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Handling Editor: Dr. Pinyan Lu Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph
G* with edge set (E(G) — E(T))*. Griinbaum conjectured in 1970 that every planar 3-connected
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Maximum degree While Griinbaum’s conjecture remains open, Schmidt and the author recently improved the upper
Schnyder wood bound on the maximum degree from 5 (Biedl 2014) to 4.

In this paper, we modify this approach taking a further step towards Griinbaum’s conjecture. We
again obtain a spanning tree 7 such that both 7" and its co-tree have maximum degree at most 4
and, additionally, an upper bound on the number of vertices of degree 4 of T and its co-tree.

1. Introduction

Let a k-tree be a spanning tree whose maximum degree is at most k. In 1966, Barnette proved the fundamental theorem that every
planar 3-connected graph contains a 3-tree [1]. Both assumptions of Barnette’s theorem are essential in the sense that the statement
fails for arbitrary non-planar graphs (as the arbitrarily high degree in any spanning tree of the complete bipartite graphs K3 ,_; shows)
as well as for graphs that are not 3-connected (as the planar graphs K, ,_, show).

Since then, Barnette’s theorem has been extended and generalized in several directions [2-9]. Perhaps one of the most severe
strengthenings is a long-standing and to the best of our knowledge still open conjecture made by Griinbaum in 1970. Since the planar
dual G* of every (simple) planar 3-connected graph G is again planar and 3-connected, G* contains a 3-tree as well. By the well-known
cut-cycle duality, any spanning tree T of G implies that also (V*, (E(G) — E(T))*) is a spanning tree -T* of G*; we call =T* the co-tree
of T. Taking the best of these two worlds, Griinbaum made the following conjecture.

Conjecture (Griinbaum [10, p. 1148], 1970). Every planar 3-connected graph G contains a 3-tree T whose co-tree ~T* is also a 3-tree.

While Griinbaum’s conjecture is to the best of our knowledge still unsolved, progress has been made by Biedl [7], who proved the
existence of a 5-tree whose co-tree is a 5-tree. Exploiting insights into the structure of Schnyder woods, Schmidt and the author [11]
proved the existence of a 4-tree whose co-tree is a 4-tree and for 4-connected graphs, the author [12] showed that there exists a
3-tree whose co-tree is a 4-tree. In this paper, we improve on the result for 3-connected graphs by additionally giving upper bounds
on the number of vertices of degree 4 in both the tree and the co-tree. The approach is similar to the one in [11]. We use a different
candidate graph, show that it meets all necessary conditions and then apply a method similar to the one in [11]. We observe that
only under specific local conditions vertices of degree 4 might arise. Thus, we are able to count them.

We fix a minimal Schnyder wood S of G. S gives rise to a Schnyder wood of the suspended dual (a graph that differs from the
dual graph only on the outer face). Also, every Schnyder wood has three compatible ordered path partitions, denoted by P/-/*1,

* Corresponding author.
E-mail address: christian.ortlieb@uni-rostock.de

https://doi.org/10.1016/j.tcs.2025.115551

Received 22 November 2024; Received in revised form 1 August 2025; Accepted 8 September 2025

Available online 11 September 2025

0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/tcs
https://www.elsevier.com/locate/tcs

$k$


$k$


${K}_{3,t}$


$K_{3,n-3}$


$K_{2,n-2}$


$G^*$


$G$


$G^*$


$T$


$G$


$(V^*,(E(G)-E(T))^*)$


$\neg T^*$


$G^*$


$\neg T^*$


$T$


$G$


$T$


$\neg T^*$


$S$


$G$


$S$


$\mathcal {P}^{j,j+1}$


$j \in \{\red ,\green ,\blue \}$


$T$


$\neg T^*$


$\min \{ B'_{\green ,\blue }, n'+ 2 - A'_{\blue ,\red } , n'+ 2 - A'_{\red ,\green } \} - 1$


$\min \{ B_{\green ,\blue }, n - A_{\blue ,\red } , n - A_{\red ,\green } \} - 1$


$n$


$n'$


$B_{j,j+1}$


$B_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$A_{j,j+1}$


$A_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$A$


$A$


$vw$


$\{v,w\}$


$\sigma := \{r_\red ,r_\green ,r_\blue \}$


$G$


$r_\red $


$r_\green $


$r_\blue $


$G^\sigma $


$G$


$G$


$\sigma $


$G$


$\sigma $


$G^\sigma $


$G$


$\sigma $


$\sigma = \{r_\red ,r_\green ,r_\blue \}$


$G^\sigma $


$\sigma $


$G$


$G^\sigma $


$G^\sigma $


$e$


$e$


$e$


$i$


$i$


$i$


$j$


$i-j$


$i$


$r_i$


$i$


$v$


$e_\red ,e_\green ,e_\blue $


$v$


$v$


$i$


$i$


$v$


$v$


$e_{i+1}$


$e_{i-1}$


$i$


$T_i$


$i$


$i$


$G^\sigma $


$T_i$


$G$


$r_i$


$H$


$H^{-1}$


$H$


$i \in \{1,\dots ,3\}$


$T^{-1}_i \cup T^{-1}_{i+1} \cup T_{i+2}$


$G$


$\sigma $


$G^\sigma $


$G^\sigma $


$^*$


$G^\sigma $


$f$


$G$


$b_1$


$b_2$


$b_3$


$f^*$


$b^*_i$


$r_i$


$i$


$G$


$G^\sigma $


$G^{\sigma ^*}$


$G$


$G^{\sigma ^*}$


$G^\sigma $


$\{b_1,b_2,b_3\}$


$G^\sigma $


$G^{\sigma ^*}$


$1 \leq i \leq 3$


$r_i$


$b_{i-1}b_{i+1}$


$S$


$G^\sigma $


$S^*$


$G^{\sigma ^*}$


$(i-1)$


$e$


$G^\sigma $


$e^*$


$i$


$i+1$


$e$


$i$


$i-(i+1)$


$e$


$G^\sigma $


$(i-1)$


$e^*$


$e^*$


$i$


$i$


$b_i$


$i$


$S^*$


$b_1$


$b_2$


$b_3$


$S^*$


$S$


$G^\sigma $


$S^*$


$G^{\sigma ^*}$


$S^{*^*} = S$


$G^\sigma $


$G^{\sigma ^*}$


$\widetilde {G}$


$G$


$G^\sigma $


$G^{\sigma ^*}$


$S$


$G^\sigma $


$\widetilde {G}_S$


$\widetilde {G}$


$vw \in E(G^\sigma ) \cup E(G^{\sigma ^*})$


$z$


$G^\sigma $


$vw$


$vw$


$S$


$S^*$


$vw$


$v$


$i$


$vz \in E(\widetilde {G})$


$z$


$i$


$vw$


$w$


$j$


$wz \in E(\widetilde {G})$


$z$


$j$


$vw$


$v$


$i$


$zv \in E(\widetilde {G})$


$v$


$i$


$G^{\sigma ^*}$


$S^*$


$\widetilde {G}_S$


$\widetilde {G}_S$


$\widetilde {G}_S$


$G^\sigma $


$G^\sigma $


$S$


$G^\sigma $


$\widetilde {G}_S$


$G^\sigma $


$G^\sigma $


$P$


$x$


$P=x$


$P_1$


$P_2$


$P_1P_2$


$j \in \{1,2,3\}$


$\{r_\red , r_\green , r_\blue \}$


$G$


$\mathcal {P} = (P_0, \ldots , P_s)$


$G$


$(r_j,r_{j+1})$


$V(G)$


$i \in \{0, \ldots , s-1\}$


$V_i := \bigcup _{q=0}^i V(P_q)$


$C_i$


$r_{j+1}$


$r_j$


$G[V_i]$


$P_0$


$r_j$


$r_{j+1}$


$G$


$P_s = r_{j+2}$


$P_i$


$V(G) \setminus V_i$


$C_i$


$C_i$


$P_{i+1}$


$\mathcal {P} = (P_0, \ldots , P_s)$


$P_i$


$G$


$i$


$v \in P_i$


$v$


$r_{j+2}$


$V_i$


$v$


$G$


$P_i$


$G[V_{i-1}]$


$1 \leq i \leq s$


$j \in \{\red ,\green ,\blue \}$


$S$


$G^\sigma $


$G$


$j-(j+1)$


$S$


$G$


$(r_j,r_{j+1})$


$T^{-1}_j \cup T^{-1}_{j+1} \cup T_{j+2}$


$S$


$\mathcal {P}^{j,j+1}$


$\mathcal {P}^{\green ,\blue }$


$P_i \in \mathcal {P}^{j,j+1}$


$P_i := (v^i_1, \dots , v^i_k)$


$v^i_1v^i_2$


$j$


$v^i_1$


$C_i$


$P_i = (v^i_1, \dots , v^i_k)$


$i \in \{1, \ldots , s\}$


$v^i_0 \in C_{i-1}$


$r_{j+1}$


$v^i_{k+1} \in C_{i-1}$


$r_j$


$v^i_0$


$P_i$


$v^i_{k+1}$


$P_i$


$P_i^e := v^i_0 P_i v^i_{k+1}$


$P_i$


$0 < i \leq s$


$P_i$


$e$


$x$


$e$


$x$


$C_{i-1}$


$C_i$


$P_i \neq P_0$


$\mathcal {P}^{j,j+1}$


$P_i$


$V_{i-1}$


$C_{i-1}$


$v^i_0$


$v^i_{k+1}$


$v^i_0v^i_1$


$v^i_kv^i_{k+1}$


$G[V_i]$


$v^i_0v^i_1$


$(j+1)$


$v^i_1$


$v^i_kv^i_{k+1}$


$j$


$v^i_k$


$v^i_lx$


$P_i$


$V_{i-1}$


$v^i_0v^i_1$


$v^i_kv^i_{k+1}$


$P_i$


$(j+2)$


$x \notin \{v^i_0, v^i_{k+1}\}$


$G$


$\{r_\red , r_\green , r_\blue \}$


$n$


$n'$


$S$


$B_{j,j+1}$


$B_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$A_{j,j+1}$


$A_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$\min \{ B'_{\green ,\blue }, n'+ 2 - A'_{\blue ,\red } , n'+ 2 - A'_{\red ,\green } \} - 1$


