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Abstract In the recent 30 years, Schnyder woods have become an invalu-
able asset in the study of planar graphs. We contribute to this research
with a brief and comprehensible proof of a new structural feature: every
Schnyder wood of a 3-connected planar graph on n vertices has a tree of
depth at least ⌊1/6 log2 n⌋. As a simple implication, our result improves
the previous hard-won lower bound on the length of an induced path in
such a graph to 1/6 log2 n.
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1 Introduction

The problem of finding a long induced path has first been investigated by Erdős
et al. [5] already in 1986. Let p(G) be the size, i.e. the number of vertices, of a
longest induced path of G. Erdős et al. [5] gave the lower bound p(G) ≥ 2r(G)−1
for a connected graph G in terms of the radius r(G) of G. In 2000, Arocha
and Valencia [3] found a lower bound of log∆(n) on the diameter (and hence
on p(G)) of a 3-connected planar graph G with bounded maximum degree ∆,
and the number of vertices n. If ∆ is not bounded, they show that there is an
induced path of size

√
log3(∆). In 2016, Di Giacomo et al. [4] gave the lower

bound p(G) ≥ log2 n
12 log2 log2 n for 3-connected planar graphs G. They also showed

that there exist 3-connected planar graphs G with p(G) ≤ 1.3 log2(n) + 5. Also
in 2016, Esperet et al. [6] could improve the lower bound of Di Giacomo et al. [4]
to 1/6(log2(n) − 3 log2 log2(n)) choosing a similar approach.

Here, we show the slightly better lower bound p(G) ≥ 1/6 log2(n). But, our
proof is by far simpler than the previous ones of Di Giacomo et al. [4] and Esperet
et al. [6] and also uses a completely different approach which yields new structural
insights. These new insights are discussed at the end of the introduction. The
next paragraph gives the reader an intuition about Schnyder woods.
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The concept of Schnyder woods is widely used in graph drawing and related areas
[1,2,8,7,11]. A Schnyder wood of a 3-connected planar graph is a triple of directed
spanning trees such that every edge is in at least one and at most two trees. The
three trees are colored red, blue and green. In every tree, the edges are oriented
towards the root. If an edge is in two different trees it has opposite orientations
in the two trees. Consider for example the red edges in the graph in Figure 1a.
They form a spanning tree rooted at r1. Additionally, around each vertex the
outgoing and ingoing edges need to obey a certain pattern. In the clockwise
sector between the outgoing red and the outgoing green edge only ingoing blue
edges occur. For the ingoing red and green edges symmetric properties hold. See
Figure 1b for illustration. A formal definition is given in Section 2. In this paper
we exploit the fact that a path from a leaf to the root in a tree of a Schnyder
wood needs to be an induced path. See Corollary 1 for this argument. So in order
to find a long induced path, we investigate the depth, i.e. the length of a longest
path from a leaf to the root, of all three trees in a Schnyder wood of a given
3-connected planar graph.

r1

r2r3

(a) A Schnyder wood of the suspension of
a 3-connected planar graph.
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(b) Example for Condition 3 at a vertex
in a Schnyder wood. The ingoing edges in
color i are in the clockwise sector between
the outgoing edge in color i + 1 and the
outgoing edge in color i − 1.

Figure 1: Illustrations for the definition of Schnyder woods.

Given a planar embedding of a 3-connected planar graph and a Schnyder wood
on this embedding, we show that at least one of the three trees has depth at least
1/6 log2(n), which, as mentioned above, directly implies that p(G) ≥ 1/6 log2(n).
To the best of our knowledge, we are the first to investigate the depth of the
trees of Schnyder woods. This new structural property of Schnyder woods is not
only of theoretical interest, but also yields the following extra information on the
problem of finding long induced paths.
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We easily obtain a linear time approach computing an induced path of the
desired size. In fact, given a 3-connected, planar graph, we compute a Schnyder
wood in linear time [7,10,11]. Then, we compute a longest leaf-to-root path for
each of the three trees of the Schnyder wood in linear time by traversing the
three trees e.g. with a breadth-first search. The longest such path has size at
least 1/6 log2(n).

Furthermore, we know that for every choice of three vertices which are on
the boundary of a common face, we can find an induced path of size at least
1/6 log2(n) that ends in one of the three vertices. It is easy to derive that there
are at least f/(2∆) different such paths, where f is the number of faces and ∆
the maximum degree.

