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Abstract

Map graphs generalize planar graphs and were introduced by Chen, Grigni and Papadimitriou
[STOC 1998, J.ACM 2002]. They showed that the problem of recognizing map graphs is in NP by
proving the existence of a planar witness graph W . Shortly after, Thorup [FOCS 1998] published a
polynomial-time recognition algorithm for map graphs. However, the run time of this algorithm is
estimated to be Ω(n120) for n-vertex graphs, and a full description of its details remains unpublished.

We give a new and purely combinatorial algorithm that decides whether a graph G is a map graph
having an outerplanar witness W . This is a step towards a first combinatorial recognition algorithm
for general map graphs. The algorithm runs in time and space O(n + m). In contrast to Thorup’s
approach, it computes the witness graph W in the affirmative case.
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1 Introduction

Consider the adjacency graph of the states of the USA, where two states are adjacent if their borders
intersect. Since Arizona, Colorado, New Mexico and Utah meet pairwise at a single common point, the
adjacency graph will not be planar; however, it will be a map graph. In (much) more detail, a map of
a graph G = (V,E) is a function M that maps each vertex v ∈ V to a disc homeomorph M(v) on the
sphere (the states) such that, for any two distinct vertices v, w ∈ V , the interiors of M(v) and M(w) are
disjoint, and v and w are adjacent in G if and only if the boundaries of M(v) and M(w) intersect. A
graph G is a map graph if a map of G exists. The points of the sphere that are not covered by M fall
into open connected regions; the closure of each such region is a hole of M.

By definition, map graphs contain and exceed the class of planar graphs. They have applications in graph
drawing, circuit board design and topological inference problems [4]. Chen, Grigni and Papadimitriou [2]
characterized map graphs as the half-squares of sufficiently small planar bipartite graphs called witnesses
(we give precise definitions for both terms in the next chapter). This result allows, similar to Kuratowski’s
Theorem for planar graphs, to use purely combinatorial arguments for an object that has been originally
defined by topological properties. Since such witnesses can always be chosen small in size (O(n) vertices
for map graphs on n vertices), the recognition problem for map graphs is in NP. In 1998, Chen et al.
therefore raised the question whether recognizing map graphs is in P.

This problem was resolved shortly after by Thorup [20], whose solution is based on a carefully designed
topological treatment. However, a full version of the extended abstract [20] has, to the best of our
knowledge, not yet appeared. The algorithm is complicated; its run time is not given explicitly, but
estimated to be at least Ω(n120). Moreover, driven by topological arguments, the algorithm does not
produce a witness if the graph is indeed a map graph, although a combinatorial description of this witness
is at hand. In this view, an important question left open is whether there is a polynomial-time certifying
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algorithm in the sense of McConnell et al. [16], where a good candidate for a certificate would be the
witness mentioned above.

Our Contribution. We give a purely combinatorial recognition algorithm for map graphs that have an
outerplanar witness (rather than a planar witness). Map graphs with an outerplanar witness are general
enough that they can have unbounded treewidth; in particular, cliques of any size may belong to this
class of graphs.

Theorem 1. There is an algorithm that decides in time O(n + m) whether G is a map graph with an
outerplanar witness W , and if so, outputs W and a map of G.

Our algorithm runs in time and space O(n + m) and is certifying. This is the first non-trivial
step towards a combinatorial and efficient recognition algorithm for general map graphs. Although the
restriction to outerplanar witnesses is somewhat specific compared to the general case of planar witnesses,
we will show structural properties for certain classes beyond (e.g. for K2,k-free witnesses, and for graphs
with small separators), that might be important for solving the general case.

We remark that the main algorithmic task is to compute a witness W , or to decide that none exists.
Creating a map from W is a simple task that can be accomplished in linear time [2]. The crucial part of
computing a witness W is that we know only a subset of the vertices of W ; we need to do non-trivial
algorithmic work in order to compute the remaining vertices of W . This is the reason why recognizing
graphs that are half-squares of planar graphs is more challenging than recognizing graphs that are squares
of planar graphs [15].

Related Work. By definition, planar graphs are an important subclass of map graphs, and planar
graphs have been known since the 1970s to be recognizable in time O(n) [12]. Nowadays, several other
linear-time algorithms for planar graph recognition exist [18, 1], and so it is natural to ask whether they
can be generalized to the much wider class of map graphs. Let a d-map graph be a map graph that
has a witness in which every intersection point has at most d neighbors (states). The planar graphs are
exactly the map graphs for which at most three states meet at each single point; thus, by the well-known
linear-time recognition algorithms for planar graphs, 3-map graphs can be recognized in O(n) time.