$\min \{ B_{\green ,\blue }, n - A_{\blue ,\red } , n - A_{\red ,\green } \} - 1$


$T$


$G$


$\neg T^*$


$(V^*,(E(G)-E(T))^*)$


$G^*$


$\neg T^*$


$T$


$H$


$H'$


$G$


$H$


$H'$


$C$


$H$


$\mathcal {P}^{\green ,\blue }$


$C$


$H$


$G$


$\sigma $


$S$


$G^\sigma $


$\mathcal {P}^{\green ,\blue } = (P_0,\dots ,P_s)$


$S$


$P_i := (v_1,\ldots ,v_k) \neq P_0$


$\mathcal {P}^{\green ,\blue }$


$v_0$


$v_{k+1}$


$v_lw \notin \{v_0v_1,v_kv_{k+1}\}$


$v_l \in P_i$


$w \in V_{i-1}$


$v_k$


$w \notin \{v_0, v_{k+1}\}$


$G$


$P_{\red ,\blue }$


$p_{\green ,\blue }$


$P_{\green ,\red }$


$p_{\blue , \red }$


$P_{\blue ,\green }$


$p_{\red ,\green }$


$f$


$f^*$


$P_f$


$P_{i,j}$


$i$


$j$


$i-j$


$i$


$j$


$f$


$p_{i,j}$


$i-j$


$i$


$f$


$f$


$P_f = (x_1, \ldots , x_l)$


$f$


$f$


$P_f$


$p_{\green ,\blue }$


$P_{\red ,\blue }$


$P_f$


$x_1$


$x_l$


$s$


$\cf (s)$


$\cf (s) s$


$s$


$H$


$G$


$V(G)$


$s$


$\cf (s)s$


$f$


$P_f = (x_1, \ldots , x_l)$


$x_{l-1}x_l$


$H'$


${G^\sigma }^*$


$H$


$H'$


$e$


$e$


$p_{\green ,\blue }$


$e \in E(G)$


$e \in E(H)$


$e^* \notin E(H')$


$H' = \neg H^* \cup \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}$


$e$


$G$


$e$


$e^*$


$e \in E(H)$


$e^* \notin E(H')$


$e$


$e$


$s$


$e$


$\cf (s)s$


$s$


$e \in E(H)$


$e^*$


$e^* \notin E(H')$


$e$


$e$


$e$


$P_f = (x_1, \ldots , x_l)$


$f$


$e = x_{l-1}x_l$


$e \notin E(H)$


$e^* = \cf (f^*) f^*$


$e^* \in E(H')$


$e \neq x_{l-1}x_l$


$e \in E(H)$


$e^*$


$f^*$


$e^* \neq \cf (f^*) f^*$


$e^*\notin E(H')$


$e$


$e \in E(H)$


$e^*$


$b_\red $


$b_\red b_\green $


$b_\red $


$e^*$


$e^* \notin E(H')$


$e$


$e^*$


$e \notin E(H)$


$e^* \in E(H')$


$e$


$e^*$


$e \notin E(H)$


$e^* \in E(H')$


$e=uv$


$v$


$P_{v^*} = (x_1, \ldots , x_l)$


$e = \cf (v)v$


$e^* = x_{l-1}x_l$


$e^* \notin E(H')$


$e \in E(H)$


$e \neq \cf (v) v$


$e^* \in P_{v^*}$


$e^* \neq x_{l-1}x_l$


$e^* \in E(H')$


$e \notin E(H)$


$H$


$H'$


$H$


$H'$


$v \in V(H)$


$v$


$e \in E(H)$


$v$


$e$


$v$


$e$


$e$


$v$


$r_\green $


$r_\blue $


$e$


$v$


$e$


$e'$


$e'$


$v$


$e$


$e'$


$f$


$P_f = (x_1, \ldots , x_l)$


$e$


$e'$


$v$


$x_{l-1}x_l =e$


$e \notin E(H)$


$v$


$e$


$v$


$e$


$v$


$v$


$v$


$E(H)$


$\deg _H(v) \leq 3$


$v$


$e \in E(H)$


$v$


$v$


$E(H)$


$\cf (v)v$


$\deg _H(v)\leq 3$


$C$


$H$


$\mathcal {P}^{\green ,\blue } = (P_0, \dots , P_s)$


$S$


$P$


$C$


$P \subseteq P_M$


$M := \max \{i \mid P_i \cap V(C) \neq \emptyset \}$


$P$


$C$


$P_i = (v_1, \ldots , v_k) \in \mathcal {P}^{\green ,\blue }$


$P$


$C$


$H$


$P_i$


$P_i$


$v_0$


$C$


$C$


$v_1$


$\cf (v_1)v_1$


$H'$


$H$


$H'$


$P_i$


$k\geq 2$


$V_i := \bigcup _{q=0}^i V(P_q)$


$P_i$


$C$


$C \subseteq V_i$


$P_i$


$V_{i-1}$


$v_0v_1$


$v_k$


$P=P_i$


$P = v_k$


$P = v_k$


$e, e' \in C$


$v_kv_{k+1}$


$v_{k-1}v_k$


$v_k$


$v_kv_{k+1}$


$v_{k-1}v_k$


$v_k$


$v_kv_{k+1}$


$\cf (v_k) v_k$


$E(H)$


$e =\cf (v_k) v_k$


$e \neq e'$


$e' = v_kv_{k+1}$


$e'$


$v_{k+1} \notin P_i$


$v_kv_{k+1}$


$v_kv_{k+1}$


$H$


$H$


$P = P_i$


$v_0v_1$


$v_1$


$v_1$


$V_{i-1}$


$v_0v_1$


$H$


$v_0v_1$


$v_1v_2 \notin E(H)$


$P_i$


$v_0v_1$


$v_1$


$C$


$\cf (v_1)v_1$


$\mathcal {P}^{\green ,\blue }$


$\mathcal {P}^{\green ,\blue }$


$\mathcal {P}^{\green ,\blue }$


$s$


$\cf (s)s$


$B_{j,j+1}$


$B_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$A_{j,j+1}$


$A_{j,j+1}'$


$\mathcal {P}^{j,j+1}$


$S$


$S^*$


$G$


$\{r_\red , r_\green , r_\blue \}$


$n$


$n'$


$S$


$G^\sigma $


$T$


$G$


$\neg T^*$


$T$


\begin {equation*}\min \{ B'_{\green ,\blue }, n'+ 2 - A'_{\blue ,\red } , n'+ 2 - A'_{\red ,\green } \} - 1\end {equation*}


$\neg T^*$


\begin {equation*}\min \{ B_{\green ,\blue }, n - A_{\blue ,\red } , n - A_{\red ,\green } \} - 1.\end {equation*}


