making the three half-edges 
incident to a common new vertex inside the outer face is 3-connected. Note that the class of 𝜎-internally 3-connected plane graphs 
properly contains all 3-connected plane graphs.
Definition 1  (Felsner [13]). Let 𝜎 = {𝑟1, 𝑟2, 𝑟3} and 𝐺𝜎 be the suspension of a 𝜎-internally 3-connected plane graph 𝐺. A Schnyder 
wood of 𝐺𝜎 is an orientation and coloring of the edges of 𝐺𝜎 (including the half-edges) with the colors 1,2,3 (red, green, blue) such 
that

(i) Every edge 𝑒 is oriented in one direction (we say 𝑒 is unidirected) or in two opposite directions (we say 𝑒 is bidirected). Every 
direction of an edge is colored with one of the three colors 1,2,3 (we say an edge is 𝑖-colored if one of its directions has color 𝑖) 
such that the two colors 𝑖 and 𝑗 of every bidirected edge are distinct (we call such an edge 𝑖 − 𝑗-colored). Throughout the paper, 
we assume modular arithmetic on the colors 1,2,3.

(ii) For every color 𝑖, the half-edge at 𝑟𝑖 is unidirected, outgoing and 𝑖-colored.
(iii) Every vertex 𝑣 has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored edges 𝑒1, 𝑒2, 𝑒3 of 𝑣 occur in clockwise 

order around 𝑣. For every color 𝑖, every incoming 𝑖-colored edge of 𝑣 is contained in the clockwise sector around 𝑣 from 𝑒𝑖+1 to 
𝑒𝑖−1 (see Fig. 1(ii)).

(iv) No inner face boundary contains a directed cycle in one color.

See Fig. 1(i) for illustration. 
For a Schnyder wood and color 𝑖, let 𝑇𝑖 be the directed graph that is induced by the directed edges of color 𝑖. The following result 

justifies the name of Schnyder woods.

Fig. 1. Illustrations for the definition of Schnyder woods.
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Fig. 2. The completion of 𝐺 obtained by superimposing 𝐺𝜎 and its suspended dual 𝐺𝜎∗  (the latter depicted with dotted edges). The primal Schnyder 
wood is not the minimal element of the lattice of Schnyder woods of 𝐺, as this completion contains a clockwise directed cycle (marked in yellow). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Lemma 1  ([14,15]). For every color 𝑖 of a Schnyder wood of 𝐺𝜎 , 𝑇𝑖 is a directed spanning tree of 𝐺 in which all edges are oriented towards 
the root 𝑟𝑖. 

For a directed graph 𝐻 , we denote by 𝐻−1 the graph obtained from 𝐻 by reversing the direction of all its edges.
Lemma 2  (Felsner [16]). For every 𝑖 ∈ {1,… , 3}, 𝑇 −1

𝑖 ∪ 𝑇 −1
𝑖+1 ∪ 𝑇𝑖+2 is acyclic. 

2.2.  Dual Schnyder woods

Let 𝐺 be a 𝜎-internally 3-connected plane graph. Any Schnyder wood of 𝐺𝜎 induces a Schnyder wood of a slightly modified planar 
dual of 𝐺𝜎 in the following way [17,18] (see [19, p. 30] for an earlier variant of this result given without proof). As common for 
plane duality, we will use the plane dual operator ∗ to switch between primal and dual objects (also on sets of objects).

Extend the three half-edges of 𝐺𝜎 to non-crossing infinite rays and consider the planar dual of this plane graph. Since the infinite 
rays partition the outer face 𝑓 of 𝐺 into three parts, this dual contains a triangle with vertices 𝑏1, 𝑏2 and 𝑏3 instead of the outer face 
vertex 𝑓 ∗ such that 𝑏∗𝑖  is not incident to 𝑟𝑖 for every 𝑖 (Fig. 2). Let the suspended dual 𝐺𝜎∗  of 𝐺𝜎 be the graph obtained from this dual 
by adding at each vertex of {𝑏1, 𝑏2, 𝑏3} a half-edge pointing into the outer face.

Consider the superposition of 𝐺𝜎 and its suspended dual 𝐺𝜎∗  such that exactly the primal dual pairs of edges cross (here, for every 
1 ≤ 𝑖 ≤ 3, the half-edge at 𝑟𝑖 crosses the dual edge 𝑏𝑖−1𝑏𝑖+1).
Definition 2. For any Schnyder wood 𝑆 of 𝐺𝜎 , define the orientation and coloring 𝑆∗ of the suspended dual 𝐺𝜎∗  as follows (Fig. 2):

(i) For every unidirected (𝑖 − 1)-colored edge or half-edge 𝑒 of 𝐺𝜎 , color 𝑒∗ with the two colors 𝑖 and 𝑖 + 1 such that 𝑒 points to the 
right of the 𝑖-colored direction.

(ii) Vice versa, for every 𝑖 − (𝑖 + 1)-colored edge 𝑒 of 𝐺𝜎 , (𝑖 − 1)-color 𝑒∗ unidirected such that 𝑒∗ points to the right of the 𝑖-colored 
direction.

(iii) For every color 𝑖, make the half-edge at 𝑏𝑖 unidirected, outgoing and 𝑖-colored.

The following lemma states that 𝑆∗ is indeed a Schnyder wood of the suspended dual. The vertices 𝑏1, 𝑏2 and 𝑏3 are called the 
roots of 𝑆∗.

Lemma 3  ([20][14, Prop. 3). For every Schnyder wood 𝑆 of 𝐺𝜎 , 𝑆∗ is a Schnyder wood of 𝐺𝜎∗ . 
Since 𝑆∗∗ = 𝑆, Lemma 3 gives a bijection between the Schnyder woods of 𝐺𝜎 and the ones of 𝐺𝜎∗ . Let the completion 𝐺 of 𝐺 be 

the plane graph obtained from the superposition of 𝐺𝜎 and 𝐺𝜎∗  by subdividing each pair of crossing (half-)edges with a new vertex, 
which we call a crossing vertex (Fig. 2). The completion has six half-edges pointing into its outer face.

Any Schnyder wood 𝑆 of 𝐺𝜎 implies the following natural orientation and coloring 𝐺𝑆 of its completion 𝐺: For any edge 𝑣𝑤 ∈
𝐸(𝐺𝜎) ∪ 𝐸(𝐺𝜎∗ ), let 𝑧 be the crossing vertex of 𝐺𝜎 that subdivides 𝑣𝑤 and consider the coloring of 𝑣𝑤 in either 𝑆 or 𝑆∗. If 𝑣𝑤 is 
outgoing of 𝑣 and 𝑖-colored, we direct 𝑣𝑧 ∈ 𝐸(𝐺) toward 𝑧 and 𝑖-color it; analogously, if 𝑣𝑤 is outgoing of 𝑤 and 𝑗-colored, we direct 
𝑤𝑧 ∈ 𝐸(𝐺) toward 𝑧 and 𝑗-color it. In the case that 𝑣𝑤 is unidirected, say without loss of generality incoming at 𝑣 and 𝑖-colored, we 
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direct 𝑧𝑣 ∈ 𝐸(𝐺) toward 𝑣 and 𝑖-color it. The three half-edges of 𝐺𝜎∗  inherit the orientation and coloring of 𝑆∗ for 𝐺𝑆 . By Definition 2, 
the construction of 𝐺𝑆 implies immediately the following corollary.
Corollary 1. Every crossing vertex of 𝐺𝑆 has one outgoing edge and three incoming edges and the latter are colored 1, 2 and 3 in counter-
clockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions, Felsner and Mendez [15,21] showed that 
the set of Schnyder woods of a planar suspension 𝐺𝜎 forms a distributive lattice. The order relation of this lattice relates a Schnyder 
wood of 𝐺𝜎 to a second Schnyder wood if the former can be obtained from the latter by reversing the orientation of a directed 
clockwise cycle in the completion. This gives the following lemma.
Lemma 4  ([15,21]). For the minimal element 𝑆 of the lattice of all Schnyder woods of 𝐺𝜎 , 𝐺𝑆 contains no clockwise directed cycle. 