An intricate cubic-time recognition algorithm for a subclass of 4-map graphs was given by Chen et
al. [3]; here, the 4-map graphs are required to be hole-free, meaning that there is at most one connected
region of the plane that is not covered by states or borders. However, even efficiently recognizing general
4-map graphs in polynomial time remains an open problem; Thorup’s algorithm does not necessarily
give an embedding minimizing the maximum degree of the intersection points, so it cannot be used to
recognize 4-map graphs.

Another motivation for d-map graphs is the study of 1-planar graphs, which are the graphs that can
be embedded in the plane such that each edge crosses at most one other edge. Recognizing 1-planar
graphs is NP-complete [10, 14]. Chen et al. [3] observe that triconnected hole-free 4-map graphs form a
special class of 1-planar graphs, which is hence efficiently recognizable. It would be interesting to know
where exactly the recognition problem becomes NP-complete between these two graph classes.

Further interest stems from the parameterized complexity community: Generalizing earlier algorithms
for problems on planar graphs, Demaine et al. [5] gave fixed-parameter algorithms for combinatorial
optimization problems such as minimum dominating set in map graphs. Fomin et al. [9] gave PTAS’s for
optimization problems on map graphs; they later improved these to EPTAS’s [8].

2 Preliminaries

All graphs considered in this paper are finite, simple, and undirected. For a graph G, let V (G) and E(G)
denote its vertex set and edge set, and let n := |V (G)| and m := |E(G)|. For a vertex v ∈ V (G), let
NG(v) be the set of neighbors of v in G. For a subset V ′ ⊆ V (G), let G[V ′] denote the subgraph of G
induced by V ′. For a graph G, its square G2 is the graph on vertex set V (G) in which two vertices are
adjacent if their distance in G is at most two.

Witnesses. A witness of a map graph G = (V,E) is a bipartite planar graph W = (V ] I, EW )
with EW ⊆ V × I such that W 2[V ] = G. The graph W 2[V ] is also called the half-square of W , as it
is the square of W restricted to the side V of the bipartition. The vertices in I are called intersection
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points, the vertices in V real vertices. We say that a witness W is a tree witness if it is a tree; analogously,
outerplanar witnesses are outerplanar and the usual witnesses, which are planar, are sometimes called
planar witnesses.

Proposition 1 ([2]). A graph G is a map graph if and only if it has a witness. If so, there is a witness
with at most 3n− 6 intersection points.

A direct consequence of this result is that the recognition problem for map graphs is in NP. Let G be a
map graph with witness W = (V ] I, EW ). Throughout this paper, we assume, without loss of generality,
that every intersection point in I has degree at least two.

Let G be a map graph with witness W and let P = v1, v2, . . . , vk be a path in G. A path PW in W
corresponds to P if PW = v1, x1, v2, x2, . . . , xk−1, vk such that xi is an intersection point that is adjacent
to vi and vi+1, for i = 1, . . . , k − 1. Observe that any path P in G has some corresponding path in W ,
and any induced path P in G has a corresponding induced path P ′ in W , as every chord of P ′ in the
bipartite witness W would join an intersection point with a real vertex and therefore generate a chord
of P . More generally, for a subgraph of G that is induced by some vertex subset U ⊆ V (G), we specify
the corresponding part in a witness of G:

Definition 1. Let G be a map graph with witness W and let U ⊆ V (G). A vertex w ∈ W is touched
by U if either w ∈ U or w is an intersection point with at least two neighbors in U . The touched set T (U)
of U is the set of all vertices in W touched by U . The touched subgraph of U is W [T (U)].

By using half-squares, we can get back from an induced subgraph W [T (U)] of W for some U ⊆ V (G)
to the original subgraph W 2[U ] in G. Clearly, W [T (U)] witnesses W 2[U ]. We will often use the following
observation.

Observation 1. For every U ⊆ V , W [T (U)] is a witness of G[U ]. Moreover, G[U ] is connected if and
only if W [T (U)] is connected.

Outerplanar Graphs. The following characterizations of planar and outerplanar graphs in terms of
forbidden minors are well-known.

Proposition 2 (Wagner [21]). A graph is planar if and only if it neither contains a K5-minor nor a
K3,3-minor.

Proposition 3. A graph is outerplanar if and only if it neither contains a K4-minor nor a K2,3-minor.

Proposition 4 (Sys lo [19]). A triangle-free graph is outerplanar if and only if it does not contain a
K2,3-minor.

Connectivity and SPQR-trees. A graph is connected if every two of its vertices are connected by a
path; the maximal connected subgraphs of G are called components of G. A separator S of a graph G is
a subset of V such that G− S has more components than G. For an integer c ∈ N, a connected graph is
c-connected if it either has at most c vertices or removing any set of less than c vertices leaves a connected
subgraph. A 2-connected resp. 3-connected graph is sometimes called biconnected resp. triconnected.