Finally, for each such path there exists a grid drawing such that the path is
monotone in both coordinates. Such a drawing can be found using for example
the algorithm of Felsner [7] which is based on Schnyder woods and yields a
drawing on the (f − 1) × (f − 1) grid.

To conclude the paper, we show that, for every n ≥ 3, there exists a 3-
connected planar graph with a Schnyder wood such that the three trees have
depth at most log3(2n − 5) + 1 ≈ 0.63 · log2(n) + 2 using the approach of Di
Giacomo et al. [4].

2 Preliminaries

We use standard graph notation. The graphs G we consider in this paper are
simple, planar, 3-connected and come with a fixed embedding into the plane,
that is, G is plane.

We use the definition of Schnyder woods as given by Felsner [8]. The suspension
Gσ of G is obtained by choosing three different vertices r1, r2 and r3 which appear
in clockwise order on the outer face and by adding adjacent to each of those
vertices a half-edge which reaches into the outer face. With a little abuse of
notation, we define a half-edge as an arc starting at a vertex but with no defined
end vertex. The special vertices r1, r2 and r3 are called roots.

Given a suspension Gσ, a Schnyder wood rooted at r1, r2 and r3 is an
orientation and coloring of the edges with colors 1, 2 and 3 satisfying the
following conditions. Indices indicating colors are modulo 3. This means that e.g.
3 + 1 ≡ 1.

1. Every edge is either oriented in one direction (unidirected edge) or in both
directions (bidirected edge). Every edge receives a distinct color for every
direction. So unidirected edges receive one color and bidirected edges two
different colors.

2. For every i ∈ {1, 2, 3} the half-edge at ri is directed away from ri and colored
i.

3. For every vertex v and every color i ∈ {1, 2, 3} there is exactly one incident
outgoing (half-)edge of color i. The outgoing edges e1, e2 and e3 of v in colors
1, 2 and 3, respectively, occur clockwise around v. The ingoing edges of v in
color i are in the clockwise sector from ei+1 to ei−1.
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4. No interior face has a boundary which is a directed cycle in one color.

See Figure 1b and 1a for illustration. For ease of notation we define a Schnyder
wood of G to be a Schnyder wood of a suspension of G. Throughout the paper we
use red, green and blue synonymously for color 1, 2 and 3, respectively. Denote
by Ti the directed graph induced by the (uni- and bidirected) edges that have
color i. T1, T2 and T3 are called the trees of the Schnyder wood.

The following properties of Schnyder woods are used in this paper.

Lemma 1 (Felsner [7]). Every 3-connected plane graph has a Schnyder wood.

Lemma 2 (Felsner [7]). Ti is a directed tree rooted at ri for every i ∈ {1, 2, 3}.

For a directed graph H, let H−1 be the graph obtained from H by reversing
the orientation of all edges.

Lemma 3 (Felsner [7]). For all i ∈ {1, 2, 3} Ti ∪ T −1
i−1 ∪ T −1

i+1 does not have an
oriented cycle.

For every vertex v ∈ V (G) denote by Pi(v) the path from v to the root in the
tree Ti. The depth of Ti is the length (number of edges) of a longest path from a
vertex to the root in Ti. For ease of notation, Pi(v) also denotes the vertex set of
the path Pi(v). Hence, |Pi(v)| is the number of vertices of Pi(v) and Pj(w)∩Pi(v)
is the set of vertices Pj(w) and Pi(v) have in common.

Denote by Ri(v) the region bounded by and including Pi−1(v), Pi+1(v) and
the clockwise path from ri+1 to ri−1 on the outer face. See Figure 2 for an
illustration. For example, vertices on the path Pi−1(v) belong to both Ri(v) and
Ri+1(v).

Lemma 4 (Felsner [8]). Let i ∈ {1, 2, 3}. If u ∈ Ri(v) then Ri(u) ⊆ Ri(v).

Similar observations as in Felsner’s proof of Lemma 4 directly yield the
following lemma.

Lemma 5. Let i ∈ {1, 2, 3}. If u ∈ Ri(v) \ Pi+1(v), then Ri(u) \ Pi+1(u) ⊊
Ri(v) \ Pi+1(v) and v /∈ Ri(u) \ Pi+1(u).