We call the minimal element of the lattice of all Schnyder woods of 𝐺𝜎 the minimal Schnyder wood of 𝐺𝜎 .

2.3.  Ordered path partitions

We denote paths as tuples of vertices such that consecutive vertices in the tuple are adjacent in the path. If a path 𝑃  consists of 
only one vertex 𝑥, we might also write 𝑃 = 𝑥. The concatenation of two paths 𝑃1 and 𝑃2 we denote by 𝑃1𝑃2.

Definition 3. For any 𝑗 ∈ {1, 2, 3} and any {𝑟1, 𝑟2, 𝑟3}-internally 3-connected plane graph 𝐺, an ordered path partition  = (𝑃0,… , 𝑃𝑠)
of 𝐺 with base-pair (𝑟𝑗 , 𝑟𝑗+1) is a tuple of induced paths such that their vertex sets partition 𝑉 (𝐺) and the following holds for every 
𝑖 ∈ {0,… , 𝑠 − 1}, where 𝑉𝑖 ∶=

⋃𝑖
𝑞=0 𝑉 (𝑃𝑞) and the contour 𝐶𝑖 is the clockwise walk from 𝑟𝑗+1 to 𝑟𝑗 on the outer face of 𝐺[𝑉𝑖].

(i) 𝑃0 is the clockwise path from 𝑟𝑗 to 𝑟𝑗+1 on the outer face boundary of 𝐺, and 𝑃𝑠 = 𝑟𝑗+2.
(ii) Every vertex in 𝑃𝑖 has a neighbor in 𝑉 (𝐺) ⧵ 𝑉𝑖.
(iii) 𝐶𝑖 is a path.
(iv) Every vertex in 𝐶𝑖 has at most one neighbor in 𝑃𝑖+1.

Remark 1. Our definition of an ordered path partition  = (𝑃0,… , 𝑃𝑠) is essentially the definition of Badent et al. [22], in which the 
paths 𝑃𝑖 need to be induced (this is not explicitly stated in [22], but used in the proof of their Theorem 5). 

By Definition 3(i) and (ii), 𝐺 contains for every 𝑖 and every vertex 𝑣 ∈ 𝑃𝑖 a path from 𝑣 to 𝑟𝑗+2 that intersects 𝑉𝑖 only in 𝑣. Since 
𝐺 is plane, we conclude the following.
Lemma 5. Every path 𝑃𝑖 of an ordered path partition is embedded into the outer face of 𝐺[𝑉𝑖−1] for every 1 ≤ 𝑖 ≤ 𝑠.

2.3.1.  Compatible ordered path partitions
We describe a connection between Schnyder woods and ordered path partitions that was first given by Badent et al. [22, Theorem 5] 

and then revisited by Alam et al. [23, Lemma 1].
Definition 4. Let 𝑗 ∈ {1, 2, 3} and 𝑆 be any Schnyder wood of the suspension 𝐺𝜎 of 𝐺. As proven in [23, arXiv version, Section 2.2], 
the inclusion-wise maximal 𝑗 − (𝑗 + 1)-colored paths of 𝑆 then form an ordered path partition of 𝐺 with base pair (𝑟𝑗 , 𝑟𝑗+1), whose 
order is a linear extension of the partial order given by reachability in the acyclic graph 𝑇 −1

𝑗 ∪ 𝑇 −1
𝑗+1 ∪ 𝑇𝑗+2; we call this special ordered 

path partition compatible with 𝑆 and denote it by 𝑗,𝑗+1. 
For example, for the Schnyder wood given in Fig. 2, 2,3 consists of the six maximal 2-3-colored paths, of which four are single 

vertices. We denote each path 𝑃𝑖 ∈ 𝑗,𝑗+1 by 𝑃𝑖 ∶= (𝑣𝑖1,… , 𝑣𝑖𝑘) such that 𝑣𝑖1𝑣𝑖2 is outgoing 𝑗-colored at 𝑣𝑖1.
Let 𝐶𝑖 be as in Definition 3. By Definition 3(iii) and Lemma 5, every path 𝑃𝑖 = (𝑣𝑖1,… , 𝑣𝑖𝑘) of an ordered path partition satisfying 

𝑖 ∈ {1,… , 𝑠} has a neighbor 𝑣𝑖0 ∈ 𝐶𝑖−1 that is closest to 𝑟𝑗+1 and a different neighbor 𝑣𝑖𝑘+1 ∈ 𝐶𝑖−1 that is closest to 𝑟𝑗 (Fig. 3). We call 
𝑣𝑖0 the left neighbor of 𝑃𝑖, 𝑣𝑖𝑘+1 the right neighbor of 𝑃𝑖 and 𝑃 𝑒

𝑖 ∶= 𝑣𝑖0𝑃𝑖𝑣𝑖𝑘+1 the extension of 𝑃𝑖; we omit superscripts if these are clear 
from the context. For 0 < 𝑖 ≤ 𝑠, let the path 𝑃𝑖 cover an edge 𝑒 or a vertex 𝑥 if 𝑒 or 𝑥 is contained in 𝐶𝑖−1, but not in 𝐶𝑖, respectively.
Lemma 6  ([11]). Every path 𝑃𝑖 ≠ 𝑃0 of a compatible ordered path partition 𝑗,𝑗+1 satisfies the following (Fig. 3):

(i) Every neighbor of 𝑃𝑖 that is in 𝑉𝑖−1 is contained in the path of 𝐶𝑖−1 between 𝑣𝑖0 and 𝑣𝑖𝑘+1.
(ii) 𝑣𝑖0𝑣

𝑖
1 and 𝑣𝑖𝑘𝑣𝑖𝑘+1 are edges of 𝐺[𝑉𝑖].

(iii) 𝑣𝑖0𝑣
𝑖
1 is (𝑗 + 1)-colored outgoing at 𝑣𝑖1 and 𝑣𝑖𝑘𝑣𝑖𝑘+1 is 𝑗-colored outgoing at 𝑣𝑖𝑘.

(iv) Every edge 𝑣𝑖𝑙𝑥 incident to 𝑃𝑖 and 𝑉𝑖−1 except for 𝑣𝑖0𝑣𝑖1 and 𝑣𝑖𝑘𝑣𝑖𝑘+1 is unidirected toward 𝑃𝑖, (𝑗 + 2)-colored and satisfies 𝑥 ∉ {𝑣𝑖0, 𝑣
𝑖
𝑘+1}.

3.  Bound on vertices of degree 4

Let 𝐺 be a {𝑟1, 𝑟2, 𝑟3}-internally 3-connected plane graph of order 𝑛 with a dual graph of order 𝑛′ and a minimal Schnyder wood 𝑆. 
Define 𝐵𝑗,𝑗+1 (𝐵′

𝑗,𝑗+1) to be the number of singletons in 𝑗,𝑗+1 of the primal (dual) graph and 𝐴𝑗,𝑗+1 (𝐴′
𝑗,𝑗+1) to be the number of paths 

in 𝑗,𝑗+1 of the primal (dual) graph. We show that we can find a tree and co-tree with maximum degree four such that the number of 
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Fig. 3. Illustration for Lemmas 6 and 7.