For a graph G, an SPQR-tree [6, 7] is a tree T for which each node x ∈ V (T ) has an associated
multigraph Gx, called skeleton of x, and one of the following four types:

• S-node: then Gx is a cycle on at least three vertices.

• P -node: then Gx is a multigraph with two vertices and at least three edges.

• Q-node: then Gx is a multigraph with two vertices and two parallel edges.

• R-node: then Gx is a 3-connected graph.

Each edge xy between two nodes of T is associated with two directed virtual edges, one in Gx and
one in Gy. Each edge in Gx can be virtual for at most one edge of T . All edges of S-, P- and R-nodes
are virtual for some edge of T , and we simply call them virtual edges. An edge that is not virtual for
any edge of T is real. Only skeletons of Q-nodes contain real edges and every Q-node skeleton contains
exactly one real edge.
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An SPQR-tree T represents a biconnected graph GT , formed as follows. Whenever an edge xy ∈ E(T )
associates the virtual edge of Gx with the virtual edge of Gy, form a larger graph as the 2-clique-sum
of Gx and Gy: We identify the endpoints of the virtual edge of Gx with that of Gy, and then delete the
resulting edge. Applying this step to each edge of T (in any order) produces the graph GT .

We assume throughout that T is minimal, which implies that its S- and P -nodes are pairwise non-
adjacent. Under this assumption, T is uniquely determined from G. The graphs Gx associated with the
nodes of T are called the triconnected components of G.

While the above definition coincides with the classical definition of SPQR-trees, it is often more
convenient to omit the Q-nodes from the tree as they carry little information. To this end, we simply
remove each Q-node and replace the corresponding virtual edge in the skeleton of the neighboring node
by a real edge. In the following we will use this modified version of SPQR-trees.

3 Reduction along Small Separators

Clearly, every separator S of any witness W of a map graph G that contains only vertices of V (G) and
for which at least two components of W − S contain vertices in V (G) is also a separator in G, as no edge
that is generated by the half-square can cross S.

Lemma 1. Let G be a map graph with witness W , let S ⊆ V (G) and let C be the family of vertex sets of
the components of G− S. Then C 7→W [T (C)] is a bijection to the components of W − S that contain a
vertex of V (G). In particular, every separator S of G is a separator of W and, conversely, every separator
S ⊆ V (G) of W such that at least two components of W − S contain a vertex of V is a separator of G.

Proof. If S is not a separator of G or of W , the statement follows from Observation 1. Hence, assume
that S separates both G and W . Let A and B be the vertex sets of two arbitrary components of G− S.
By Observation 1, the touched subgraphs W [T (A)] and W [T (B)] are connected in W − S. Suppose, for
sake of contradiction, that some vertices a ∈ A and b ∈ B are contained in the same component of W −S.
Then W −S contains a shortest path from a to b, whose original subgraph in G must be a path from a to
b on the same real vertices, i.e., disjoint from S. This contradicts that A and B are different components
of G − S; hence, the components of G − S partition V in exactly the same way as the components of
W − S. In order to show that every W [T (C)] is a component of W − S, it remains to prove that no
intersection point is contained in two touched subgraphs W [T (A)] and W [T (B)]. However, in that case,
A and B would be connected in G− S.

Lemma 2. A map graph G has a planar (outerplanar, tree) witness if and only if all of its biconnected
components have planar (outerplanar, tree) witnesses, respectively.

Proof. Assume G has a planar (outerplanar, tree) witness W and let C be the vertex set of any biconnected
component of G. Then W [T (C)] is a planar (outerplanar, tree) witness for G[C] by Observation 1, as
trees, planar and outerplanar graphs are closed under taking induced connected subgraphs.

If, on the other hand, each biconnected component of G has a planar (outerplanar, tree) witness, we
can identify these witnesses along the cutvertices of G, obtaining a planar (outerplanar, tree) witness
of G.

We will thus assume that G is biconnected throughout the paper. Lemma 2 can be generalized to
separators of size two as follows (a similar generalization exists for separators of size three). Consider a
separator S = {u, v} of size two in a biconnected graph. An S-bridge is either the edge uv, or the graph
that is obtained from a component C of G− S by adding the edges of G that join C with S, as well as
their endpoints.

Lemma 3. Let G be a biconnected map graph that is not triconnected, and let S = {u, v} be a separator
of G. If uv is an edge of G, let G′ = G[C ∪ S] for some component C of G− S, otherwise let G′ be the
graph obtained from G by contracting some S-bridge B of G to a single edge. Then G′ is a map graph,
and any witness of G contains some witness of G′ as a minor.