$\widetilde {G}_S$


$G$


$\widetilde {G}_S$


$G^{\sigma ^*}$


$S^*$


$G^{\sigma ^*}$


$H$


$H'$


$e \in E(H)$


$e^* \notin E(H')$


$H' = \neg H^* \cup \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}$


$b_\red b_\green $


$b_\green b_\blue $


$b_\blue b_\red $


$G^*$


$H$


$H'$


$H$


$H'$


$H$


$\neg H^* \cup \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}$


$H$


$D \subseteq E(H)$


$H$


$D'$


$H'$


$D = D' = \emptyset $


$\mathcal {P}^{\green ,\blue } = (P_0,\ldots , P_s)$


$\mathcal {P}_{\max }$


$P \in \mathcal {P}_{\max } \setminus \{P_s\}$


$P_L$


$L = \min \{ i \mid P_i \text { covers an edge of the extension of } P \}$


$P$


$\mathcal {P}_{cover}$


$\mathcal {P}_{\max } \setminus \{P_s\}$


$P_s = r_\red $


$\mathcal {P}^{\green ,\blue }$


$P_s$


$r_\red $


$D$


$\mathcal {P}_{cover}$


$\mathcal {P}^{\green ,\blue }$


$P_c = (v_1, \ldots , v_k) \in \mathcal {P}_{cover}$


$c \in \{1,\ldots , s\}$


$s_1, \ldots , s_l$


$P_c$


$G[V_{c-1}]$


$f_1, \ldots , f_a$


$v_k$


$f_1, \ldots , f_a$


$P_c$


$s_1, \ldots , s_l$


$v_{k+1} = s_l$


$v_kv_{k+1}$


$v_kv_{k+1}$


$(v_kv_{k+1})^*$


$s_l$


$s_l$


$\widetilde {G}_S$


$v_kv_{k+1}$


$\widetilde {G}_S$


$S$


$v_kv_{k+1}$


$\cf (s)s$


$H$


$s$


$V_{i-1}$


$s \in \{s_1, \ldots , s_l\}$


$\cf (s)s$


$D$


$\mathcal {P}_{cover}$


$H$


$H-D$


$s$


$\cf (s)s$


$P_c$


$P_c$


$D$


$v_1v_2$


$H$


$D$


$P_c$


$P_c = (v_1, \ldots , v_k)$


$s \in \{s_1, \ldots , s_l \}\setminus \{v_{k+1}\}$


$\cf (s)s$


$D$


$v_{k+1} = s_l$


$\cf (s_l)s_l$


$D$


$D$


$P_c = v_1$


$v_0v_1 \in D$


$v_1v_2 \in D$


$v_0v_1 \in D$


$v_1v_2 \in D$


$s \in \{s_1, \ldots , s_l \}$


$\cf (s)s$


$D$


$s \in \{s_1, \ldots , s_l \}\setminus \{v_0\}$


$D$


$v_0 = s_1$


$D$


$v_1v_2$


$D$


$P_c$


$D$


$P_c = v_1$


$\cf (v_1)v_1$


$D$


$s \in \{s_1, \ldots , s_l \}$


$\cf (s)s$


$D$


$v_1v_2$


$v_2 \neq s_l$


$\cf (v_1)v_1$


$D$


$P_c$


$D$


$\neg H^* + D^*$


$P_c$


$f \in \{f_1, \ldots , f_a\}$


$D$


$f \in \{f_1, \ldots , f_a\}$


$e$


$f$


$e$


$D$


$P_c$


$e$


$e$


$P_i \in \mathcal {P}^{\green ,\blue }$


$P_{c'} \in \mathcal {P}^{\green ,\blue }$


$P_i$


$P_c$


$c' < c$


$e$


$P_c$


$P_i$


$e$


$D$


$a > 1$


$P_c$


$f_j$


$j \in \{1, \ldots , a\}$


$\{s_1, \ldots , s_l\}$


$j \in \{2, \ldots , a-1\}$


$f_j$


$D$


$\deg _{\neg H^*+D^*}(f_j^*) \leq 4$


$j \in \{2, \ldots , a-1\}$


$j \in \{1, \ldots , a-2\}$


$f_1^*$


$a > 1$


$f_1$


$D$


$\deg _{\neg H^*+D^*}(f_1^*) \leq 4$


$P_c$


$v_1v_0$


$(v_1v_0)^*$


$f_1^*$


$f_1^*$


$v_1$


$f_1^*$


$f_1^*$


$\neg H^*$


$\deg _{\neg H^*}(f_1^*) \leq 2$


$v_0 = s_1$


$s_1$


$s_1$


$D$


$f_1$


$f_1$


$D$


$v_0v_1$


$f_1$


$D$


$s_2$


$f_1$


$s_2$


$D$


$f_1$


$D$


$P_c = v_1$


$\cf (v_1)$


$f_1$


$\cf (v_1)v_1$


$f_1$


$D$


$f_1$


$D$


$\deg _{\neg H^*+D^*}(f_1^*) \leq 4$


$f_a^*$


$a>1$


$a > 1$


$f_a^*$


$v_kv_{k+1}$


$(v_kv_{k+1})^*$


$f_a^*$


$(v_kv_{k+1})^*$


$H$


$f_a^*$


$H$


$f_a^*$


$\deg _{\neg H^*}(f_a^*) \leq 2$


$f_a$


$D$


$\deg _{\neg H^*+D^*}(f_a^*) \leq 4$


$v_kv_{k+1}$


$v_kv_{k+1}$


$H$


$(v_kv_{k+1})^* \in E(\neg H^*)$


$f_a^*$


$f_a^*$


$v_k$


$H$


$f_a^*$


$\neg H^*$


$f_a^*$


$\neg H^*$


$\deg _{\neg H^*}(f_a^*) \leq 2$


$D$


$f_a$


$\deg _{\neg H^*+ D^*}(f_a^*) \leq 4$


$f_{a-1}^*$


$f_{a-1}^*$


$\neg H^* + D^*$


$\deg _{\neg H^*+D^*}(f_{a-1}^*) \leq 4$


$a=1$


$P_c$


$P_c$


$\mathcal {P}_{\max }$


$\deg _{\neg H^*+D^*}(f_a^*) \leq 4$


$a \neq 1$


$P_c$


$P_c$


$f_1^*$


$f_1^*$


$\neg H^*$


$\deg _{\neg H^*}(f_1^*) \leq 1$


$f_1$


$D$


$P_c$


$v_0$


$v_2$


$\deg _{\neg H^*+ D^*}(f_1^*) \leq 4$


$f'^*$


$\neg H^* + D^*$


$f'$


$\mathcal {P}_{cover}$


$\neg H^* + D^*$


$f'^*$


$D^*$


$\deg _{\neg H^*+ D^*}(f'^*) = \deg _{\neg H^*}(f'^*) \leq 3$


$f'^*$


$D^*$


$f'^*$


$P$


$\mathcal {P}_{\max }$


$f'^*$


$P = u_1$


$u_1 \in V(G)$


$P$


$u_0u_1 \in D$


$u_1u_2 \in D$


$f'^*$


$(u_0u_1)^*$


$(u_1u_2)^*$


$\neg H^* + D^*$


$f'^*$


$(u_0u_1)^*$


$(u_1u_2)^*$


$\neg H^* + D^*$


$f'^*$


$\neg H^*$


$\deg _{\neg H^*}(f'^*) \leq 2$


$\deg _{\neg H^*+D^*}(f'^*) \leq 3$


$P$


$f'^*$


$u_1$


$f'^*$


$f'^*$


$\neg H^*+D^*$


$\deg _{\neg H^*+D^*}(f'^*) \leq 3$


$\neg H^* + D^*$


$\mathcal {P}^{\green ,\blue }$


$G$


$\neg H^* + D^*$


$f^*$


$\neg H^* + D^*$


$f$


$\mathcal {P}_{cover}$


$x$


$f^*$


$x$


$x$


$x$


$f$


$D$


$f^*$


$\neg H^* + D^*$


$x$


$\mathcal {P}^{\green ,\blue }$


$G$


$f^*$


$x$


$x$


$x$


$f$


$D$


$D$


$r_\red $


$\mathcal {P}_{cover}$


$r_\red $


$r_\red $


$\neg H^*+D^*$


\begin {align*}\# 1-2-\text {singletons} - 1 &\leq \min \{ B_{2,3} , \# \text {3-1-colored edges}, \# \text {1-2-colored edges}\} - 1\\ &\leq \min \{ B_{2,3}, n - A_{3,1}, n - A_{1,2} \} - 1.\end {align*}


$H - D$


$\neg H^*+D^*$


$\neg H^*+D^*$


$H$


$H' = \neg H^* \cup \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}$


$D'$


$H' - D'$


$H + D'^* \setminus \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}^*$


$G^*$


${G^\sigma }^*$


$H + D'^* \setminus \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}^*$


\begin {align*}\# \text {1-2-singletons} - 1 &\leq \min \{ B'_{2,3} , \# \text {3-1-colored edges}, \# \text {1-2-colored edges}\} - 1\\ &\leq \min \{ B'_{2,3}, n'+ 2 - A'_{3,1} , n'+ 2 - A'_{1,2} \} - 1.\end {align*}