Fig. 4. Illustration for Lemma 8. A face 𝑓 , the paths on its boundary and the dual edges incident to 𝑓 ∗. 𝑃𝑓  is marked in yellow. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

vertices with degree four in the tree is at most min{𝐵′
2,3, 𝑛

′ + 2 − 𝐴′
3,1, 𝑛

′ + 2 − 𝐴′
1,2} − 1 and the number of vertices with degree four 

in the co-tree is at most min{𝐵2,3, 𝑛 − 𝐴3,1, 𝑛 − 𝐴1,2} − 1.
Remember that for a spanning subgraph 𝑇  of a plane graph 𝐺, ¬𝑇 ∗ is the spanning subgraph (𝑉 ∗, (𝐸(𝐺) − 𝐸(𝑇 ))∗) of 𝐺∗. As stated 

in the introduction, ¬𝑇 ∗ is a spanning tree if 𝑇  is one and in that case called a co-tree.
We start with two lemmas on the structure of Schnyder woods. Then, we define our candidate graphs 𝐻 and 𝐻 ′ that have the 

same structural properties. We show that they both have maximum degree at most 3 and that for every edge of 𝐺 either the edge 
itself is in 𝐻 or its dual is in 𝐻 ′. We observe that for a cycle 𝐶 in 𝐻 the path with the highest index in 2,3 that contains a vertex 
of 𝐶 needs to be a singleton. This is the key observation that leads to the upper bound on the number of degree-4-vertices. Then, we 
eventually prove the main theorem. The proof of the main theorem uses similar tools as presented in [11]. However, our candidate 
graph 𝐻 which is different from the one used in [11] and the aforementioned observation additionally yield the upper bound on the 
number of vertices of degree 4.
Lemma 7  ([11]). Let 𝐺 be a 𝜎-internally 3-connected plane graph, 𝑆 be the minimal Schnyder wood of 𝐺𝜎 and 2,3 = (𝑃0,… , 𝑃𝑠) be the 
ordered path partition that is compatible with 𝑆. Let 𝑃𝑖 ∶= (𝑣1,… , 𝑣𝑘) ≠ 𝑃0 be a path of 2,3 and 𝑣0 and 𝑣𝑘+1 be its left and right neighbor. 
Then, every edge 𝑣𝑙𝑤 ∉ {𝑣0𝑣1, 𝑣𝑘𝑣𝑘+1} with 𝑣𝑙 ∈ 𝑃𝑖 and 𝑤 ∈ 𝑉𝑖−1 is unidirected, 1-colored and incoming at 𝑣𝑘 and 𝑤 ∉ {𝑣0, 𝑣𝑘+1} Fig. 3.
Lemma 8  (Di Battista et al[17].). The boundary of every inner face of 𝐺 can be partitioned into six paths 𝑃1,3, 𝑝2,3, 𝑃2,1, 𝑝3,1, 𝑃3,2 and 𝑝1,2
which appear in that clockwise order. For those paths the following holds (Fig. 4).

(i) 𝑃𝑖,𝑗 consists of one edge which is either unidirected 𝑖-colored, unidirected 𝑗-colored or 𝑖 − 𝑗-colored. Color 𝑖 is directed in clockwise direction 
and color 𝑗 in counterclockwise direction around 𝑓 .

(ii) 𝑝𝑖,𝑗 consists of a possibly empty sequence of 𝑖 − 𝑗-colored edges such that color 𝑖 is directed clockwise around 𝑓 .

Definition 5. Let 𝑓 be an inner face. Define 𝑃𝑓 = (𝑥1,… , 𝑥𝑙) to be the path consisting of the edges on the boundary of 𝑓 that are 
2-3-colored or unidirected 3-colored such that color 3 is directed counterclockwise around 𝑓 . By Lemma 8, 𝑃𝑓  is indeed a path. It 
consists of 𝑝2,3 and possibly 𝑃1,3 (Fig. 4). Let 𝑃𝑓  be such that color 3 is directed from 𝑥1 to 𝑥𝑙. For a vertex 𝑠, let cf(𝑠) be the neighbor 
such that cf(𝑠)𝑠 is the clockwise first incoming 1-colored edge at 𝑠.

Define 𝐻 to be the subgraph of 𝐺 with vertex set 𝑉 (𝐺) and the edge set given by
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Fig. 5. Illustration for the definition of 𝐻 (depicted in yellow) and 𝐻 ′ (depicted in orange). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

(i) the 3-1-colored edges,
(ii) for every vertex 𝑠, the edge cf(𝑠)𝑠,
(iii) for every inner face 𝑓 , all edges of 𝑃𝑓 = (𝑥1,… , 𝑥𝑙) except for 𝑥𝑙−1𝑥𝑙,
(iv) the 2-3-colored edges on the outer face.
Define 𝐻 ′ the same way for 𝐺𝜎∗. See Fig. 5 for illustration. 

Observe that for each edge 𝑒 added by Condition (iii) there exists an inner face such that 𝑒 is in the 2-3-colored path 𝑝2,3 of that 
face (Fig. 4). Hence, those edges are all 2-3-colored.
Lemma 9. For an edge 𝑒 ∈ 𝐸(𝐺), we have that 𝑒 ∈ 𝐸(𝐻) if and only if 𝑒∗ ∉ 𝐸(𝐻 ′). And thus, 𝐻 ′ = ¬𝐻∗ ∪ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1}. 
Proof.  In order to prove the claim, we consider all possible colorings of an edge 𝑒 of 𝐺. We remind the reader of Corollary 1 which 
yields the relation between the coloring of an edge and its dual.
Case 1: 𝑒 is 3-1-colored.

Then, 𝑒∗ is unidirected 2-colored. Hence, 𝑒 ∈ 𝐸(𝐻) by Definition 5(i), and 𝑒∗ ∉ 𝐸(𝐻 ′).
Case 2: 𝑒 is 1-2-colored.

Let 𝑒 be incoming 1-colored at vertex 𝑠. Then, 𝑒 is the first incoming 1-colored edge cf(𝑠)𝑠 at 𝑠 in clockwise direction by 
Definition 1(iii). Thus, 𝑒 ∈ 𝐸(𝐻) by Definition 5(ii). The edge 𝑒∗ is unidirected 3-colored and hence 𝑒∗ ∉ 𝐸(𝐻 ′).

Case 3: 𝑒 is 2-3-colored and 𝑒 is not on the boundary of the outer face.
Then, 𝑒 is on a path 𝑃𝑓 = (𝑥1,… , 𝑥𝑙) for some face 𝑓 . If 𝑒 = 𝑥𝑙−1𝑥𝑙, then 𝑒 ∉ 𝐸(𝐻) and 𝑒∗ = cf(𝑓 ∗)𝑓 ∗ by Lemma 8 and Corol-
lary 1. Hence, 𝑒∗ ∈ 𝐸(𝐻 ′) by Definition 5(ii). If 𝑒 ≠ 𝑥𝑙−1𝑥𝑙, then 𝑒 ∈ 𝐸(𝐻) by Definition 5(iii), and 𝑒∗ is incoming 1-colored 
at 𝑓 ∗, but 𝑒∗ ≠ cf(𝑓 ∗)𝑓 ∗ (Fig. 4). Thus, 𝑒∗ ∉ 𝐸(𝐻 ′).

Case 4: 𝑒 is 2-3-colored and on the boundary of the outer face.
Then, 𝑒 ∈ 𝐸(𝐻) by Definition 5(iv). Observe that 𝑒∗ is incoming 1-colored at 𝑏1. As 𝑏1𝑏2 is also incoming 1-colored at 𝑏1 and 
appears clockwise before 𝑒∗, we have that 𝑒∗ ∉ 𝐸(𝐻 ′).

Case 5: 𝑒 is unidirected 2-colored.
Then, 𝑒∗ is 3-1-colored. Hence, 𝑒 ∉ 𝐸(𝐻) and 𝑒∗ ∈ 𝐸(𝐻 ′) by Definition 5(i).

Case 6: 𝑒 is unidirected 3-colored.
Then, 𝑒∗ is 1-2-colored. As in Case 2, we observe that 𝑒 ∉ 𝐸(𝐻) and 𝑒∗ ∈ 𝐸(𝐻 ′).