Proof. We prove the claim for i = 1. For i ∈ {2, 3}, the proof is symmetric. Let
u ∈ R1(v) \ P2(v). By Lemma 4, R1(u) ⊆ R1(v). We now need to prove that
P2(v) intersects R1(u) only in P2(u). By definition, R1(u) is bounded by P2(u),
P3(u) and the clockwise path P from r2 to r3 on the outer face. Since P2(v) is
on the boundary of R1(v) and R1(u) ⊆ R1(v), we know that P2(v) can intersect
R1(u) only on its boundary, meaning P2(v) ∩ R1(u) ⊆ P3(u) ∪ P2(u) ∪ P .

In the following, we show that P2(v) ∩ (P \ P2(u)) = ∅. Let xv be the first
vertex of P2(v), starting at v, which is also on P and let xu be the first vertex of
P2(u), starting at u, which is also on P . Assume, for the sake of contradiction,
that xv comes after xu on P starting at r2. Since u ∈ R1(v), there needs to be a
vertex y at which P2(u) leaves R1(v). But P2(u) ⊆ R1(u) ⊆ R1(v), so we arrive
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at a contradiction. So xu comes after xv on P starting at r2 and P2(v) does not
intersect P \ P2(u). Thus P2(v) ∩ R1(u) ⊆ P3(u) ∪ P2(u).

For the sake of contradiction, assume that P2(v) ∩ P3(u) is non-empty. Let x
be the first vertex on the path P3(u) starting at u which is also in P2(v). If x = u,
then u ∈ P2(v), contradicting the assumption of the lemma. So x ̸= u. Since
u ∈ R1(v), there is either an outgoing 2-colored, an ingoing 3-colored and an
outgoing 3-colored edge around x in that clockwise order or there is an outgoing
3-colored, an ingoing 3-colored and an ingoing 2-colored edge around x in that
clockwise order. This both contradicts Condition 3 at x.

Remember that P2(v) ∩ R1(u) ⊆ P3(u) ∪ P2(u). Additionally, we now have
that P2(v) ∩ P3(u) = ∅, which then yields P2(v) ∩ R1(u) ⊆ P2(u). Together
with the above mentioned fact that R1(u) ⊆ R1(v), this yields that R1(u) \
P2(u) ⊆ R1(v) \ P2(v). Since u ∈ R1(v) \ P2(v) but u /∈ R1(u) \ P2(u), we have
R1(u) \ P2(u) ⊊ R1(v) \ P2(v). As v ∈ P2(v) and P2(v) ∩ R1(u) ⊆ P2(u), we
obtain v /∈ R1(u) \ P2(u). □

r1

r2r3

v
R2(v) R3(v)

R1(v)

P1(v)

P2(v)
P3(v)

Figure 2: Illustration of the definition of regions and paths for a vertex v.

3 Lower Bound on the Maximum Depth of a Tree

In this section we bound the maximum depth of a tree in a Schnyder wood of
a 3-connected planar graph G on n vertices from below by ⌊1/6 log2(n)⌋. As a
corollary we derive that G has an induced path of size at least ⌊1/6 log2(n)⌋ + 1.

Theorem 1. Let G be a 3-connected plane graph and let T1, T2 and T3 be the
trees of a Schnyder wood of G. Then at least one, T1, T2 or T3, has depth at least
⌊1/6 log2(n)⌋.
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The general idea of the proof is the following. For any set C ⊆ V (G) and
v ∈ C, we consider the set of vertices which are on P1(v) and also on a path
P3(w) for some w ∈ C. Naturally, this set

⋃
w∈C(P1(v) ∩ P3(w)) is a subset of

P1(v). The size of this set gives a natural lower bound on the depth on T1 and is
later denoted as lC

1 (v).
Now, we need to find a set of vertices C and a vertex x ∈ C such that⋃

w∈C(P1(x) ∩ P3(w)) (or
⋃

w∈C(P3(x) ∩ P1(w))) is large enough, i.e. has size
at least ⌊1/6 log2(n)⌋ + 1. Let C be a set such that for two vertices v, w ∈ C,
v ̸= w, we have that either v ∈ R1(w) \ P2(w) and w ∈ R3(v) \ P1(v) or vice
versa v ∈ R3(w) \ P1(w) and w ∈ R1(v) \ P2(v). See Figure 3b for illustration.
We show that such a set C of size at least n1/3 exists, and that there is a vertex
x ∈ C such that either

⋃
w∈C(P1(x) ∩ P3(w)) or

⋃
w∈C(P3(x) ∩ P1(w)) has size

at least ⌊1/2 log2(|C|)⌋ + 1, as required. Together this then yields the desired
lower bound of ⌊1/6 log2(n)⌋ on the depth of either T1 or T3, respectively.

r3

r1

r2

wv

(a) Two vertices in A.

r1

r2r3

v

w

(b) Two vertices in C.
v ≤2 w in P ′.

r2r3

r1

w

v

(c) Two vertices in A′.