$G^{\sigma ^*}$


$b_\red b_\green $


$b_\green b_\blue $


$b_\blue b_\red $


$G^*$


$G$


$D$


$b_\red b_\green $


$b_\green b_\blue $


$b_\blue b_\red $


$\neg H^* \cup \{b_\red b_\green , b_\green b_\blue , b_\blue b_\red \}$


$\neg H^*$


$b_\red b_\green , b_\green b_\blue , b_\blue b_\red $


$D'$


$\neg H^*-D' +D^*$


$H -D +D'^*$


$\neg H^*-D' +D^* = \neg (H-D+D'^*)^*$


$E \subseteq E(G)$


$G$


$E^*$


$G^*$


$\neg H^*-D' +D^*$


$H-D+D'^*$


$\neg H^*-D' +D^*$


$H-D+D'^*$


$C$


$\neg H^*-D' +D^*$


$\mathcal {P}_{\max }$


$D$


$\neg H^*$


$D'$


$C$


$D^*$


$D$


$H$


$D^*$


$\neg H^*$


$K$


$\neg H^*$


$E_K \subseteq E(G^*)$


$K$


$G^*-K$


$C_K$


$G$


$E(C_K) = E_K^*$


$P^{C_K} = P_i \in \mathcal {P}^{\green ,\blue }$


$C_K$


$P^{C_K}$


$K$


$K$


$C$


$P^{C_K} = P_i$


$C$


$\neg H^*$


$e,e' \in E_K$


$C$


$D^*$


$e^*$


$e'^*$


$P^{C_K}$


$e'^*$


$P^{C_K}$


$P' = P_j \in \mathcal {P}^{\green ,\blue }$


$j \in \{1,\dots , s\}$


$e^*$


$P^{C_K} = P_i$


$C_K$


$j < i$


$K'$


$\neg H^*$


$K'$


$C$


$P' = P_j$


$C_{K'}$


$(E(C_{K'}))^*$


$K'$


$G^*-K'$


$K$


$\neg H^*-D' +D^*$


$H-D+D'^*$


$r_\red $


$H-D+ D'^*$


$G$


$r_\red $


$H-D+ D'^*$


$\neg H^* - D' + D^*$


$\deg _{H-D+ D'^*}(r_\green ) = 2$


$\deg _{H-D+ D'^*}(r_\blue ) \leq 3$


$D'$


$D$


$D'^*$


$D^*$


$r_\red $


$H$


$r_\red $


$D$


$r_\red $


$D'^*$


$r_\red $


$r_\red $


$H-D+ D'^*$


$r_\blue $


$r_\green $


$b_\red $


$\mathcal {P}^{\green ,\blue }$


$G^{\sigma ^*}$


$e_3$


$r_\blue $


$e_2$


$r_\green $


$I_i$


$i$


$r_i$


$i = \green ,\blue $


$I_2$


$I_3$


$\neg H^*$


$e \in I_i$


$i = \green ,\blue $


$P_{e}$


$e$


$P_{e}$


$e \in (I_3 \setminus \{e_3\}) \cup (I_2 \setminus \{e_2\})$


$b_\red $


$e$


$P_e$


$D'$


$b_\red $


$P_{e_3}$


$P_{e_2}$


$b_\red b_\blue $


$D'$


$b_\red $


$e_2$


$D'$


$e_3$


$\deg _{H-D+ D'^*}(r_\green ) = 2$


$\deg _{H-D+ D'^*}(r_\blue ) \leq 3$


$G$


$H$


$r_\red $


$D$


$D$


$\mathcal {P}^{\green ,\blue }$


$G$


$\neg H^* - D' + D^*$

mailto:christian.ortlieb@uni-rostock.de
https://doi.org/10.1016/j.tcs.2025.115551
https://doi.org/10.1016/j.tcs.2025.115551
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115551&domain=pdf
http://creativecommons.org/licenses/by/4.0/

C. Ortlieb Theoretical Computer Science 1056 (2025) 115551

Jj € {1,2,3}. We define and explain those concepts in Section 2. The upper bound on the number of degree-4-vertices in T' and —-T* is
then given by min{Bés, n+2- A,3,1 o +2 - AII,Z} —1land min{B,;,n— A3,,n— A, ,} — 1, respectively. Here n (n') is the order of the
primal (dual) graph, B; i (B,,',j +1) is the number of singletons in P/-/*! of the primal (dual) graph and A o+ (A;,j +1) is the number
of paths in P//*! of the primal (dual) graph.

Our arguments work symmetrically for any choice of two colors. Thus, we obtain for example that if one of the compatible ordered
path partitions of the minimal Schnyder wood of the dual graph has only one singleton (which is the smallest possible number of
singletons), then the primal graph has a 3-tree such that its co-tree has maximum degree at most 4.

We discuss Schnyder woods, their lattice structure and ordered path partitions in Section 2 and our main result in Section 3.

2. Schnyder woods and ordered path partitions

We only consider simple undirected graphs. A graph is plane if it is planar and embedded into the Euclidean plane without
intersecting edges. The neighborhood of a vertex set A is the union of the neighborhoods of vertices in A. Although parts of this paper
use orientation on edges, we will always let vw denote the undirected edge {v, w}.

2.1. Schnyder woods

Let o := {r|,r,,r3} be a set of three vertices of the outer face boundary of a plane graph G in clockwise order (but not necessarily
consecutive). We call r, r, and r; roots. The suspension G° of G is the graph obtained from G by adding at each root of ¢ a half-edge
pointing into the outer face. With a little abuse of notation, we define a half-edge as an arc starting at a vertex but with no defined end
vertex. A plane graph G is o-internally 3-connected if the graph obtained from the suspension G° of G by making the three half-edges
incident to a common new vertex inside the outer face is 3-connected. Note that the class of c-internally 3-connected plane graphs
properly contains all 3-connected plane graphs.

Definition 1 (Felsner [13]). Let 6 = {r,r,,r3} and G° be the suspension of a c-internally 3-connected plane graph G. A Schnyder
wood of G° is an orientation and coloring of the edges of G° (including the half-edges) with the colors 1,2,3 (red, green, blue) such
that

(i) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite directions (we say e is bidirected). Every
direction of an edge is colored with one of the three colors 1,2,3 (we say an edge is i-colored if one of its directions has color i)
such that the two colors i and j of every bidirected edge are distinct (we call such an edge i — j-colored). Throughout the paper,
we assume modular arithmetic on the colors 1,2,3.

(ii) For every color i, the half-edge at r; is unidirected, outgoing and i-colored.

(iii) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored edges e, e,, e; of v occur in clockwise
order around v. For every color i, every incoming i-colored edge of v is contained in the clockwise sector around v from e, to
e;_; (see Fig. 1(ii)).

(iv) No inner face boundary contains a directed cycle in one color.

See Fig. 1(i) for illustration.

For a Schnyder wood and color i, let T; be the directed graph that is induced by the directed edges of color i. The following result
justifies the name of Schnyder woods.

1
1
T3 T2
(i) A Schnyder wood of the suspension of a 3- (ii) Example for Definition 1(iii) at a vertex
connected plane graph. in a Schnyder wood. The incoming edges in

color i are in the clockwise sector between the
outgoing edge in color 7 + 1 and the outgoing
edge in color 7 — 1.

Fig. 1. Illustrations for the definition of Schnyder woods.
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Fig. 2. The completion of G obtained by superimposing G° and its suspended dual G°" (the latter depicted with dotted edges). The primal Schnyder
wood is not the minimal element of the lattice of Schnyder woods of G, as this completion contains a clockwise directed cycle (marked in yellow).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Lemma 1 ([14,15]). For every color i of a Schnyder wood of G°, T; is a directed spanning tree of G in which all edges are oriented towards
the root r;.

For a directed graph H, we denote by H~! the graph obtained from H by reversing the direction of all its edges.

Lemma 2 (Felsner [16]). Foreveryie {1,...,3}, T, U ler'] UT,,, is acyclic.

2.2. Dual Schnyder woods

Let G be a s-internally 3-connected plane graph. Any Schnyder wood of G° induces a Schnyder wood of a slightly modified planar
dual of G° in the following way [17,18] (see [19, p. 30] for an earlier variant of this result given without proof). As common for
plane duality, we will use the plane dual operator * to switch between primal and dual objects (also on sets of objects).

Extend the three half-edges of G° to non-crossing infinite rays and consider the planar dual of this plane graph. Since the infinite
rays partition the outer face f of G into three parts, this dual contains a triangle with vertices b,, b, and b5 instead of the outer face
vertex f* such that b} is not incident to r; for every i (Fig. 2). Let the suspended dual G°" of G° be the graph obtained from this dual
by adding at each vertex of {b;, b,, b3} a half-edge pointing into the outer face.

Consider the superposition of G° and its suspended dual G°* such that exactly the primal dual pairs of edges cross (here, for every
1 <i < 3, the half-edge at r; crosses the dual edge b;_; b, ).

Definition 2. For any Schnyder wood S of G°, define the orientation and coloring S* of the suspended dual G° as follows (Fig. 2):

(i) For every unidirected (i — 1)-colored edge or half-edge e of G, color e* with the two colors i and i + 1 such that e points to the
right of the i-colored direction.
(ii) Vice versa, for every i — (i + 1)-colored edge e of G, (i — 1)-color ¢* unidirected such that ¢* points to the right of the i-colored
direction.
(iii) For every color i, make the half-edge at b; unidirected, outgoing and i-colored.

The following lemma states that S* is indeed a Schnyder wood of the suspended dual. The vertices b,, b, and b; are called the
roots of S*.

Lemma 3 ([20][14, Prop. 3). For every Schnyder wood S of G°, S* is a Schnyder wood of G°".