Case 7: 𝑒 = 𝑢𝑣 is unidirected 1-colored incoming at 𝑣.
Let 𝑃𝑣∗ = (𝑥1,… , 𝑥𝑙). Assume that 𝑒 = cf(𝑣)𝑣. Then, 𝑒∗ = 𝑥𝑙−1𝑥𝑙. Hence, 𝑒∗ ∉ 𝐸(𝐻 ′) and 𝑒 ∈ 𝐸(𝐻) by Definition 5(ii). If 𝑒 ≠
cf(𝑣)𝑣, then 𝑒∗ ∈ 𝑃𝑣∗  and 𝑒∗ ≠ 𝑥𝑙−1𝑥𝑙. We obtain that 𝑒∗ ∈ 𝐸(𝐻 ′) and 𝑒 ∉ 𝐸(𝐻).  ∎

Lemma 10. 𝐻 and 𝐻 ′ both have maximum degree at most 3. 
Proof.  We show that 𝐻 has maximum degree at most 3. The arguments work similarly for 𝐻 ′. Consider a vertex 𝑣 ∈ 𝑉 (𝐻).

Assume that 𝑣 is incident to a 2-3-colored edge 𝑒 ∈ 𝐸(𝐻) that is incoming 3-colored at 𝑣. Then, either Definition 5(iii) or (iv) 
applies to 𝑒. We give a short argument that in both cases there is no edge in the clockwise sector around 𝑣 between 𝑒 and the outgoing 
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3-colored edge. If Definition 5(iv) applies to 𝑒, then 𝑣 is on the clockwise path from 𝑟2 to 𝑟3 on the boundary of the outer face, and 
the claim obviously holds.

Otherwise, Definition 5(iii) applies to 𝑒. Assume, for the sake of contradiction, that there is an edge in the clockwise sector around 
𝑣 between 𝑒 and the outgoing 3-colored edge. Let 𝑒′ be the clockwise first such edge. By Definition 1(iii), 𝑒′ is unidirected 1-colored 
and incoming at 𝑣. 𝑒 and 𝑒′ are on a common face 𝑓 . The path 𝑃𝑓 = (𝑥1,… , 𝑥𝑙) contains 𝑒. Since 𝑒′ is not outgoing 3-colored at 𝑣, we 
obtain that 𝑥𝑙−1𝑥𝑙 = 𝑒 and thus, 𝑒 ∉ 𝐸(𝐻), a contradiction. Hence, there is no edge in the clockwise sector around 𝑣 between 𝑒 and 
the outgoing 3-colored edge.

By Definition 1(iii), the unidirected incoming 1-colored edges occur in the clockwise sector around 𝑣 between 𝑒 and the outgoing 
3-colored edge. Thus, there is no unidirected incoming 1-colored edge at 𝑣. Hence, by Definition 5, the outgoing 1-colored edge and 
the outgoing 3-colored edge at 𝑣 are the only additional edges incident to 𝑣 that might be in 𝐸(𝐻). This yields that deg𝐻 (𝑣) ≤ 3.

Assume that 𝑣 is not incident to a 2-3-colored edge 𝑒 ∈ 𝐸(𝐻) that is incoming 3-colored at 𝑣. Then, by Definition 5, there are at 
most three edges incident to 𝑣 that might be in 𝐸(𝐻), namely cf(𝑣)𝑣, the outgoing 3-colored and the outgoing 1-colored edge. Thus, 
we have deg𝐻 (𝑣) ≤ 3. ∎
Definition 6. Let 𝐶 be a cycle in 𝐻 . Let 2,3 = (𝑃0,… , 𝑃𝑠) be the compatible ordered path partition of 𝑆. Let 𝑃  be the path of maximal 
length in 𝐶 such that 𝑃 ⊆ 𝑃𝑀  with 𝑀 ∶= max{𝑖 ∣ 𝑃𝑖 ∩ 𝑉 (𝐶) ≠ ∅}. We call 𝑃  the index-maximal subpath of 𝐶. 
Lemma 11. Let 𝑃𝑖 = (𝑣1,… , 𝑣𝑘) ∈ 2,3 be a path containing an index-maximal subpath 𝑃  of a cycle 𝐶 in 𝐻 . Then, 𝑃𝑖 is a singleton, the 
edge from 𝑃𝑖 to its left neighbor 𝑣0 is 3-1-colored and in 𝐶 and the other edge in 𝐶 incident to 𝑣1 is cf(𝑣1)𝑣1. The same holds for 𝐻 ′. 
Proof.  We show the statement for 𝐻 . The same arguments work also for 𝐻 ′. Assume, for the sake of contradiction, that 𝑃𝑖 is not a 
singleton, i.e., 𝑘 ≥ 2. Remember that 𝑉𝑖 ∶=

⋃𝑖
𝑞=0 𝑉 (𝑃𝑞). Since 𝑃𝑖 contains the index-maximal subpath of 𝐶, 𝐶 ⊆ 𝑉𝑖. By Lemma 7, the 

edges that connect 𝑃𝑖 with vertices of 𝑉𝑖−1 are 𝑣0𝑣1 and edges with 𝑣𝑘 as an endpoint. Hence, we either have 𝑃 = 𝑃𝑖 or 𝑃 = 𝑣𝑘.
If 𝑃 = 𝑣𝑘, then there are two edges 𝑒, 𝑒′ ∈ 𝐶 in the clockwise sector between 𝑣𝑘𝑣𝑘+1 and 𝑣𝑘−1𝑣𝑘 around 𝑣𝑘. This sector includes 

𝑣𝑘𝑣𝑘+1 and excludes 𝑣𝑘−1𝑣𝑘. Observe that, by Definition 1(iii), those edges are the incoming 1-colored edges at 𝑣𝑘 and the outgoing 
2-colored edge 𝑣𝑘𝑣𝑘+1. By Definition 5, of the incoming 1-colored edges, only the in clockwise order first edge cf(𝑣𝑘)𝑣𝑘 is in 𝐸(𝐻). 
Assume that w.l.o.g. 𝑒 = cf(𝑣𝑘)𝑣𝑘. As 𝑒 ≠ 𝑒′, we obtain that 𝑒′ = 𝑣𝑘𝑣𝑘+1 and 𝑒′ is not 1-2-colored. And since 𝑣𝑘+1 ∉ 𝑃𝑖, 𝑣𝑘𝑣𝑘+1 is also 
not 2-3-colored. Hence, 𝑣𝑘𝑣𝑘+1 is unidirected 2-colored and in 𝐻 , contradicting the definition of 𝐻 . Thus, we obtain that 𝑃 = 𝑃𝑖.

By Lemma 7, the 3-colored outgoing edge 𝑣0𝑣1 at 𝑣1 is the only edge incident to 𝑣1 that has an endpoint in 𝑉𝑖−1. Thus, 𝑣0𝑣1 needs 
to be in 𝐻 . By Definition 5, 𝑣0𝑣1 is 3-1-colored. Then, by Definition 5(iii), 𝑣1𝑣2 ∉ 𝐸(𝐻), a contradiction.

This yields that 𝑃𝑖 is a singleton. As above, we obtain that 𝑣0𝑣1 needs to be 3-1-colored. By Definition 5, the other edge incident 
to 𝑣1 in 𝐶 is cf(𝑣1)𝑣1. ∎
Definition 7. Call a singleton in 2,3 a 1-2-singleton if its outgoing 2-colored edge is 1-2-colored and its outgoing 3-colored edge is 
3-1-colored. And call a singleton in 2,3 a 2-singleton if its outgoing 2-colored edge is unidirected and its outgoing 3-colored edge is 
3-1-colored. 