Figure 3: Relation between vertices in the sets A, C and A′. For every vertex
x ∈ {v, w} the paths Pi(x), i = 1, 2, 3 are drawn.

Proof. First, we show that a set C with properties symmetric to the above
properties exists. Those properties are: |C| ≥ n1/3 and for some i ∈ {1, 2, 3}
we have for every v, w ∈ C, v ̸= w, that either v ∈ Ri(w) \ Pi+1(w) and
w ∈ Ri+2(v) \ Pi(v) or vice versa v ∈ Ri+2(w) \ Pi(w) and w ∈ Ri(v) \ Pi+1(v) .

We define the following relation ≤1 on V (G): For v, w ∈ V (G) let v ≤1 w if
v ∈ R1(w) \ P2(w) or v = w. The relation ≤1 is obviously reflexive. By Lemma 5,
≤1 is antisymmetric, since w /∈ R1(v) \ P2(v) for v ≤1 w and v ̸= w. Also by
Lemma 5, for u ≤1 v, v ≤1 w with v ̸= w, we have either u ∈ R1(v) \ P2(v) ⊆
R1(w) \ P2(w) or u = v. Therefore u ≤1 w. Hence ≤1 is transitive and, thus,
P := (V (G), ≤1) is a poset.

By Mirsky’s theorem [9], we either find a chain L of size at least n2/3 or we
can decompose P into at most n2/3 antichains. In the latter case, we find, by
the pigeonhole principle, an antichain A of size n/n2/3 = n1/3. Consider the set
A. For any two vertices v, w ∈ A, v ̸= w, we have that v /∈ R1(w) \ P2(w) and
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w /∈ R1(v) \ P2(v). Thus v is either in R3(w) \ P1(w) or R2(w) \ P3(w) . Assume
w.l.o.g. that the latter applies. Then w /∈ R2(v) \ P3(v), by Lemma 5. And thus
w needs to be in R3(v) \ P1(v). This is symmetric to the property which we are
aiming for and thus A is already fine for us. See Figure 3a for illustration.

Otherwise, if the chain L of P exists, we define the relation ≤2 on L: For
v, w ∈ L, let v ≤2 w if w ∈ R3(v) \ P1(v) or v = w. As above, P ′ := (L, ≤2)
is a poset and we either find a chain C of size n1/3 or an antichain A′ of size
n2/3/n1/3 = n1/3. For two vertices v, w ∈ C, v ̸= w, we have w.l.o.g. v ≤2 w
and hence w ∈ R3(v) \ P1(v). Since v and w are in L, a chain in P, we either
have w ≤1 v or v ≤1 w. If w ≤1 v then w ∈ R1(v) \ P2(v), contradicting
w ∈ R3(v) \ P1(v). So v ≤1 w and hence v ∈ R1(w) \ P2(w).

Similarly we obtain for two vertices v, w ∈ A′, v ̸= w, that v ∈ R1(w) \ P2(w)
and w ∈ R2(v) \ P3(v) or vice versa. Again, see Figure 3. Since the relations on
A, A′ and C are symmetric, we assume w.l.o.g. that C exists.

Let S ⊆ C. For all v ∈ S and all (i, j) ∈ {(1, 3), (3, 1)} define

lS
i (v) := |

⋃
x∈S

(Pi(v) ∩ Pj(x))|,

that is, the number of vertices on Pi(v) that are also on a path Pj(x) for
some x ∈ S. For example, lS

1 (v) is the number of vertices on P1(v) that are also
on a path P3(x) for any x ∈ S.

Let, furthermore,

lS
i := max

v∈S
lS
i (v).

and let ωS
i be a vertex of S, that realizes this maximum value, i.e. lS

i (ωS
i ) = lS

i .
In the following, we prove by induction that lC

3 + lC
1 ≥ ⌊log2(|C|)⌋ + 2.