Since S** = .5, Lemma 3 gives a bijection between the Schnyder woods of G° and the ones of G°". Let the completion G of G be
the plane graph obtained from the superposition of G° and G°* by subdividing each pair of crossing (half-)edges with a new vertex,
which we call a crossing vertex (Fig. 2). The completion has six half-edges pointing into its outer face.

Any Schnyder wood S of G° implies the following natural orientation and coloring G of its completion G: For any edge vw €
E(G°)U E(G®"), let z be the crossing vertex of G° that subdivides vw and consider the coloring of vw in either S or S*. If vw is
outgoing of v and i-colored, we direct vz € E(G) toward z and i-color it; analogously, if vw is outgoing of w and j-colored, we direct
wz € E(G) toward z and j-color it. In the case that vw is unidirected, say without loss of generality incoming at v and i-colored, we
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direct zv € E(G) toward v and i-color it. The three half-edges of G*" inherit the orientation and coloring of S* for G ¢. By Definition 2,
the construction of Gy implies immediately the following corollary.

Corollary 1. Every crossing vertex of GS has one outgoing edge and three incoming edges and the latter are colored 1, 2 and 3 in counter-
clockwise direction.

Using results on orientations with prescribed outdegrees on the respective completions, Felsner and Mendez [15,21] showed that
the set of Schnyder woods of a planar suspension G° forms a distributive lattice. The order relation of this lattice relates a Schnyder
wood of G? to a second Schnyder wood if the former can be obtained from the latter by reversing the orientation of a directed
clockwise cycle in the completion. This gives the following lemma.

Lemma 4 ([15,211). For the minimal element S of the lattice of all Schnyder woods of G°, G ¢ contains no clockwise directed cycle.

We call the minimal element of the lattice of all Schnyder woods of G° the minimal Schnyder wood of G°.
2.3. Ordered path partitions

We denote paths as tuples of vertices such that consecutive vertices in the tuple are adjacent in the path. If a path P consists of
only one vertex x, we might also write P = x. The concatenation of two paths P, and P, we denote by P, P,.

Definition 3. For any j € {1,2,3} and any {r|,r,, r;}-internally 3-connected plane graph G, an ordered path partition P = (P,, ..., P,)
of G with base-pair (r;,r;,) is a tuple of induced paths such that their vertex sets partition V'(G) and the following holds for every
i€{0,...,s—1}, where V; := U;=0 V(P,) and the contour C; is the clockwise walk from r;,, to r; on the outer face of G[V}].

(D) Py is the clockwise path from r; to r;,; on the outer face boundary of G, and P, =r;,,.
(ii) Every vertex in P, has a neighbor in V(G) \ V,.
(iii) C; is a path.
(iv) Every vertex in C; has at most one neighbor in P, ;.

Remark 1. Our definition of an ordered path partition P = (B, ..., P,) is essentially the definition of Badent et al. [22], in which the
paths P, need to be induced (this is not explicitly stated in [22], but used in the proof of their Theorem 5).

By Definition 3(i) and (ii), G contains for every i and every vertex v € P; a path from v to r;,, that intersects ¥; only in v. Since
G is plane, we conclude the following.

Lemma 5. Every path P; of an ordered path partition is embedded into the outer face of G[V;_,] for every 1 <i <s.

2.3.1. Compatible ordered path partitions
We describe a connection between Schnyder woods and ordered path partitions that was first given by Badent et al. [22, Theorem 5]
and then revisited by Alam et al. [23, Lemma 1].

Definition 4. Let j € {1,2,3} and S be any Schnyder wood of the suspension G° of G. As proven in [23, arXiv version, Section 2.2],
the inclusion-wise maximal j — (j + 1)-colored paths of S then form an ordered path partition of G with base pair (r;,r;,), whose
order is a linear extension of the partial order given by reachability in the acyclic graph Tj‘1 U T/ :r'l UT},,; we call this special ordered
path partition compatible with .S and denote it by PJ/-/*!

For example, for the Schnyder wood given in Fig. 2, >3 consists of the six maximal 2-3-colored paths, of which four are single
vertices. We denote each path P, € P/*! by P, := (v/, ..., v}) such that v} v} is outgoing j-colored at vf.

Let C; be as in Definition 3. By Definition 3(iii) and Lemma 5, every path P, = (v’i, . v}'() of an ordered path partition satisfying
i €{l,...,s} has a neighbor ”6 € C;_, that is closest to r;,; and a different neighbor ”5&1 € C;_, that is closest to r; (Fig. 3). We call
v, the left neighbor of P;, v}, the right neighbor of P, and Pf := v P, the extension of P;; we omit superscripts if these are clear

ket k1
from the context. For 0 < i < s, let the path P, cover an edge e or a vertex x if e or x is contained in C;_;, but not in C;, respectively.

Lemma 6 ([11]). Every path P, # P, of a compatible ordered path partition P/*! satisfies the following (Fig. 3):

@ Every neighbqr of P, thatis in V;_, is contained in the path of C;_, between vg and vf{ Y
(i) "6”’1 and vj{uj(ﬂ are edges of G[V;].

(i) vyv! is (j + 1)-colored outgoing at v} and v} v, is j-colored outgoing at v.

(iv) Every edge vjx incident to P, and V,_, except for vjv| and v, v} ,, is unidirected toward P, (j + 2)-colored and satisfies x & {v}, v} }-

3. Bound on vertices of degree 4

Let G be a {r, r,, r3 }-internally 3-connected plane graph of order n with a dual graph of order »’ and a minimal Schnyder wood S.
Define B 1 (B; i+ l) to be the number of singletons in P//*! of the primal (dual) graph and A i+ (A;:j . l) to be the number of paths

in P//+! of the primal (dual) graph. We show that we can find a tree and co-tree with maximum degree four such that the number of
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G[Vi-1]
r3 T2
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Fig. 3. Illustration for Lemmas 6 and 7.
P
e
AL,
P31

Fig. 4. Illustration for Lemma 8. A face f, the paths on its boundary and the dual edges incident to f*. P, is marked in yellow. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

vertices with degree four in the tree is at most min{ B;3 n+2- Ag,l’
in the co-tree is at most min{ B, 3,n — A3 |, n— A;,} — 1.

Remember that for a spanning subgraph T of a plane graph G, -T* is the spanning subgraph (V*, (E(G) — E(T))*) of G*. As stated
in the introduction, -T* is a spanning tree if T is one and in that case called a co-tree.

We start with two lemmas on the structure of Schnyder woods. Then, we define our candidate graphs H and H' that have the
same structural properties. We show that they both have maximum degree at most 3 and that for every edge of G either the edge
itself is in H or its dual is in H'. We observe that for a cycle C in H the path with the highest index in 73 that contains a vertex
of C needs to be a singleton. This is the key observation that leads to the upper bound on the number of degree-4-vertices. Then, we
eventually prove the main theorem. The proof of the main theorem uses similar tools as presented in [11]. However, our candidate
graph H which is different from the one used in [11] and the aforementioned observation additionally yield the upper bound on the

number of vertices of degree 4.

n' +2— A7} -1 and the number of vertices with degree four

Lemma 7 ([11]). Let G be a o-internally 3-connected plane graph, S be the minimal Schnyder wood of G° and P%>? = (Py, ..., P,) be the
ordered path partition that is compatible with S. Let P; := (v}, ..., v;) # P, be a path of P*3 and vy and v, be its left and right neighbor.
Then, every edge v;w & {vgvy, UV} With v; € P, and w € V,_; is unidirected, 1-colored and incoming at v, and w & {vy, v} Fig. 3.

Lemma 8 (Di Battista et al[17].). The boundary of every inner face of G can be partitioned into six paths P, 3, p, 3, P |, p31, P35 and p; ,
which appear in that clockwise order. For those paths the following holds (Fig. 4).

M P, j consists of one edge which is either unidirected i-colored, unidirected j-colored or i — j-colored. Color i is directed in clockwise direction
and color j in counterclockwise direction around f.
(i) p;; consists of a possibly empty sequence of i — j-colored edges such that color i is directed clockwise around f.

Definition 5. Let f be an inner face. Define P, = (xy,...,x,) to be the path consisting of the edges on the boundary of f that are
2-3-colored or unidirected 3-colored such that color 3 is directed counterclockwise around f. By Lemma 8, P, is indeed a path. It
consists of p, ; and possibly P, ; (Fig. 4). Let P be such that color 3 is directed from x, to x,. For a vertex s, let cf(s) be the neighbor
such that cf(s)s is the clockwise first incoming 1-colored edge at s.

Define H to be the subgraph of G with vertex set VV(G) and the edge set given by
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4
“¥,

Fig. 5. Illustration for the definition of H (depicted in yellow) and H’ (depicted in orange). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(i) the 3-1-colored edges,

(ii) for every vertex s, the edge cf(s)s,
(iii) for every inner face f, all edges of P, = (x, ..., x;) except for x;_;x,,
(iv) the 2-3-colored edges on the outer face.

Define H' the same way for G°*. See Fig. 5 for illustration.