Observe that, by Lemma 11, index-maximal subpaths (with respect to 2,3) are either 1-2-singletons or 2-singletons. And for a 
1-2-singleton 𝑠, the outgoing 2-colored edge and cf(𝑠)𝑠 coincide. Recall that 𝐵𝑗,𝑗+1 (𝐵′

𝑗,𝑗+1) is the number of singletons in 𝑗,𝑗+1 of the 
primal (dual) graph and 𝐴𝑗,𝑗+1 (𝐴′

𝑗,𝑗+1) is the number of paths in 𝑗,𝑗+1 of the primal (dual) graph with respect to 𝑆 (𝑆∗).

Theorem 1. Let 𝐺 be a {𝑟1, 𝑟2, 𝑟3}-internally 3-connected plane graph of order 𝑛 with a dual graph of order 𝑛′ and a minimal Schnyder 
wood 𝑆 of 𝐺𝜎 . There is a 4-tree 𝑇  in 𝐺 such that ¬𝑇 ∗ is a 4-tree. Also, the number of degree-4-vertices in 𝑇  is at most

min{𝐵′
2,3, 𝑛

′ + 2 − 𝐴′
3,1, 𝑛

′ + 2 − 𝐴′
1,2} − 1

and the number of degree-4-vertices in ¬𝑇 ∗ is at most
min{𝐵2,3, 𝑛 − 𝐴3,1, 𝑛 − 𝐴1,2} − 1.

Proof.  By Lemma 4, the completion 𝐺𝑆 of 𝐺 contains no clockwise directed cycle. Since 𝐺𝑆 contains the completion of the suspended 
dual 𝐺𝜎∗  apart from its three outer vertices which do not affect clockwise cycles, 𝑆∗ is a minimal Schnyder wood of 𝐺𝜎∗ .

Let 𝐻 and 𝐻 ′ be as defined in Definition 5. Recall that, by Lemma 9, 𝑒 ∈ 𝐸(𝐻) if and only if 𝑒∗ ∉ 𝐸(𝐻 ′), and thus 𝐻 ′ = ¬𝐻∗ ∪
{𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1}. As 𝑏1𝑏2, 𝑏2𝑏3 and 𝑏3𝑏1 are not in 𝐺∗, they do not affect our desired trees. By Lemma 10, 𝐻 and 𝐻 ′ both have 
maximum degree at most 3. Observe that 𝐻 and 𝐻 ′ might both have cycles and are not necessarily connected (Fig. 5).

We will therefore iteratively identify edges of cycles of 𝐻 such that ¬𝐻∗ ∪ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1} still has maximum degree at most 4 
when those edges are deleted in 𝐻 . In order to do this, we iteratively define the set of edges 𝐷 ⊆ 𝐸(𝐻) that is deleted from 𝐻 . Then, 
we use the exact same arguments in order to define the set of edges 𝐷′ that is deleted from 𝐻 ′. We start with 𝐷 = 𝐷′ = ∅.

Let 2,3 = (𝑃0,… , 𝑃𝑠) be the compatible ordered path partition formed by the maximal 2-3-colored paths. We will consider (and 
formally define in the following) paths that are the first (i.e. index-minimal) path covering an index-maximal subpath. Denote by max
the set of all index-maximal subpaths. For a path 𝑃 ∈ max ⧵ {𝑃𝑠} refer to 𝑃𝐿 with 𝐿 = min{𝑖 ∣ 𝑃𝑖 covers an edge of the extension of 𝑃 }
as the minimal-covering path of 𝑃 . Denote by 𝑐𝑜𝑣𝑒𝑟 the set of the minimal-covering paths of the paths of max ⧵ {𝑃𝑠}.

Observe that 𝑃𝑠 = 𝑟1 is the index-maximal subpath of the outer face boundary and a 1-2-singleton. There is no path in 2,3 that 
covers an edge of 𝑃𝑠. Hence, in order to destroy the outer face cycle, we add the outgoing 3-colored edge of 𝑟1 to 𝐷.

Next, we process the paths of 𝑐𝑜𝑣𝑒𝑟 in reverse order of 2,3, i.e., from highest to lowest index. Let 𝑃𝑐 = (𝑣1,… , 𝑣𝑘) ∈ 𝑐𝑜𝑣𝑒𝑟, 
𝑐 ∈ {1,… , 𝑠} be the path under consideration. Let 𝑠1,… , 𝑠𝑙 be the index-maximal subpaths for which 𝑃𝑐 is the minimal-covering path, 
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Fig. 6. Illustration for some of the definitions used in the proof of Theorem 1.

Fig. 7. Illustration for the proof of Theorem 1. If 𝑣𝑘𝑣𝑘+1 is 2-colored, then 𝐺𝑆 contains a clockwise cycle (depicted in yellow). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ordered clockwise around the outer face of 𝐺[𝑉𝑐−1] (Fig. 6). Let 𝑓1,… , 𝑓𝑎 be the faces incident to 𝑣𝑘 in counterclockwise order from 
the outgoing 3-colored edge to the outgoing 2-colored edge. We say that 𝑓1,… , 𝑓𝑎 are below 𝑃𝑐 and above 𝑠1,… , 𝑠𝑙.

Assume 𝑣𝑘+1 = 𝑠𝑙. We give a short argument showing that in this case 𝑣𝑘𝑣𝑘+1 is 1-2-colored. For the sake of contradiction, assume 
that 𝑣𝑘𝑣𝑘+1 is 2-colored. Then, by Corollary 1, (𝑣𝑘𝑣𝑘+1)∗ is 3-1-colored. As 𝑠𝑙 is an index-maximal subpath the outgoing 3-colored 
edge at 𝑠𝑙 is 3-1-colored. Hence, 𝐺𝑆 contains the clockwise cycle in Fig. 7, which contradicts the assumption that 𝑆 is the minimal 
Schnyder wood. We obtain that 𝑣𝑘𝑣𝑘+1 is 1-2-colored in this case.

Remember that, by Lemma 11, cf(𝑠)𝑠 and the outgoing 3-colored edge are the only edges in 𝐻 that join 𝑠 with vertices of 𝑉𝑖−1.
Now, we select for each of the singletons 𝑠 ∈ {𝑠1,… , 𝑠𝑙} either the outgoing 3-colored edge or cf(𝑠)𝑠 and add it to 𝐷. Thus, after 

having processed every path in 𝑐𝑜𝑣𝑒𝑟, a cycle in 𝐻 does not exist in 𝐻 −𝐷 anymore. We aim for selecting those edges that have the 
smallest possible impact on the maximum degree of the dual graph. Hence, for a 2-singleton 𝑠 we always choose the edge cf(𝑠)𝑠. 
Deleting this specific edge does not increase the degree of any face below 𝑃𝑐 (Fig. 8). In detail we distinguish the following three cases.

Augmentation procedure of 𝐷 for the path 𝑃𝑐 :.

Case 1: 𝑃𝑐 = (𝑣1,… , 𝑣𝑘) is not an index-maximal subpath.
For every singleton 𝑠 ∈ {𝑠1,… , 𝑠𝑙} ⧵ {𝑣𝑘+1}, we add cf(𝑠)𝑠 to 𝐷. If 𝑣𝑘+1 = 𝑠𝑙 is a 2-singleton, we add cf(𝑠𝑙)𝑠𝑙 to 𝐷. Otherwise, we 

add its outgoing 3-colored edge to 𝐷 (Fig. 8).
Case 2: 𝑃𝑐 = 𝑣1 is an index-maximal subpath and a 1-2-singleton. Then, we already have either 𝑣0𝑣1 ∈ 𝐷 or 𝑣1𝑣2 ∈ 𝐷.