Our bound then follows by pigeonhole principle. Clearly, if |C| = 1, we have
lC
3 + lC

1 = 2 = log2(1) + 2 and the claim holds.
Let |C| ∈ {2, 3}. Then we have two vertices v, w ∈ C, v ̸= w, such that

v ≤2 w in P ′. So v ∈ R1(w) \ P2(w) and w ∈ R3(v) \ P1(v). Especially w /∈ P1(v)
and hence P1(v) intersects P3(w) in a vertex different from w. See Figure 3b for
illustration. This yields lC

3 (w) ≥ 2. Thus

lC
3 + lC

1 ≥ lC
3 (w) + lC

1 (v) ≥ 2 + 1 = 3 = ⌊log2(3)⌋ + 2 ≥ ⌊log2(|C|)⌋ + 2.

So assume that |C| ≥ 4. Partition C = C1 ∪C2 ∪X such that |C1| = |C2| = 2z,
z is maximal, and C1 = {v1, . . . , vs}, C2 = {vs+1, . . . , v2s} with v1 ≤2 . . . ≤2 v2s

in P ′. By induction, lCk
3 + lCk

1 ≥ ⌊log2(|Ck|)⌋ + 2 = log2(|Ck|) + 2 for k = 1, 2.
So vl ∈ R1(ωC2

3 ) \ P2(ωC2
3 ) and ωC2

3 ∈ R3(vl) \ P1(vl) for l = 1, . . . , s. Hence
P1(vl) intersects P3(ωC2

3 ) for l = 1, . . . , s. Observe that, by Condition 3, this
intersection is a set of vertices that appears consecutively on both P1(vl) and
P3(ωC2

3 ). And, by Condition 1 and 3, the first vertex of P1(vl), starting at vl,
that is also on P3(ωC2

3 ) is the vertex where P3(ωC2
3 ) leaves R3(vl).
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ωC1
1

vs

ωC2
3

Y

C2

C1

Figure 4: Situation as in Case 1. The blue path from ωC2
3 to the root intersects

the red path from ωC1
1 to the root.

Define Y to be the intersection of the 1-colored path starting at vs and the
3-colored path starting at ωC2

3 , i.e. Y := P1(vs) ∩ P3(ωC2
3 ). For l = 1, . . . , s − 1 we

have that vs ∈ R3(vl) \ P1(vl) ⊆ R3(vl). Hence, by Lemma 4, P1(vs) ⊆ R3(vs) ⊆
R3(vl). Let p ∈ P1(vl) and q ∈ P1(vs) be the first vertex, starting at vl and vs,
of P1(vl) and P1(vs), respectively, that is also on P3(ωC2

3 ). As observed above,
P3(ωC2

3 ) leaves R3(vs) at q and R3(vl) at p. And since R3(vs) ⊆ R3(vl) the vertex
q occurs before p on P3(ωC2

3 ), starting at ωC2
3 . Since T1 is a tree, we know that

if P1(vl) ∩ P1(vs) ∩ P3(ωC2
3 ) ̸= ∅, then the first vertex of P3(ωC2

3 ), starting at
ωC2

3 , that is also on P1(vs) coincides with the first vertex of P3(ωC2
3 ), starting

at ωC2
3 , that is also on P1(vl). So if P1(vl) ∩ P3(ωC2

3 ) \ Y = ∅, then p = q and
P1(vl) ∩ P3(ωC2

3 ) = Y . Thus the following case distinction is exhaustive. Either
all 1-colored paths starting at vertices of C1 intersect P3(ωC2

3 ) in the set Y or
there is a vertex in C1 such that its 1-colored path intersects P3(ωC2

3 ) in a vertex
not in Y . We distinguish those two cases.

Case 1: Assume that P1(vl) ∩ P3(ωC2
3 ) = Y for l = 1, . . . , s − 1, see Figure 4.