Observe that for each edge e added by Condition (iii) there exists an inner face such that e is in the 2-3-colored path p, ; of that
face (Fig. 4). Hence, those edges are all 2-3-colored.

Lemma 9. For an edge e € E(G), we have that e € E(H) if and only if e* ¢ E(H'). And thus, H' = ~H* U {b,b,, byb3, b3b, }.

Proof. In order to prove the claim, we consider all possible colorings of an edge e of G. We remind the reader of Corollary 1 which
yields the relation between the coloring of an edge and its dual.

Case 1: e is 3-1-colored.
Then, e* is unidirected 2-colored. Hence, e € E(H) by Definition 5(i), and e* ¢ E(H').

Case 2: e is 1-2-colored.
Let e be incoming 1-colored at vertex s. Then, e is the first incoming 1-colored edge cf(s)s at s in clockwise direction by
Definition 1(iii). Thus, e € E(H) by Definition 5(ii). The edge e* is unidirected 3-colored and hence e* ¢ E(H).

Case 3: e is 2-3-colored and e is not on the boundary of the outer face.
Then, e is on a path P; = (xy, ..., x;) for some face f. If e = x;_x,, then e ¢ E(H) and e* = cf(f*)f* by Lemma 8 and Corol-
lary 1. Hence, ¢* € E(H') by Definition 5(ii). If e # x,_,x,, then e € E(H) by Definition 5(iii), and e* is incoming 1-colored
at f*, but e* # cf(f*)f* (Fig. 4). Thus, e* ¢ E(H').

Case 4: e is 2-3-colored and on the boundary of the outer face.
Then, e € E(H) by Definition 5(iv). Observe that ¢* is incoming 1-colored at b,. As b, b, is also incoming 1-colored at b, and
appears clockwise before ¢*, we have that e* ¢ E(H').

Case 5: e is unidirected 2-colored.
Then, e* is 3-1-colored. Hence, e ¢ E(H) and e* € E(H') by Definition 5(i).

Case 6: e is unidirected 3-colored.
Then, e* is 1-2-colored. As in Case 2, we observe that e ¢ E(H) and e* € E(H').

Case 7: e = uv is unidirected 1-colored incoming at v.
Let P = (xy,...,x;). Assume that e = cf(v)v. Then, ¢* = x,_,x;. Hence, ¢* ¢ E(H') and e € E(H) by Definition 5(ii). If e #
cf(v)v, then e* € P,. and e* # x,_;x;,. We obtain that ¢* € E(H') and e ¢ E(H). O

Lemma 10. H and H’' both have maximum degree at most 3.

Proof. We show that H has maximum degree at most 3. The arguments work similarly for H’. Consider a vertex v € V(H).
Assume that v is incident to a 2-3-colored edge e € E(H) that is incoming 3-colored at v. Then, either Definition 5(iii) or (iv)
applies to e. We give a short argument that in both cases there is no edge in the clockwise sector around v between e and the outgoing

6
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3-colored edge. If Definition 5(iv) applies to e, then v is on the clockwise path from r, to r; on the boundary of the outer face, and
the claim obviously holds.

Otherwise, Definition 5(iii) applies to e. Assume, for the sake of contradiction, that there is an edge in the clockwise sector around
v between e and the outgoing 3-colored edge. Let ¢’ be the clockwise first such edge. By Definition 1(iii), ¢’ is unidirected 1-colored
and incoming at v. e and ¢’ are on a common face f. The path P; = (x,,...,x;) contains e. Since ¢’ is not outgoing 3-colored at v, we
obtain that x,_;x; = e and thus, e ¢ E(H), a contradiction. Hence, there is no edge in the clockwise sector around v between e and
the outgoing 3-colored edge.

By Definition 1(iii), the unidirected incoming 1-colored edges occur in the clockwise sector around v between e and the outgoing
3-colored edge. Thus, there is no unidirected incoming 1-colored edge at v. Hence, by Definition 5, the outgoing 1-colored edge and
the outgoing 3-colored edge at v are the only additional edges incident to v that might be in E(H). This yields that degy (v) < 3.

Assume that v is not incident to a 2-3-colored edge e € E(H) that is incoming 3-colored at v. Then, by Definition 5, there are at
most three edges incident to v that might be in E(H), namely cf(v)v, the outgoing 3-colored and the outgoing 1-colored edge. Thus,
we have deg, (v) <3. O

Definition 6. Let C be a cycle in H. Let P>? = (P,, ..., P,) be the compatible ordered path partition of S. Let P be the path of maximal
length in C such that P C Py, with M :=max{i | P,nV(C) # #}. We call P the index-maximal subpath of C.

Lemma 11. Let P, = (vy,...,v;) € P*? be a path containing an index-maximal subpath P of a cycle C in H. Then, P, is a singleton, the
edge from P, to its left neighbor v, is 3-1-colored and in C and the other edge in C incident to v, is cf(v,)v,. The same holds for H'.

Proof. We show the statement for H. The same arguments work also for H'. Assume, for the sake of contradiction, that P, is not a
singleton, i.e., k > 2. Remember that V; := U;:o V(P,). Since P; contains the index-maximal subpath of C, C C V,. By Lemma 7, the
edges that connect P, with vertices of V;_; are vyv; and edges with v, as an endpoint. Hence, we either have P = P, or P = v,.

If P = vy, then there are two edges e,¢’ € C in the clockwise sector between v, v, and v;_,v; around v,. This sector includes
U U4 and excludes v,_;v,. Observe that, by Definition 1(iii), those edges are the incoming 1-colored edges at v, and the outgoing
2-colored edge v, v, . By Definition 5, of the incoming 1-colored edges, only the in clockwise order first edge cf(v;)v, is in E(H).
Assume that w.l.o.g. e = cf(v))v,. As e # ¢/, we obtain that ¢/ = v,v,,, and ¢’ is not 1-2-colored. And since v,,; & P, v U, is also
not 2-3-colored. Hence, v, v, is unidirected 2-colored and in H, contradicting the definition of H. Thus, we obtain that P = P,.

By Lemma 7, the 3-colored outgoing edge v,yv, at v, is the only edge incident to v, that has an endpoint in V;_,. Thus, vyv, needs
to be in H. By Definition 5, vy, is 3-1-colored. Then, by Definition 5(iii), v,v, ¢ E(H), a contradiction.

This yields that P, is a singleton. As above, we obtain that v,v; needs to be 3-1-colored. By Definition 5, the other edge incident
to v in Cis cf(vpv,. O

Definition 7. Call a singleton in P23 a 1-2-singleton if its outgoing 2-colored edge is 1-2-colored and its outgoing 3-colored edge is
3-1-colored. And call a singleton in P23 a 2-singleton if its outgoing 2-colored edge is unidirected and its outgoing 3-colored edge is
3-1-colored.

Observe that, by Lemma 11, index-maximal subpaths (with respect to P23) are either 1-2-singletons or 2-singletons. And for a
1-2-singleton s, the outgoing 2-colored edge and cf(s)s coincide. Recall that B; ;. (B; j+1) is the number of singletons in P//*! of the

primal (dual) graph and 4; (A}_j ,1) is the number of paths in PJJ+1 of the primal (dual) graph with respect to S (S*).

Theorem 1. Let G be a {r|,r,,r3}-internally 3-connected plane graph of order n with a dual graph of order n’ and a minimal Schnyder
wood S of G°. There is a 4-tree T in G such that ~T* is a 4-tree. Also, the number of degree-4-vertices in T is at most

min{B, ., 0 +2 - A/

! !
2.3° 3 F2= AL -1

and the number of degree-4-vertices in =T* is at most

min{By3,n— A3, n— A5} — L.

Proof. By Lemma 4, the completion G ¢ of G contains no clockwise directed cycle. Since G ¢ contains the completion of the suspended
dual G°" apart from its three outer vertices which do not affect clockwise cycles, S* is a minimal Schnyder wood of G°".

Let H and H' be as defined in Definition 5. Recall that, by Lemma 9, e € E(H) if and only if ¢* ¢ E(H’), and thus H' = ~H* U
{byby, bybs, b3b,}. As by by, byby and byb, are not in G*, they do not affect our desired trees. By Lemma 10, H and H’ both have
maximum degree at most 3. Observe that H and H' might both have cycles and are not necessarily connected (Fig. 5).

We will therefore iteratively identify edges of cycles of H such that ~H* U {b,b,, b,b3, b3b,} still has maximum degree at most 4
when those edges are deleted in H. In order to do this, we iteratively define the set of edges D C E(H) that is deleted from H. Then,
we use the exact same arguments in order to define the set of edges D’ that is deleted from H’. We start with D = D’ = §.

Let P23 = (P, ..., P,) be the compatible ordered path partition formed by the maximal 2-3-colored paths. We will consider (and
formally define in the following) paths that are the first (i.e. index-minimal) path covering an index-maximal subpath. Denote by P,,,
the set of all index-maximal subpaths. For a path P € P, \ { P} refer to P, with L = min{i | P; covers an edge of the extension of P}
as the minimal-covering path of P. Denote by P, the set of the minimal-covering paths of the paths of P, \ {P,}.