 Case 2.1: 𝑣0𝑣1 ∈ 𝐷.
 We proceed as in Case 1.
 Case 2.2: 𝑣1𝑣2 ∈ 𝐷.
 For every singleton 𝑠 ∈ {𝑠1,… , 𝑠𝑙} that is a 2-singleton, we add cf(𝑠)𝑠 to 𝐷. For every singleton 𝑠 ∈ {𝑠1,… , 𝑠𝑙} ⧵ {𝑣0} that is 

a 1-2-singleton, we add the outgoing 3-colored edge to 𝐷. If 𝑣0 = 𝑠1 is a 1-2-singleton, then add its outgoing 2-colored edge to 𝐷
(Fig. 9).

Case 3: 𝑃𝑐 = 𝑣1 is an index-maximal subpath and a 2-singleton.
Then, we already added cf(𝑣1)𝑣1 to 𝐷. For every singleton 𝑠 ∈ {𝑠1,… , 𝑠𝑙}, we add cf(𝑠)𝑠 to 𝐷. Observe that 𝑣1𝑣2 is unidirected 

2-colored and hence 𝑣2 ≠ 𝑠𝑙 (Fig. 10).
Now, we need to show that the maximum degree of ¬𝐻∗ +𝐷∗ is at most 4. We prove that, after having processed 𝑃𝑐 , no further 

boundary edge of any 𝑓 ∈ {𝑓1,… , 𝑓𝑎} is added to 𝐷: Assume to the contrary that there is a face 𝑓 ∈ {𝑓1,… , 𝑓𝑎} and an edge 𝑒 on the 
boundary of 𝑓 such that 𝑒 is not in 𝐷 after having processed 𝑃𝑐 but will be added later. Observe that 𝑒 is not a unidirected 1-colored 
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Fig. 8. The situation if 𝑃𝑐 is a path. The edges that we add to 𝐷 are marked in yellow. In the depicted situation, 𝑣1𝑣2 is not in 𝐻 . (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The situation in Case 2.2. The edge 𝑣1𝑣2 is marked in orange and in 𝐷 before we consider 𝑃𝑐 . The edges that we then add to 𝐷 are marked 
in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The situation in Case 3. The edge cf(𝑣1)𝑣1 is marked in orange and in 𝐷 before we consider 𝑃𝑐 . The edges that we then add to 𝐷 are marked 
in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

edge by Lemma 8. Hence, 𝑒 is in the extension of some path 𝑃𝑖 ∈ 2,3. Then, the minimal-covering path 𝑃𝑐′ ∈ 2,3 of 𝑃𝑖 needs to have 
lower index than 𝑃𝑐 , i.e., 𝑐′ < 𝑐. As 𝑒 is covered by 𝑃𝑐 , it is not covered by the minimal-covering path of 𝑃𝑖. Hence, 𝑒 will not be added 
to 𝐷, a contradiction.

First, consider the case 𝑎 > 1, i.e., there are at least two faces below 𝑃𝑐 . By Definition 3(ii), the boundary of every 𝑓𝑗 with 
𝑗 ∈ {1,… , 𝑎} contains at most two edges that are in the union of the extensions of singletons in {𝑠1,… , 𝑠𝑙}. In Case 1 and 2, for every 
𝑗 ∈ {2,… , 𝑎 − 1}, we add at most one edge of the boundary of 𝑓𝑗 to 𝐷. This implies that deg¬𝐻∗+𝐷∗ (𝑓 ∗

𝑗 ) ≤ 4 for every 𝑗 ∈ {2,… , 𝑎 − 1}
(Figs. 6 and 9). The same holds for every 𝑗 ∈ {1,… , 𝑎 − 2} in Case 3 (Fig. 10).

Let us now consider 𝑓 ∗
1  in the case 𝑎 > 1. In Case 1, we add at most one edge of the boundary of 𝑓1 to 𝐷 (Fig. 8). Hence, in 

that case deg¬𝐻∗+𝐷∗ (𝑓 ∗
1 ) ≤ 4. In the other two cases, 𝑃𝑐 is either a 2-singleton or a 1-2-singleton. Thus, 𝑣1𝑣0 is 3-1-colored and, by 

Corollary 1, (𝑣1𝑣0)∗ is unidirected 2-colored and outgoing at 𝑓 ∗
1 . The outgoing 3-colored edge at 𝑓 ∗

1  is 2-3-colored since its primal 
edge is unidirected 1-colored and incoming in 𝑣1 (Fig. 9). Also, 𝑓 ∗

1  does not have any incoming 1-colored edges. This implies that, by 
Definition 5, the edges incident to 𝑓 ∗

1  that might be in ¬𝐻∗ are only the outgoing 3-colored edge and the outgoing 1-colored edge. 
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Hence, deg¬𝐻∗ (𝑓 ∗
1 ) ≤ 2. In Case 2.1, 2.2 and 3, if 𝑣0 = 𝑠1 and 𝑠1 is a 1-2-singleton, then the edge from 𝑠1 to its right neighbor is in 

𝐷 and on the boundary of 𝑓1. Now, we argue that in each of those cases at most one more edge on the boundary of 𝑓1 might be in 
𝐷. In Case 2.1, 𝑣0𝑣1 is the only additional edge on the boundary of 𝑓1 that is in 𝐷. In Case 2.2, if 𝑠2 is on the boundary of 𝑓1, then 
the edge from 𝑠2 to its left neighbor is in 𝐷 (Fig. 9). This is the only additional edge of the boundary of 𝑓1 that might be in 𝐷 in 
Case 2.2. Finally, in Case 3 (here 𝑃𝑐 = 𝑣1 is a 2-singleton), if cf(𝑣1) is on the boundary of 𝑓1, then cf(𝑣1)𝑣1 is on the boundary of 𝑓1
and in 𝐷. Again, this is the only additional edge of the boundary of 𝑓1 that might be in 𝐷 in Case 3. Hence, in any of those cases 
deg¬𝐻∗+𝐷∗ (𝑓 ∗

1 ) ≤ 4.
Consider 𝑓 ∗

𝑎  in the case 𝑎 > 1. As 𝑎 > 1, the outgoing 2-colored edge at 𝑓 ∗
𝑎  is 2-3-colored. Assume that 𝑣𝑘𝑣𝑘+1 is 1-2-colored. Then, 

(𝑣𝑘𝑣𝑘+1)∗ is unidirected 3-colored and outgoing at 𝑓 ∗
𝑎  by Corollary 1. This implies, by Definition 5(iii) that (𝑣𝑘𝑣𝑘+1)∗ is not in 𝐻 and 

the outgoing 2-colored edge at 𝑓 ∗
𝑎  is in 𝐻 . Also, there is no incoming 1-colored edge at 𝑓 ∗

𝑎 . Thus, deg¬𝐻∗ (𝑓 ∗
𝑎 ) ≤ 2. Since in any case 

(Case 3 cannot occur here) we add at most two edges of the boundary of 𝑓𝑎 to 𝐷, we obtain that deg¬𝐻∗+𝐷∗ (𝑓 ∗
𝑎 ) ≤ 4 (Figs. 8 and 9). 

So assume that 𝑣𝑘𝑣𝑘+1 is 2-colored. By Definition 5, 𝑣𝑘𝑣𝑘+1 is not in 𝐻 and hence, by Lemma 9, (𝑣𝑘𝑣𝑘+1)∗ ∈ 𝐸(¬𝐻∗). As above there 
is no additional incoming 1-colored edge at 𝑓 ∗

𝑎 . The outgoing 2-colored edge at 𝑓 ∗
𝑎  is 2-3-colored since it is the dual of a unidirected 

1-colored edge. But this unidirected 1-colored edge is the clockwise first incoming 1-colored edge at 𝑣𝑘 and hence in 𝐻 . Thus, by 
Lemma 9, the outgoing 2-colored edge at 𝑓 ∗

𝑎  is not in ¬𝐻∗. The outgoing 1-colored edge at 𝑓 ∗
𝑎  is potentially in ¬𝐻∗. This yields that, 

deg¬𝐻∗ (𝑓 ∗
𝑎 ) ≤ 2 and since we add at most two edges to 𝐷 that are on the boundary of 𝑓𝑎, we have that deg¬𝐻∗+𝐷∗ (𝑓 ∗

𝑎 ) ≤ 4.
Consider 𝑓 ∗

𝑎−1 in Case 3. The edges incident to 𝑓 ∗
𝑎−1 that could possibly be in ¬𝐻∗ +𝐷∗ are an incoming 3-colored edge and its 

three outgoing edges (Fig. 10). Thus, deg¬𝐻∗+𝐷∗ (𝑓 ∗
𝑎−1) ≤ 4.