So especially P1(ωC1
1 ) ∩ P3(ωC2

3 ) = Y . We now show that no 3-colored path
starting at a vertex in C1 intersects Y . So assume for the sake of contradiction
that there is an l ∈ {1, . . . , s} such that P3(vl) ∩ Y ̸= ∅.
If vl /∈ Y then P3(vl) intersects P1(vl) in a vertex different from vl. This
directly yields a directed cycle in T1 ∪ T −1

2 ∪ T −1
3 , contradicting Lemma 3. So,

assume vl ∈ Y . Then vl ∈ P1(vt) for some t ∈ {1, . . . , s} \ {l}, contradicting
the definition of C.
So P3(vl) ∩ Y = ∅ for l = 1, . . . , s. Remember that Y equals the intersection
of P1(ωC1

1 ) and P3(ωC2
3 ). So we have that

lC
1 (ωC1

1 ) = |
⋃

x∈C

(P1(ωC1
1 ) ∩ P3(x))|

≥ |
⋃

x∈C1

(P1(ωC1
1 ) ∩ P3(x))| + |Y | = lC1

1 (ωC1
1 ) + |Y |

≥ lC1
1 (ωC1

1 ) + 1 = lC1
1 + 1,
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and we obtain

lC
3 + lC

1 ≥ lC1
3 + lC

1 (ωC1
1 ) ≥ lC1

3 + lC1
1 + 1

≥ log2(|C1|) + 2 + 1 = log2(2|C1|) + 2
= ⌊log2(|C|)⌋ + 2.

Case 2: Assume that there is a vertex vl, l ∈ {1, . . . , s − 1} such that Z :=
(P1(vl) ∩ P3(ωC2

3 )) \ Y ̸= ∅, see Figure 5. We now show that no 1-colored path
starting at a vertex in C2 intersects Z. Assume for the sake of contradiction
that there is a vertex vt, t ∈ {s + 1, . . . , 2s} such that P1(vt) ∩ Z ̸= ∅.

vl

vs

ωC2
3

Y

C2

C1

Z

Figure 5: Situation as in Case 2. The red path from vl to the root intersects the
blue path from ωC2

3 to the root.

In the following we show that Z ∩R3(vs) = ∅. Then, since vt ∈ R3(vs)\P1(vs),
the 1-colored path P1(vt) starting at vt starts in R3(vs) and leaves it at some
vertex. This will lead to a contradiction.
We have that vl ≤2 vs in P ′ and vl ≠ vs so vs ∈ R3(vl) \ P1(vl). By Lemma 5,
R3(vs)\P1(vs) ⊊ R3(vl)\P1(vl). Assume there exists a vertex z ∈ Z ∩R3(vs).
Either z ∈ P1(vs), contradicting the definition of Z, or z ∈ R3(vs) \ P1(vs).
Then we have z /∈ R3(vl) \ P1(vl) ⊋ R3(vs) \ P1(vs) ∋ z, a contradiction. So
Z ∩ R3(vs) = ∅. As mentioned above vt ∈ R3(vs) \ P1(vs) since vs ≤2 vt and
vs ̸= vt. This situation requires the 1-colored path P1(vt) starting at vt to
leave R3(vs) at some vertex w ∈ R3(vs).
If this vertex w ∈ P1(vs), it would have two outgoing 1-colored edges. And
if w ∈ P2(vs) \ {vs}, it would have an outgoing 2-colored edge, an outgoing
1-colored edge and an ingoing 2-colored edge in that clockwise order. In both
cases Condition 3 would be violated at w.
So, P1(vt) ∩ Z = ∅ for t = s + 1, . . . , 2s. And as in Case 1 we have lC

3 (ωC2
3 ) ≥

lC2
3 (ωC2

3 ) + |Z| ≥ lC2
3 (ωC2

3 ) + 1 = lC2
3 + 1. And we obtain that
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lC
3 + lC

1 ≥ lC
3 (ωC2

3 ) + lC2
1 ≥ lC2

3 + 1 + lC2
1

≥ log2(|C2|) + 2 + 1 = log2(2|C2|) + 2
= ⌊log2(|C|)⌋ + 2.

By pigeonhole principle, there is an i ∈ {1, 3} such that lC
i ≥ ⌈1/2⌊log2(|C|)⌋+

1⌉ ≥ ⌊1/2 log2(n1/3)⌋ + 1 = ⌊1/6 log2(n)⌋ + 1. As lC
i − 1 is a lower bound on the

depth of Ti the claim follows. □

In 2016, Esperet et al. [6] showed that in a 3-connected planar graph there
exists an induced path with at least 1/2(1/3 log2(n)− log2 log2(n)) vertices. Using
Theorem 1, we can do slightly better.

Corollary 1. Every 3-connected planar graph G on n vertices has an induced
path of size ⌊1/6 log2(n)⌋ + 1.