Proof. Let W be an arbitrary witness of G. If uv is an edge of G, then G′ is an induced subgraph of G
and therefore a map graph. In this case, the touched subgraph W [T [V (G′)]] is an induced subgraph of W
and thus a minor of W , which gives the claim.
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Now assume that G does not contain the edge S. Then B contains a shortest path P connecting u
and v. Obtain the graph G′′ from G by removing all vertices of V (B) \ V (P ). Then G′ can be obtained
from G′′ by contracting the path P (all whose interior vertices have degree 2) to a single edge. Since G′′

is an induced subgraph of G, W contains a witness W ′′ of G′′ as an induced subgraph, as shown above.
Since P is shortest and uv /∈ G, P is induced in G′′; thus, as argued before Definition 1, the witness W ′′

contains a path P ′′ realizing the path P . The internal vertices of P ′′ all have degree 2, and so contracting
this path P ′′ to a path of length 2 yields a corresponding witness W ′ for G′. As we used only vertex
deletions and contractions, W ′ is a minor of W .

Lemma 3 will allow us to reduce along separators of size two.

4 Map Graphs with a Tree Witness

We characterize the map graphs that admit a tree witness. The characterization implies immediately a
linear-time recognition algorithm for such graphs.

Lemma 4. A biconnected map graph has a tree witness if and only if it is a clique.

Proof. Clearly a clique has a tree witness, namely a star. Conversely, assume that G is a biconnected
graph with tree witness W and assume that G is not a clique. Then W is not a star, and it hence has
two adjacent non-leaf vertices u and v. Since intersection points are pairwise non-adjacent, one of them,
without loss of generality v, is not an intersection point. Then v is a cutvertex in W and, by Lemma 1, a
cutvertex in G. This contradicts the assumption that G is biconnected.

Lemma 2 and Lemma 4 immediately imply the following characterization of map graphs with a tree
witness.

Theorem 2. A map graph has a tree witness if and only if each of its biconnected components is a clique.

Corollary 1. Map graphs with a tree witness can be recognized in O(n + m) time.

5 Map Graphs with an Outerplanar Witness

In this section we study the problem of recognizing map graphs with an outerplanar witness. Due
to Lemma 2, we can assume that the input graph G is biconnected. As bipartite planar graphs are
triangle-free, we know with Proposition 4 that G has an outerplanar witness if and only if G has a
K2,3-minor free witness. Thus, all of the following proofs extend to the seemingly wider class of witnesses
that are K2,3-minor free.

The next result states that triconnected map graphs G have witnesses with a very simple structure.
For k ≥ 2, a set of paths Π1, . . . ,Πk in a witness W = (V (G) ∪ I, EW ) of G is internally V (G)-disjoint if
no two paths Πi and Πj share an internal vertex in V (G).

Lemma 5. For k ≥ 3, a k-connected map graph G has a K2,k-minor free witness if and only if it is a
clique.

Proof. If G is a clique, it has a tree-witness with an intersection point as inner vertex and n leaves, and
this witness is K2,k-minor free. If G is not a clique, two vertices, say u, v ∈ V (G), are not adjacent; let W
be a witness of G. Since G is k-connected, G contains k internally vertex-disjoint paths from u to v.
Let P1, . . . , Pk denote such internally vertex-disjoint uv-paths of minimum total length; in particular,
each of the Pi is an induced path. Denote by ui the neighbor of u in Pi for i = 1, . . . , k; see Fig. 1a for
an example for k = 3. Let Πi denote a path in W corresponding to Pi for i = 1, . . . , k. Clearly the Πi

are internally V (G)-disjoint and each of them is an induced path. For a path Π containing vertices a

and b, let Π[a, b] denote the subpath of Π from a to b. Let A =
⋃k

i=1 V (Πi[u, ui]) \ {u1, . . . , uk} and

B =
⋃k

i=1 V (Πi[ui, v]) \ {u1, . . . , uk}; see Fig. 1b. Note that A consists exactly of u and the neighbors
of u on the paths Πi.

We claim that

(i) W [A] and W [B] are connected,
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Figure 1: Illustration for the proof of Lemma 5 for k = 3. Vertices of G are empty disks, intersection
points are small black squares.

(ii) A ∩B = ∅, and

(iii) each vertex ui has a neighbor in A and a neighbor in B.

Assume that the claims hold and consider the graph W ′ := W [A ∪B ∪ {u1, . . . , uk}]. Since W [A] ⊆W ′

and W [B′] ⊆ W ′ are connected (Claim (i)) and disjoint (Claim (ii)), we can contract these subgraphs
into distinct vertices vA and vB , respectively. By Claim (iii), it follows that each of the ui is adjacent to
both vA and vB . Omitting a possible edge vAvB yields a K2,k-minor in W .