In the remaining case 𝑎 = 1, there is exactly one face below 𝑃𝑐 . If 𝑃𝑐 is not in max, we use exactly the same arguments that we used 
to show that deg¬𝐻∗+𝐷∗ (𝑓 ∗

𝑎 ) ≤ 4 for 𝑎 ≠ 1. If 𝑃𝑐 is an index-maximal subpath, then 𝑃𝑐 is a 1-2-singleton, as it cannot be a 2-singleton. 
By Corollary 1, the outgoing 2-colored and the outgoing 3-colored edge at 𝑓 ∗

1  are unidirected. Also, 𝑓 ∗
1  does not have any 1-colored 

incoming edges by Definition 1(iii). Thus, only the outgoing 1-colored edge might be in ¬𝐻∗ and we have deg¬𝐻∗ (𝑓 ∗
1 ) ≤ 1. We add 

at most three edges of the boundary of 𝑓1 to 𝐷. Those edges are; an edge of the extension of 𝑃𝑐 , the outgoing 2-colored edge of 𝑣0
and the outgoing 3-colored edge of 𝑣2. And we obtain that deg¬𝐻∗+𝐷∗ (𝑓 ∗

1 ) ≤ 4.
We are left to show that a vertex 𝑓 ′∗ of ¬𝐻∗ +𝐷∗ such that 𝑓 ′ is not below a path of 𝑐𝑜𝑣𝑒𝑟 has degree at most 3 in ¬𝐻∗ +𝐷∗. If 

𝑓 ′∗ is not incident to an edge of 𝐷∗, then we have that deg¬𝐻∗+𝐷∗ (𝑓 ′∗) = deg¬𝐻∗ (𝑓 ′∗) ≤ 3. If 𝑓 ′∗ is incident to an edge of 𝐷∗, then 𝑓 ′∗ is 
below a path 𝑃  of max. Such a path is either a 1-2-singleton or a 2-singleton. Hence, 𝑓 ′∗ does not have unidirected incoming 1-colored 
edges. We have that 𝑃 = 𝑢1 for a vertex 𝑢1 ∈ 𝑉 (𝐺). Assume that 𝑃  is a 1-2-singleton. Then, either 𝑢0𝑢1 ∈ 𝐷 or 𝑢1𝑢2 ∈ 𝐷. And thus, 𝑓 ′∗

is either incident to (𝑢0𝑢1)∗ or (𝑢1𝑢2)∗ in ¬𝐻∗ +𝐷∗. If 𝑓 ′∗ is incident to (𝑢0𝑢1)∗ ((𝑢1𝑢2)∗) in ¬𝐻∗ +𝐷∗, then the only edges incident 
to 𝑓 ′∗ that might be in ¬𝐻∗ are its outgoing 2-colored (3-colored) edge and its outgoing 1-colored edge, i.e., deg¬𝐻∗ (𝑓 ′∗) ≤ 2 and 
thus deg¬𝐻∗+𝐷∗ (𝑓 ′∗) ≤ 3. So assume that 𝑃  is a 2-singleton. Then, 𝑓 ′∗ is incident to the dual of the clockwise first incoming 1-colored 
edge of 𝑢1. This dual is 2-3-colored. As 𝑓 ′∗ does not have unidirected incoming 1-colored edges, the edges incident to 𝑓 ′∗ that are 
potentially in ¬𝐻∗ +𝐷∗ are its outgoing 2-colored, its outgoing 3-colored and its outgoing 1-colored edge (Fig. 10, but ignore the 
edges marked in yellow). We obtain that deg¬𝐻∗+𝐷∗ (𝑓 ′∗) ≤ 3.

We now show that we can assign degree-4-vertices of ¬𝐻∗ +𝐷∗ injectively to 1-2-singletons of 2,3 of 𝐺. This we later need in 
order to prove the desired upper bounds on the number of vertices of degree 4. Consider the arguments that show that ¬𝐻∗ +𝐷∗ has 
maximum degree at most 4. They also yield that every degree-4-vertex 𝑓 ∗ of ¬𝐻∗ +𝐷∗ such that 𝑓 is below a path of 𝑐𝑜𝑣𝑒𝑟 has at 
least one 1-2-singleton 𝑥 on its boundary such that 𝑓 ∗ is above 𝑥 and either the outgoing 2-colored edge at 𝑥 or the outgoing 3-colored 
edge at 𝑥 is on the boundary of 𝑓 and in 𝐷.

This yields that each degree-4-vertex 𝑓 ∗ in ¬𝐻∗ +𝐷∗ has at least one 1-2-singleton 𝑥 of 2,3 of 𝐺 on its boundary such that 𝑓 ∗ is 
above 𝑥 and either the outgoing 2-colored edge at 𝑥 or the outgoing 3-colored edge at 𝑥 is on the boundary of 𝑓 and in 𝐷. We assign 
each degree-4-vertex to such a 1-2-singleton. Since we never add both the outgoing 2-colored and the outgoing 3-colored edge of 
a 1-2-singleton to 𝐷, this assignment is injective. Also, we know that 𝑟1 is a 1-2-singleton but as there is no path in 𝑐𝑜𝑣𝑒𝑟 covering 
𝑟1, no degree-4-vertex is assigned to 𝑟1. Thus, we obtain that the number of degree-4-vertices in ¬𝐻∗ +𝐷∗ is at most the number of 
1-2-singletons minus one. As every 1-2-singleton has a 3-1-colored and a 1-2-colored edge, we obtain

#1 − 2 − singletons − 1 ≤ min{𝐵2,3, #3-1-colored edges, #1-2-colored edges} − 1

≤ min{𝐵2,3, 𝑛 − 𝐴3,1, 𝑛 − 𝐴1,2} − 1.

So far, we showed that 𝐻 −𝐷 is acyclic, ¬𝐻∗ +𝐷∗ has maximum degree at most 4 and that our desired upper bound on the number 
of degree-4-vertices holds for ¬𝐻∗ +𝐷∗. We now apply the same arguments that we used for 𝐻 to 𝐻 ′ = ¬𝐻∗ ∪ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1} and 
obtain 𝐷′. Hence, we have that 𝐻 ′ −𝐷′ is acyclic and 𝐻 +𝐷′∗ ⧵ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1}∗ has maximum degree at most 4. Since 𝐺∗ and 𝐺𝜎∗

differ on the outer face we obtain the following bound on the number of degree-4-vertices in 𝐻 +𝐷′∗ ⧵ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1}∗ of
#1-2-singletons − 1 ≤ min{𝐵′

2,3, #3-1-colored edges, #1-2-colored edges} − 1

≤ min{𝐵′
2,3, 𝑛

′ + 2 − 𝐴′
3,1, 𝑛

′ + 2 − 𝐴′
1,2} − 1.

In this formula, we refer to the number of 1-2-singletons and the number of 3-1-colored and 1-2-colored edges of the ordered path 
partition of 𝐺𝜎∗  given by the maximal 2-3-colored paths.