Proof. For a vertex v ∈ V (G) the paths P1(v), P2(v) and P3(v) are always
induced. Assume that there exists a vertex v ∈ V (G) for which this does not hold.
Then there is an i-colored edge e = xy in G with x, y ∈ Pj(v), i, j ∈ {1, 2, 3}. By
Lemma 2, Ti is a tree and hence i ̸= j. Now, either T −1

i ∪ Tj or Ti ∪ Tj has an
oriented cycle, contradicting Lemma 3. So, Theorem 1 directly yields an induced
path of size ⌊1/6 log2(n)⌋ + 1. □

4 On the Tightness of the Lower Bound

The natural question is, if there are graphs Gn of size n with Schnyder woods
such that the maximum depth of a tree in the Schnyder wood is bounded from
above by a function of n.

Di Giacomo et al. [4] considered this kind of question for induced paths.
They showed that for every n ≥ 3 there exists a 3-connected planar graph
G on n vertices such that the longest induced path in G has size at most
2 log3(2n − 5) + 3 ≈ 1.3 · log2(n) + 5 using planar 3-trees. We use the same
graphs to show that there are 3-connected planar graphs Gn of size n with
Schnyder woods such that the maximum depth of any of its trees is at most
log3(2n − 5) + 1 ≈ 0.63 · log2(n) + 2.

We use the definition of (almost) complete planar 3-trees as given by Di
Giacomo et al. [4]: G0 is a triangle and is defined to be a complete planar 3-tree.
We obtain Gi+1 from Gi by placing a vertex into each internal face and connecting
this vertex to the vertices on the face boundary. Concerning the Schnyder wood
of those graphs, we observe: G0 has a unique Schnyder wood S0. We obtain
Si+1 from Si by the following operation: The edges already in Gi retain their
orientation and coloring. We assign the only possible orientation and coloring to
the new edges which does not violate Condition 3. See Figure 6 for illustration.
An almost complete planar 3-tree Ĝi is a graph which is constructed as follows.
We take a complete planar 3-tree Gi−1 and only add in a subset of the internal
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faces new vertices. They are connected as above and also the Schnyder wood
of Ĝi is obtained as above. Complete planar 3-trees are also almost complete
planar 3-trees. Now, take an almost complete planar 3-tree Ĝi and, for every
vertex v /∈ V (G0), define the level of v to be the smallest integer i such that v is
in Ĝi but not in Gi−1. For vertices of G0 define the level to be 0.

(a) The complete planar 3-tree G2. (b) G2 together with its Schnyder wood.

Figure 6: Illustration for the definition of complete planar 3-trees.

Lemma 6. For every n ≥ 3 there exists a 3-connected planar graph with a
Schnyder wood such that the trees T1, T2 and T3 all have depth at most log3(2n −
5) + 1.

Proof. Let Ĝi be an almost complete planar 3-tree with n vertices. Gi−1 has
3i−1+5

2 vertices and hence n ≥ 3i−1+5
2 . Every leaf of a tree of the Schnyder wood

of Ĝi has level at most i and the path from a vertex to the root in a tree of the
Schnyder wood is strictly decreasing in level. So the maximum depth of a tree in
Ĝi is at most i ≤ log3(2n − 5) + 1. □

5 Conclusion

We showed that every Schnyder wood of a 3-connected planar graph G on n
vertices has a tree of depth at least 1/6 log2(n). As a leaf-to-root path in a tree of
a Schnyder wood is an induced path in G, this yields an induced path of size at
least 1/6 log2(n). Schnyder woods are well investigated objects. So without any
additional effort we obtain a linear time algorithm which finds such an induced
path of size at least 1/6 log2(n). Also, there is a grid drawing such that the long
induced path is monotone in both coordinates and we know that there are at
least f/(2∆) different such paths. Here f is the number of faces of G and ∆ its
maximum degree. Furthermore, every improvement of the bound on the depth
of trees in Schnyder woods directly leads to the improvement of the bound on
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the length of induced paths. We are confident, that via this approach further
improvements are possible.

We also showed that there exists a graph with a Schnyder wood such that
each of the three trees has depth at most log3(2n − 5) + 1 ≈ 0.63 · log2(n) + 2.
This gives an idea where the limits of this new method might be.

Acknowledgment The author would like to express his gratitude to Christian
Rosenke for his valuable input.
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