We now prove the claims. Statements (i) and (iii) follow immediately from the definitions of A and B
via the paths Πi. For (ii), assume that A ∩ B 6= ∅ and let x ∈ A ∩ B. Since the paths Π1, . . . ,Πk are
internally V (G)-disjoint and each of them is induced, x must be an intersection point. Since x ∈ A, x is
adjacent to u. Since x ∈ B, it follows that x is adjacent to a vertex w ∈ V (Pi)∩B for some i ∈ {1, . . . , k},
say without loss of generality w ∈ V (P1) ∩B. Since x is adjacent to u and w, G contains the edge uw.
Moreover, w 6= u1, since u1 /∈ B. But then replacing the subpath from u to w in P1, which contains u1

in its interior, by the edge uw yields a shorter k-tuple of internally vertex-disjoint uv-paths in G. This
contradicts the minimality of P1, . . . , Pk.

In particular, a triconnected map graph with outerplanar witness, which is K2,3-minor free, must be a
clique. Hence, it suffices to investigate separators of size 2 in G.

In general map graphs, every two adjacent vertices have at least one neighboring intersection point
in the witness, according to the definition of half-squares. Let G be a map graph with an outerplanar
witness H. The intuition for the next lemma is that then every three vertices of a clique (of size at least 4)
in G have a common neighboring intersection point in H. Note that this property is not true for arbitrary
planar witnesses, as each of the structures “pizza with crust”, “hamantash” and “riceball” [2] contains
three nations without any common intersection; see Fig. 2.

Figure 2: In arbitrary map graphs, cliques can be realized in four possible ways; however, each of the
structures “pizza with crust”, “hamantash” and “riceball” contains three nations without any common
intersection.

Lemma 6. Let G be a map graph with an outerplanar witness W and let v0, v1, v2 be three vertices of a
clique of size at least 4. Then there is an intersection point in W that is adjacent to v0, v1 and v2.

Proof. Assume that this is not the case. Then there exist three distinct intersection points x0, x1, x2 such
that xi is adjacent to vi+1 and vi+2 but not to vi, where indices are taken modulo 3; see Fig. 3a. Now
consider a vertex v of the clique that is distinct from the vi. There is a path of length two from v to each
of the vi in W . If v is adjacent to two (or more) of the xi, we immediately have a K2,3-minor (Fig. 3b
with branch vertices {x1, x2}); likewise, if there is an intersection point distinct from the xi adjacent to
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Figure 3: Illustration of the cases in the proof of Lemma 6.

two of the vi ({v0, v2} in Fig. 3c). It follows that v must reach one of the vi, without loss of generality v0,
via an intersection point x distinct from the xi, and xi is not adjacent to v1 and v2 (Fig. 3d). But now,
to reach v1 and v2, v either has to be adjacent to x0, or it must use a new intersection point y adjacent
to v1 or v2. In both cases, we obtain a K2,3-minor.

The proof of Lemma 6 shows that the size bound “4” on the clique size is as small as possible (see
Fig. 3a).

Definition 2. A clique C in a map graph G with witness W is represented by an intersection point if W
contains at least one intersection point whose neighborhood is V (C).

Cliques that are represented by exactly one intersection point are called “pizzas” by Chen et al. [2].
We now show that in outerplanar witnesses all cliques of size at least 4 must be represented in this way,
thus significantly reducing the possible representations.

Lemma 7. Let G be a map graph with outerplanar witness W . Each maximal clique C of size at least 4
is represented by an intersection point.

Proof. We first show that W contains an intersection point x that is adjacent to all vertices of C. This
readily implies that x has no other neighbor, as any such neighbor would contradict the maximality
of C. Let x be an intersection point in W with a maximum number of neighbors in C and assume to
the contrary that C contains a vertex v0 that is not adjacent to x. By Lemma 6, x has at least three
neighbors v1, v2, v3 in C. Let V ′ = {v0, v1, v2, v3}.

If there was a single intersection point y 6= x adjacent to {v1, v2, v3}, this would result in a K2,3 with
branch vertices x and y. This implies that any intersection point different from x can be adjacent to at
most three of the vertices in V ′ (omitting at least one of {v1, v2, v3}). On the other hand, by Lemma 6,
for any such subset a corresponding intersection point exists. Thus, there exist intersection points y 6= x
and z 6= x with N(y) ∩ V ′ = {v0, v1, v2} and N(z) ∩ V ′ = {v0, v2, v3}; see Fig. 4a. Contracting the two
edges yv0 and zv0 yields a K2,3-minor in W , contradicting its outerplanarity.

v1

v2
v3

x v0

y

z

(a)

v0 v1
v2x1

x2

x0

u2

(b)

Figure 4: Illustration of the proofs of Lemma 7 (a) and Lemma 8 (b).

According to the definition of witnesses, maximal cliques of size 2 must also be represented by
intersection points. Thus, the only cliques for which the representation is unclear are maximal cliques of
size 3. In the following we show that cliques that cannot be represented by an intersection point in an
outerplanar witness induce a special structure. Namely, any two of its vertices form a separator, and we
further describe the way in which these separators decompose the graph.