Observe that P, = r| is the index-maximal subpath of the outer face boundary and a 1-2-singleton. There is no path in >3 that
covers an edge of P,. Hence, in order to destroy the outer face cycle, we add the outgoing 3-colored edge of r| to D.

Next, we process the paths of P,,,,, in reverse order of P23, i.e., from highest to lowest index. Let P, = (vy, ..., 0;) € Pyopers
c €{l,..., s} be the path under consideration. Let s, ..., s; be the index-maximal subpaths for which P, is the minimal-covering path,

7
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Fig. 6. Illustration for some of the definitions used in the proof of Theorem 1.

V1

U&

Fig. 7. Illustration for the proof of Theorem 1. If v v, is 2-colored, then G contains a clockwise cycle (depicted in yellow). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ordered clockwise around the outer face of G[V,_,] (Fig. 6). Let f|, ..., f, be the faces incident to v, in counterclockwise order from
the outgoing 3-colored edge to the outgoing 2-colored edge. We say that f, ..., f, are below P, and above sy, ..., s;.

Assume v, = s;. We give a short argument showing that in this case v,v, . is 1-2-colored. For the sake of contradiction, assume
that v, v, is 2-colored. Then, by Corollary 1, (v,v,,()* is 3-1-colored. As s, is an index-maximal subpath the outgoing 3-colored
edge at s, is 3-1-colored. Hence, G contains the clockwise cycle in Fig. 7, which contradicts the assumption that .S is the minimal
Schnyder wood. We obtain that v, v, is 1-2-colored in this case.

Remember that, by Lemma 11, cf(s)s and the outgoing 3-colored edge are the only edges in H that join s with vertices of V,_;.

Now, we select for each of the singletons s € {s|,...,s;} either the outgoing 3-colored edge or cf(s)s and add it to D. Thus, after
having processed every path in P, a cycle in H does not exist in H — D anymore. We aim for selecting those edges that have the
smallest possible impact on the maximum degree of the dual graph. Hence, for a 2-singleton s we always choose the edge cf(s)s.
Deleting this specific edge does not increase the degree of any face below P, (Fig. 8). In detail we distinguish the following three cases.

Augmentation procedure of D for the path P,:.

Case 1: P, = (v}, ..., v,) is not an index-maximal subpath.
For every singleton s € {s,...,5;} \ {vy41}, we add cf(s)s to D. If v, = 5, is a 2-singleton, we add cf(s))s; to D. Otherwise, we
add its outgoing 3-colored edge to D (Fig. 8).
Case 2: P, = v, is an index-maximal subpath and a 1-2-singleton. Then, we already have either vyv, € D or v,v, € D.
Case 2.1: vyv; € D.
We proceed as in Case 1.
Case 2.2: vjv, € D.
For every singleton s € {s;,...,s;} that is a 2-singleton, we add cf(s)s to D. For every singleton s € {s|,...,s;} \ {vy} that is
a 1-2-singleton, we add the outgoing 3-colored edge to D. If v, = s, is a 1-2-singleton, then add its outgoing 2-colored edge to D
(Fig. 9).
Case 3: P, = v, is an index-maximal subpath and a 2-singleton.
Then, we already added cf(v;)v, to D. For every singleton s € {s,...,s;}, we add cf(s)s to D. Observe that v,v, is unidirected
2-colored and hence v, # s; (Fig. 10).
Now, we need to show that the maximum degree of ~H* + D* is at most 4. We prove that, after having processed P,, no further
boundary edge of any f € {f|, ..., f,} is added to D: Assume to the contrary that there is a face f € {f|,..., f,} and an edge e on the
boundary of f such that e is not in D after having processed P, but will be added later. Observe that e is not a unidirected 1-colored

8
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Fig. 8. The situation if P, is a path. The edges that we add to D are marked in yellow. In the depicted situation, v, v, is not in H. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The situation in Case 2.2. The edge v,v, is marked in orange and in D before we consider P,. The edges that we then add to D are marked
in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The situation in Case 3. The edge cf(v,)v, is marked in orange and in D before we consider P,. The edges that we then add to D are marked
in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

edge by Lemma 8. Hence, e is in the extension of some path P; € P?3. Then, the minimal-covering path P,, € P?>3 of P, needs to have
lower index than P,, i.e., ¢’ < c. As e is covered by P,, it is not covered by the minimal-covering path of P,. Hence, e will not be added
to D, a contradiction.

First, consider the case a > 1, i.e., there are at least two faces below P,. By Definition 3(ii), the boundary of every f ; with
j € {1,...,a)} contains at most two edges that are in the union of the extensions of singletons in {s, ..., s;}. In Case 1 and 2, for every
Jj €{2,...,a—1}, we add at most one edge of the boundary of f; to D. This implies that degﬁH*JrD*(fj*) <4forevery j€{2,...,a—-1}
(Figs. 6 and 9). The same holds for every j € {1,...,a—2} in Case 3 (Fig. 10).

Let us now consider fiin the case a > 1. In Case 1, we add at most one edge of the boundary of f, to D (Fig. 8). Hence, in
that case deg_ g+, p«(f 1*) < 4. In the other two cases, P, is either a 2-singleton or a 1-2-singleton. Thus, v, v, is 3-1-colored and, by
Corollary 1, (v,vg)* is unidirected 2-colored and outgoing at f'. The outgoing 3-colored edge at f" is 2-3-colored since its primal
edge is unidirected 1-colored and incoming in v, (Fig. 9). Also, /| does not have any incoming 1-colored edges. This implies that, by
Definition 5, the edges incident to f|" that might be in ~H* are only the outgoing 3-colored edge and the outgoing 1-colored edge.

9
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Hence, deg. - (f]) < 2. In Case 2.1, 2.2 and 3, if vy =5, and s, is a 1-2-singleton, then the edge from s, to its right neighbor is in
D and on the boundary of f,. Now, we argue that in each of those cases at most one more edge on the boundary of f, might be in
D. In Case 2.1, vyv, is the only additional edge on the boundary of f; that is in D. In Case 2.2, if s, is on the boundary of f|, then
the edge from s, to its left neighbor is in D (Fig. 9). This is the only additional edge of the boundary of f, that might be in D in
Case 2.2. Finally, in Case 3 (here P, = v, is a 2-singleton), if cf(v,) is on the boundary of f;, then cf(v,)v, is on the boundary of f;
and in D. Again, this is the only additional edge of the boundary of f; that might be in D in Case 3. Hence, in any of those cases
degﬂH*JrD*(fl*) <4.

Consider f in the case a > 1. As a > 1, the outgoing 2-colored edge at f; is 2-3-colored. Assume that v, v, is 1-2-colored. Then,
(v Ug41)* is unidirected 3-colored and outgoing at f; by Corollary 1. This implies, by Definition 5(iii) that (v;v;,)* is not in H and
the outgoing 2-colored edge at /" is in H. Also, there is no incoming 1-colored edge at f;*. Thus, deg_«(f) < 2. Since in any case
(Case 3 cannot occur here) we add at most two edges of the boundary of f, to D, we obtain that deg_ ., p«(f}) < 4 (Figs. 8 and 9).
So assume that v, v, is 2-colored. By Definition 5, v, v, is not in H and hence, by Lemma 9, (v v,,1)* € E(~H*). As above there
is no additional incoming 1-colored edge at f;. The outgoing 2-colored edge at f} is 2-3-colored since it is the dual of a unidirected
1-colored edge. But this unidirected 1-colored edge is the clockwise first incoming 1-colored edge at v, and hence in H. Thus, by
Lemma 9, the outgoing 2-colored edge at f is not in =H*. The outgoing 1-colored edge at f is potentially in ~H*. This yields that,
deg_py+(f}) <2 and since we add at most two edges to D that are on the boundary of f,, we have that deg_y+, p«(f}) < 4.

Consider f*  in Case 3. The edges incident to f | that could possibly be in =H* + D* are an incoming 3-colored edge and its
three outgoing edges (Fig. 10). Thus, deg_ g+, p«( f:_l) <4.

In the remaining case a = 1, there is exactly one face below P,. If P, is not in P,,,, we use exactly the same arguments that we used
to show that deg_ y«, p«(f) < 4 for a # 1. If P, is an index-maximal subpath, then P, is a 1-2-singleton, as it cannot be a 2-singleton.
By Corollary 1, the outgoing 2-colored and the outgoing 3-colored edge at /" are unidirected. Also, f}* does not have any 1-colored
incoming edges by Definition 1(iii). Thus, only the outgoing 1-colored edge might be in =H* and we have deg_-(f}) < 1. We add
at most three edges of the boundary of f; to D. Those edges are; an edge of the extension of P,, the outgoing 2-colored edge of v,
and the outgoing 3-colored edge of v,. And we obtain that deg.j+, p-(f]) < 4.