The edges 𝑏1𝑏2, 𝑏2𝑏3 and 𝑏3𝑏1 are not in 𝐺∗ and there is only one edge on the boundary of the outer face of 𝐺 that is also in 𝐷. We 
may thus ignore 𝑏1𝑏2, 𝑏2𝑏3 and 𝑏3𝑏1 in the following and freely switch from ¬𝐻∗ ∪ {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1} to ¬𝐻∗. Hence, we also remove 
any of the edges 𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1 from 𝐷′.
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Fig. 11. Illustration for the proof of Theorem 1. The clockwise first incoming 1-colored and the outgoing 3-colored edge of the singleton 𝑃 𝐶𝐾  are 
highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Then, the graphs ¬𝐻∗ −𝐷′ +𝐷∗ and 𝐻 −𝐷 +𝐷′∗ have maximum degree at most 4 and by construction ¬𝐻∗ −𝐷′ +𝐷∗ = ¬(𝐻 −
𝐷 +𝐷′∗)∗. An edge set 𝐸 ⊆ 𝐸(𝐺) is the edge set of a cycle in 𝐺 if and only if the edge set 𝐸∗ is a minimal cut in 𝐺∗ [24, Prop. 4.6.1]. 
Hence, in order to show that ¬𝐻∗ −𝐷′ +𝐷∗ and 𝐻 −𝐷 +𝐷′∗ are both trees it suffices to show that they are both acyclic. We show 
that ¬𝐻∗ −𝐷′ +𝐷∗ is acyclic. The same arguments might then be applied to 𝐻 −𝐷 +𝐷′∗.

For the sake of contradiction, assume that there is a cycle 𝐶 in ¬𝐻∗ −𝐷′ +𝐷∗. Remember that each index-maximal subpath in 
max is a singleton. We either pick its outgoing 3-colored or its in clockwise direction first incoming 1-colored edge and add it to 𝐷. 
This will eventually lead to a contradiction. By construction, every cycle in ¬𝐻∗ has at least one edge that is also in 𝐷′. Hence, 𝐶
has at least one edge of 𝐷∗. Since every edge of 𝐷 is in a cycle of 𝐻 , by [24, Prop. 4.6.1], every edge in 𝐷∗ joins two vertices of two 
different connected components of ¬𝐻∗.

For a connected component 𝐾 of ¬𝐻∗ let 𝐸𝐾 ⊆ 𝐸(𝐺∗) be the minimal edge cut separating 𝐾 and 𝐺∗ −𝐾. Let 𝐶𝐾 be the cycle of 𝐺
with 𝐸(𝐶𝐾 ) = 𝐸∗

𝐾 and let 𝑃𝐶𝐾 = 𝑃𝑖 ∈ 2,3 be the index-maximal subpath of 𝐶𝐾 (Fig. 11). Choose 𝐾 such that 𝐾 contains a vertex of 
𝐶 and 𝑃𝐶𝐾 = 𝑃𝑖 has smallest index. Since 𝐶 is a cycle and intersects at least two connected components of ¬𝐻∗, there are two edges 
𝑒, 𝑒′ ∈ 𝐸𝐾 that are also in 𝐶. Observe that these edges need to be in 𝐷∗.

Then, either 𝑒∗ or 𝑒′∗ is not the clockwise first incoming 1-colored or the outgoing 3-colored edge of 𝑃𝐶𝐾 . Assume w.l.o.g. that 𝑒′∗
is the clockwise first incoming 1-colored or the outgoing 3-colored edge of 𝑃𝐶𝐾 . Let 𝑃 ′ = 𝑃𝑗 ∈ 2,3 for some 𝑗 ∈ {1,… , 𝑠} be the path 
such that 𝑒∗ is its outgoing 3-colored or its in clockwise direction first incoming 1-colored edge. Since 𝑃𝐶𝐾 = 𝑃𝑖 is the index-maximal 
subpath of 𝐶𝐾 , we have 𝑗 < 𝑖. Hence, there exists a connected component 𝐾 ′ of ¬𝐻∗ such that 𝐾 ′ and 𝐶 have a vertex in common 
and 𝑃 ′ = 𝑃𝑗 is the index-maximal subpath of the cycle 𝐶𝐾′  with (𝐸(𝐶𝐾′ ))∗ being the minimal cut separating 𝐾 ′ and 𝐺∗ −𝐾 ′. This 
contradicts the definition of 𝐾. Thus, ¬𝐻∗ −𝐷′ +𝐷∗ and 𝐻 −𝐷 +𝐷′∗ are both trees. This concludes the proof. ∎

Corollary 2. The vertex 𝑟1 is a leaf in 𝐻 −𝐷 +𝐷′∗. All edges on the outer face of 𝐺 except for the outgoing 2-colored edge at 𝑟1 are in 
𝐻 −𝐷 +𝐷′∗. Hence, the dual vertex of the outer face is also a leaf in ¬𝐻∗ −𝐷′ +𝐷∗. Furthermore, we have that deg𝐻−𝐷+𝐷′∗ (𝑟2) = 2 and 
deg𝐻−𝐷+𝐷′∗ (𝑟3) ≤ 3. 

Proof.  Observe that in the proof of Theorem 1, there are only 3-1-colored, 1-2-colored and unidirected 1-colored edges in 𝐷′ and 
𝐷. Thus, by Corollary 1, there are only unidirected 2-colored, unidirected 3-colored and 2-3-colored edges in 𝐷′∗ and 𝐷∗. The only 
edges that are incident to 𝑟1 in 𝐻 are its outgoing 3-colored and its outgoing 2-colored edge. The outgoing 3-colored edge at 𝑟1 is 
in 𝐷. Apart from those two edges, 𝑟1 is incident to incoming unidirected 1-colored edges only. Hence, there is no edge in 𝐷′∗ that is 
incident to 𝑟1 and thus 𝑟1 is a leaf in 𝐻 −𝐷 +𝐷′∗.

The dual edges of the incoming unidirected edges at 𝑟3 and 𝑟2 are all covered by the last singleton 𝑏1 of 2,3 of 𝐺𝜎∗  (Fig. 5). 
Let 𝑒3 be the dual of the counterclockwise first unidirected 3-colored incoming edge at 𝑟3 and 𝑒2 be the dual of the clockwise first 
unidirected 2-colored incoming edge at 𝑟2. Let 𝐼𝑖 be the set of the duals of the unidirected 𝑖-colored incoming edges at 𝑟𝑖, 𝑖 = 2, 3. By 
Definition 5(i) and (ii), all edges in 𝐼2 and 𝐼3 are also in ¬𝐻∗, respectively. For 𝑒 ∈ 𝐼𝑖, 𝑖 = 2, 3, let 𝑃𝑒 be the path such that 𝑒 belongs 
to the extension of 𝑃𝑒. Observe that for all edges 𝑒 ∈ (𝐼3 ⧵ {𝑒3}) ∪ (𝐼2 ⧵ {𝑒2}) the root 𝑏1 covers 𝑒 but is not the minimal-covering path 
of 𝑃𝑒. Hence, those edges are not added to 𝐷′. On the other hand, 𝑏1 can be the minimal-covering path of 𝑃𝑒3  and/or 𝑃𝑒2 . Since we 
added 𝑏1𝑏3 to 𝐷′, Case 2.1 of the proof of Theorem 1 applies to 𝑏1. Thus, we do not add 𝑒2 to 𝐷′ but might add 𝑒3. We obtain that 
deg𝐻−𝐷+𝐷′∗ (𝑟2) = 2 and deg𝐻−𝐷+𝐷′∗ (𝑟3) ≤ 3.
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By Definition 5(iv), the edges on the outer face of 𝐺 are in 𝐻 . We add the outgoing 3-colored edge at 𝑟1 to 𝐷. The other edges on 
the outer face are not added to 𝐷 because they are either not covered by a path (3-1-colored and 1-2-colored edges) or they are not 
incident to a singleton (2-3-colored edges) of 2,3 of 𝐺. Hence, the dual vertex of the outer face is a leaf in ¬𝐻∗ −𝐷′ +𝐷∗. ∎
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