Lemma 8. Let G be a map graph with outerplanar witness and let W be an outerplanar witness of G that
maximizes the number of maximal cliques of size 3 that are represented by intersection points. Let v0 and v1
be any two vertices of a maximal clique C = {v0, v1, v2} that is not represented by an intersection point.
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Then {v0, v1} is a separator in G that separates v2 from every other maximal clique of G containing v0
and v1.

Proof. Since C is not represented by an intersection point, there exist witness points x0, x1, x2 such
that xi is adjacent to vi+1 and vi+2 but not to vi (indices modulo 3). The cycle containing the xi and vi
does not contain any vertex inside because of outerplanarity of W ; in addition, any interior edge would
contradict that C is not represented by an intersection point. Thus the xi and vi form the boundary of a
face of W ; see Fig. 4b.

If some xi has degree 2, we can add the edge xivi, which would result in an intersection point for the
clique, contradicting the maximality of W . It follows that each xi is adjacent to some ui ∈ V (G)−C. We
claim that {v0, v1} separates u2 from v2 in W . Otherwise, there exists a path from u2 to v2 in W −v0−v1.
Together with the cycle formed by the vi and xi, this yields a K2,3-minor, contradicting the outerplanarity.
Thus, {v0, v1} is also a separator in G that separates u2 and v2.

5.1 Structural Properties of Map Graphs with Outerplanar Witness

To obtain an efficient recognition algorithm for map graphs with outerplanar witness, two things remain
to be done. First, we need to better understand the structure of those maximal cliques for which the
representation in the witness is not already decided by the previous results. Second, we need to find a way
to quickly enumerate all the relevant cliques in order to decide upon their representation in the witness.

As we have seen, the maximal cliques for which the representation cannot be an intersection point
induce separating pairs in the input graph. This, together with the fact that certainly all cliques of
size at least 4 belong to a single triconnected component of the input graph motivates the study of the
triconnected components of the input graph. Essentially, we establish the following connections between
the maximal cliques and the triconnected components:

1. Every maximal clique of size at least three shows up as a triconnected component of G.
2. A characterization of the maximal cliques of size three that cannot be represented by an intersection

point in terms of triconnected components.
The first property allows us to quickly compute all maximal cliques by exploiting the SPQR-tree, which
can be computed in linear time [11], rather then by a maximal clique enumeration algorithm, which might
be much slower. The second property is used to determine the correct intersection points for all maximal
cliques.

The following corollary follows immediately from applying Lemma 3 along the recursive definition of
SPQR-trees.

Corollary 2. Let G be a biconnected map graph with an outerplanar witness. Then each skeleton of the
SPQR-tree of G is a map graph with an outerplanar witness.

Now we derive further structural results on the triconnected components of map graphs with outerplanar
witness. The following two lemmas will turn out to be helpful for this, as they exhibit the special structure
of separators a map graph with outerplanar witness has.

Lemma 9. For a map graph G with outerplanar witness, the following statements hold:
(i) Any two maximal cliques of G share at most two vertices.

(ii) Any two vertices that are shared by two maximal cliques of G form a separator of G separating these
cliques.

(iii) Any two vertices are shared by at most two maximal cliques.

Proof. For (i), assume that C,C ′ are maximal cliques sharing vertices v1, v2, v3. Since C,C ′ are distinct,
they have size at least 4. By Lemma 7, they are represented by distinct intersection points c, c′; see Fig. 5a.
Then v1, v2, v3, c, c

′ induce a K2,3; a contradiction.
For (ii), let {u, v} be two vertices that are shared by two maximal cliques C and C ′. Consider an

outerplanar witness W of G that maximizes the number of cliques of size 3 that are represented by
intersection points. If C and C ′ are realized by intersection points c and c′, respectively, consider w
and w′ in C \ C ′ and C ′ \ C, respectively. A path between these two vertices avoiding u and v yields
a K2,3-minor with branch vertices c and c′, contradicting outerplanarity; see Fig. 5b. Hence, assume that
one of the cliques is not realized as an intersection point. With Lemma 7, this clique has at most three
vertices and the statement follows from Lemma 8.
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Figure 5: Illustration for the proof of Lemma 9. The wiggly line in (b) indicates an arbitrary path from w
to w′ avoiding u and v. The paths P1 and P2 are drawn bold (and blue) in (c).

For (iii), assume that two vertices u and v are shared by at least three maximal cliques C0, C1 and C2.
Note that each Ci has size at least three, as otherwise the Ci would not be distinct. According to (ii),
every Ci contains a vertex vi that is not in Ci+1 ∪ Ci+2 (indices taken modulo 3). If Ci is represented
by an intersection point ci, then let Pi denote the path uciv in W (path P1 in Fig. 5c). If Ci is not
represented by an intersection point, then Ci has size 3, and W contains a path uc1i , vi, c

2
i , v, where c1i

and c2i are intersection points. We define Pi to be this path (path P2 in Fig. 5c). Paths Pi and Pj for
i 6= j are internally disjoint by the definition of the vi, and so three internally disjoint paths from u to v
in W yield a K2,3-minor. This contradicts the outerplanarity of W .