We are left to show that a vertex f’* of ~H* + D* such that f’ is not below a path of P,,,,, has degree at most 3 in ~H* + D*. If
f'* is not incident to an edge of D*, then we have that deg_y«, p« (f'*) = deg_ = (f"*) < 3. If f’* is incident to an edge of D*, then f'* is
below a path P of P,,,. Such a path is either a 1-2-singleton or a 2-singleton. Hence, f’* does not have unidirected incoming 1-colored
edges. We have that P = u, for a vertex u; € V(G). Assume that P is a 1-2-singleton. Then, either uyu; € D or uju, € D. And thus, f'*
is either incident to (ugu;)* or (u;u,)* in ~H* + D*. If f’* is incident to (ugu;)* ((u;uy)*) in ~H* + D*, then the only edges incident
to f’* that might be in ~H* are its outgoing 2-colored (3-colored) edge and its outgoing 1-colored edge, i.e., deg_p«(f"*) <2 and
thus deg_ j«, p+«(f*) < 3. So assume that P is a 2-singleton. Then, f’* is incident to the dual of the clockwise first incoming 1-colored
edge of u;. This dual is 2-3-colored. As f’* does not have unidirected incoming 1-colored edges, the edges incident to f'* that are
potentially in ~H* + D* are its outgoing 2-colored, its outgoing 3-colored and its outgoing 1-colored edge (Fig. 10, but ignore the
edges marked in yellow). We obtain that deg_ z«, p« (f'*) < 3.

We now show that we can assign degree-4-vertices of =H* + D* injectively to 1-2-singletons of P23 of G. This we later need in
order to prove the desired upper bounds on the number of vertices of degree 4. Consider the arguments that show that ~H* + D* has
maximum degree at most 4. They also yield that every degree-4-vertex f* of ~H* + D* such that f is below a path of P,,,,, has at
least one 1-2-singleton x on its boundary such that f* is above x and either the outgoing 2-colored edge at x or the outgoing 3-colored
edge at x is on the boundary of f and in D.

This yields that each degree-4-vertex f* in ~H* + D* has at least one 1-2-singleton x of P23 of G on its boundary such that f* is
above x and either the outgoing 2-colored edge at x or the outgoing 3-colored edge at x is on the boundary of f and in D. We assign
each degree-4-vertex to such a 1-2-singleton. Since we never add both the outgoing 2-colored and the outgoing 3-colored edge of
a 1-2-singleton to D, this assignment is injective. Also, we know that r; is a 1-2-singleton but as there is no path in P,,,,, covering
ri, no degree-4-vertex is assigned to r;. Thus, we obtain that the number of degree-4-vertices in ~H* + D* is at most the number of
1-2-singletons minus one. As every 1-2-singleton has a 3-1-colored and a 1-2-colored edge, we obtain

#1 — 2 — singletons — 1 < min{B, 3, #3-1-colored edges, #1-2-colored edges} — 1

<min{By3,n— Az ,n— A} — 1.

So far, we showed that H — D is acyclic, ~H* + D* has maximum degree at most 4 and that our desired upper bound on the number
of degree-4-vertices holds for ~H* + D*. We now apply the same arguments that we used for H to H' = ~H* U {b,b,, b,b3, b3b; } and
obtain D’. Hence, we have that H' — D’ is acyclic and H + D'* \ {b,b,, b,b3, b3b; }* has maximum degree at most 4. Since G* and G°*
differ on the outer face we obtain the following bound on the number of degree-4-vertices in H + D™ \ {b;b,, b,bs, b3b; }* of

#1-2-singletons — 1 < min{ B} ,,#3-1-colored edges, #1-2-colored edges} — 1

< min{ B/,

243,n'+2—A§ n’+2—A’1’2}—1.

.17

In this formula, we refer to the number of 1-2-singletons and the number of 3-1-colored and 1-2-colored edges of the ordered path
partition of G°* given by the maximal 2-3-colored paths.

The edges b, b,, b,b; and b3b; are not in G* and there is only one edge on the boundary of the outer face of G that is also in D. We
may thus ignore b,b,, b,b; and b3b; in the following and freely switch from —~H™* U {b,b,, b, b3, b3b; } to ~H*. Hence, we also remove
any of the edges b, b,, b,b3, b3b; from D'.
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Fig. 11. Illustration for the proof of Theorem 1. The clockwise first incoming 1-colored and the outgoing 3-colored edge of the singleton Pk are
highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Then, the graphs ~H* — D' + D* and H — D + D"* have maximum degree at most 4 and by construction ~H* — D' + D* = ~(H —
D + D'*)*. An edge set E C E(G) is the edge set of a cycle in G if and only if the edge set E* is a minimal cut in G* [24, Prop. 4.6.1].
Hence, in order to show that “H* — D’ + D* and H — D + D’* are both trees it suffices to show that they are both acyclic. We show
that ~H* — D’ + D* is acyclic. The same arguments might then be applied to H — D + D’*.

For the sake of contradiction, assume that there is a cycle C in ~H* — D’ + D*. Remember that each index-maximal subpath in
Pax is a singleton. We either pick its outgoing 3-colored or its in clockwise direction first incoming 1-colored edge and add it to D.
This will eventually lead to a contradiction. By construction, every cycle in =H* has at least one edge that is also in D’. Hence, C
has at least one edge of D*. Since every edge of D is in a cycle of H, by [24, Prop. 4.6.1], every edge in D* joins two vertices of two
different connected components of = H*.

For a connected component K of ~H* let Ex C E(G*) be the minimal edge cut separating K and G* — K. Let Cg be the cycle of G
with E(Cy) = Ej and let P’k = P, € P*? be the index-maximal subpath of C (Fig. 11). Choose K such that K contains a vertex of
C and PCk = P, has smallest index. Since C is a cycle and intersects at least two connected components of ~H*, there are two edges
e,e’ € Eg that are also in C. Observe that these edges need to be in D*.

Then, either e* or ¢* is not the clockwise first incoming 1-colored or the outgoing 3-colored edge of PCk. Assume w.l.0.g. that ¢’*
is the clockwise first incoming 1-colored or the outgoing 3-colored edge of PCk. Let P’ = P e P23 for some j € {1, ..., s} be the path
such that e* is its outgoing 3-colored or its in clockwise direction first incoming 1-colored edge. Since PCk = P, is the index-maximal
subpath of Cy, we have j < i. Hence, there exists a connected component K’ of ~H* such that K’ and C have a vertex in common
and P’ = P; is the index-maximal subpath of the cycle Cy, with (E(Ck/))* being the minimal cut separating K’ and G* — K'. This
contradicts the definition of K. Thus, “H* — D’ + D* and H — D + D'* are both trees. This concludes the proof. [

Corollary 2. The vertex r; is a leaf in H — D + D'*. All edges on the outer face of G except for the outgoing 2-colored edge at r, are in
H - D + D'*. Hence, the dual vertex of the outer face is also a leaf in ~H* — D’ + D*. Furthermore, we have that degy_p ., p-(ry) = 2 and

deg_pypr(r3) < 3.

Proof. Observe that in the proof of Theorem 1, there are only 3-1-colored, 1-2-colored and unidirected 1-colored edges in D’ and
D. Thus, by Corollary 1, there are only unidirected 2-colored, unidirected 3-colored and 2-3-colored edges in D’* and D*. The only
edges that are incident to r; in H are its outgoing 3-colored and its outgoing 2-colored edge. The outgoing 3-colored edge at r, is
in D. Apart from those two edges, r; is incident to incoming unidirected 1-colored edges only. Hence, there is no edge in D’* that is
incident to r; and thus r| is a leaf in H — D + D'*.

The dual edges of the incoming unidirected edges at r; and r, are all covered by the last singleton b, of P2? of G°* (Fig. 5).
Let e3 be the dual of the counterclockwise first unidirected 3-colored incoming edge at r; and e, be the dual of the clockwise first
unidirected 2-colored incoming edge at r,. Let I; be the set of the duals of the unidirected i-colored incoming edges at r;, i = 2,3. By
Definition 5(i) and (ii), all edges in I, and I5 are also in ~H*, respectively. For e € I,, i = 2,3, let P, be the path such that e belongs
to the extension of P,. Observe that for all edges e € (I3 \ {e3}) U (I, \ {e,}) the root b; covers e but is not the minimal-covering path
of P,. Hence, those edges are not added to D’. On the other hand, b, can be the minimal-covering path of P,, and/or P,,. Since we
added b,b; to D’, Case 2.1 of the proof of Theorem 1 applies to b,. Thus, we do not add e, to D’ but might add e;. We obtain that
degp_pipr(ry) =2 and degy_p, pre(r3) < 3.

11
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By Definition 5(iv), the edges on the outer face of G are in H. We add the outgoing 3-colored edge at r; to D. The other edges on
the outer face are not added to D because they are either not covered by a path (3-1-colored and 1-2-colored edges) or they are not
incident to a singleton (2-3-colored edges) of P>? of G. Hence, the dual vertex of the outer face is a leaf in ~H* — D' + D*. [
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