Lemma 10. Let G be a biconnected map graph with an outerplanar witness W . Every separator S = {u, v}
of G of size two separates exactly two components.

Proof. Assume to the contrary that G−S contains at least three components Ci, 1 ≤ i ≤ 3. According to
Lemma 1, the touched subgraphs W [T (V (Ci))] are different components of W − S. For every i, there is a
path Pi in G from u to v that contains a vertex of Ci as inner vertex, since S is minimal in G. In W , each
path Pi corresponds to a path from u to v that contains a vertex of W [T (V (Ci))] as inner vertex (this
may be either an intersection point or a real vertex). Since each such path has length at least two, W
contains a K2,3-minor with branch vertices u and v.

The last two structural lemmas allow us to identify restrictions on the 3-connected components.

Lemma 11. Let G be a biconnected map graph with an outerplanar witness. Then the SPQR-tree of G
satisfies the following properties:

(i) Every P-node skeleton consists of three parallel edges of which one is a real edge.
(ii) Every R-node skeleton is a clique.

Proof. For (i), observe that, according to Lemma 10, there are exactly two components in G−S for every
separator S = {u, v} of G of size two. Thus, every parallel P -node in the SPQR-tree has at most three
parallel edges (and at least three by definition of SPQR-trees): two virtual ones and one edge from G.

For (ii), observe that the skeleton of an R-node is a triconnected graph. According to Corollary 2, this
skeleton is a map graph with an outerplanar witness. Applying Lemma 5 with k = 3 implies that the
skeleton is a clique.

In fact, it turns out that not only every R-node skeleton is a clique, but each such clique is a subgraph
of G.

Lemma 12. Let G be a map graph with outerplanar witness. Then every R-node skeleton is a maximal
clique that is a subgraph of G.

Proof. Consider an R-node skeleton S, which is a clique by Lemma 11(ii), and let uv be an edge of S that
is not in G (thus, a virtual edge). Let G′ be the graph that is obtained from G by contracting the subgraph
corresponding to each remaining virtual edge into a single edge. Let G′′ be the subgraph obtained from G′

by removing all vertices in the subgraph that corresponds to the virtual edge uv, except for u, v and a
shortest path between them. The graph G′ is a map graph with outerplanar witness by Lemma 3, and G′′

is a map graph with outerplanar witness by Observation 1, as G′′ is an induced subgraph of G′.
Thus, G′′ contains the two cliques with vertex sets V1 = V (S)− {u} and V2 = V (S)− {v}, which are

maximal, as uv is not in G′′. But then |V1 ∩ V2| ≥ 2, since |V (S)| ≥ 4 and |V1 ∩ V2| ≤ 2 by Lemma 9(i).
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Hence |V1 ∩V2| = 2, |S| = 4 and thus, G′′ is the graph obtained from K4 by replacing an edge with a path
of length at least two. This contradicts that, according to Lemma 9(ii), V1 ∩ V2 is a separator of G′′.

Lemma 13. Let G be a biconnected map graph with outerplanar witness and let C = {u, v, w} be a
maximal clique in G. Then there is an S-node skeleton with vertex set {u, v, w}.

Proof. By definition, the subgraph of G induced by C is triconnected, hence there is a skeleton of a node
in the SPQR-tree of G that contains all three vertices of C. However, this node cannot be a P-node (as it
contains only two vertices) and it cannot be an R-node, whose skeletons are well-known to contain at
least four vertices, which by Lemma 12 implies a larger clique. Hence, it must be an S-node. The skeleton
of this S-node cannot contain any other vertex than those in C, as it then would not be a cycle.

It follows from Lemma 12 and Lemma 13 that we find all maximal cliques by considering the skeletons
of the SPQR-tree. In particular, this allows us to enumerate all maximal cliques in linear time. It remains
to understand which maximal cliques of size three may not be represented by an intersection point.

Lemma 14. Let G be a biconnected map graph with outerplanar witness, let C = {u, v, w} be a maximal
clique of size 3 in G, and let W be a witness that maximizes the number of cliques of size 3 that are
represented by an intersection point. Then C is not represented by an intersection point in W if and only
if the skeleton of the S-node corresponding to C has three virtual edges.

Proof. Let S be the skeleton of the S-node on vertex set {u, v, w}, which exists by Lemma 13. Suppose,
for the sake of contradiction, that C is not represented by an intersection point but one of the edges of S,
say uv, is not virtual. Then the edges of C are represented by three distinct intersection points x1, x2, x3,
which form a cycle K together with the vertices of {u, v, w} in W (cf. Fig. 3a). Assume, without loss
of generality, that x1 is adjacent to u and v. Since the edge uv is not virtual, the separator {u, v} has
exactly two split components of which one is an edge. As the other split-component is the one containing
w, it follows that C is the only maximal clique that contains uv. Hence, x1 has degree two in W .

We claim that K bounds a face of W in any outerplanar embedding of W . To justify the claim, observe
that there cannot be a vertex embedded inside K due to W being outerplanar, and an edge embedded
inside K would contradict the assumption that C is not represented by an intersection point. Thus, the
claim holds, and the interior of K is empty.

We can then insert the edge x1w to W , resulting in an outerplanar witness of G where C is represented
by an intersection point. This, however, contradicts the maximality of W .

For proving sufficiency, assume to the contrary that C is represented by an intersection point c, but
all edges of S are virtual. Then, the witness W contains for each virtual edge ab a path from a to b that
avoids c and all inner vertices from each subgraph corresponding to a virtual edge different from ab. Thus,
we obtain three internally disjoint paths connecting u to v, v to w and w to u, respectively. These three
paths are all vertex-disjoint from {c}, and thus give a K4-minor in W with branching vertices {c, u, v, w}.
This, however, contradicts the outerplanarity of W .

5.2 Recognition Algorithm

Based on our structural observations, we give a linear-time algorithm for recognizing map graphs that
admit an outerplanar witness, Algorithm 1. The algorithm takes as input an arbitrary graph G. First, it
decomposes the graph G into its biconnected components H1, . . . ,Ht. We know that G is a map graph
with outerplanar witness if and only if each biconnected component Hi is a map graph with outerplanar
witness (see Lemma 2).

We seek to construct a bipartite witness candidate W of G as follows. Let the vertices of G be one
side of the bipartition of W . For each Hi, compute the decomposition into its triconnected components,
i.e., its SPQR-tree Ti in linear time [13, 11]. For each R-node of Ti, check whether its vertex set is a
clique of G. If not, then reject the graph Hi (and hence G) as not being a map graph with outerplanar
witness. Otherwise, add an intersection point to W that represents that clique.

For each S-node of Ti that forms a clique of size 3 and that has a real edge, add an intersection point
to W representing the clique.

Finally, for each edge of G that is not yet represented by one of the previously constructed intersection
points, add a separate intersection point of degree 2 to W representing exactly this edge. Let W be the
resulting candidate witness graph. Test whether W is outerplanar. If W is outerplanar, then output the
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Algorithm 1 Linear-Time Recognition Algorithm for Map Graphs with Outerplanar Witness

Input: A graph G.
Output: An outerplanar witness W of G if G is a map graph, “no” otherwise.

1: Create a candidate bipartite graph W ; let V be one side of the bipartition of W .
2: for each biconnected component Hi of G do
3: Compute an SPQR-tree Ti of Hi.
4: for each R-node R of Ti do
5: if the vertices of the skeleton of R do not form a clique in G then
6: return “no”
7: Add an intersection point pR with neighborhood V (R) to W .
8: for each S-node S of Ti whose skeleton is a clique of size 3 with some real edge do
9: Add an intersection point pS with neighborhood V (S) to W .

10: for each edge e = uv in G that is not yet represented by an intersection point do
11: Add an intersection point puv of degree 2 with neighborhood {u, v} to W .
12: Test outerplanarity of W : if “yes”, return W , else return “no”.

outerplanar witness W , otherwise reject the input graph G as not being a map graph with outerplanar
witness.

Theorem 3. Map graphs with outerplanar witness can be recognized in O(n + m) time.

Proof. It is not hard to see that the above algorithm can be implemented to run in O(n + m) time. In
the following we prove the correctness.

First, assume that the algorithm outputs a witness W in the end. We show that W is a witness of the
input graph G. Note that all intersection points we create represent either cliques of various sizes of G,
or they only represent a single edge (if they are added in the last step). Thus, W 2[V (G)] ⊆ G. On the
other hand, the last step ensures that W 2[V (G)] ⊇ G, and thus we have W 2[V (G)] = G, which shows
that indeed G is a map graph with outerplanar witness W .

Conversely, assume that the algorithm rejects G, although G is a map graph with outerplanar witness.
Let W ∗ be an outerplanar witness that maximizes the number of cliques of size 3 that are represented by
an intersection point.

There are only two steps in the algorithm where G may be rejected. First, when an R-node skeleton
is not a clique that is subgraph of G. But in this case, G is not a map graph with outerplanar witness
by Lemma 12. Second, G may be rejected when W is found not to be outerplanar. In this case, we will
give an isomorphism from W to an induced subgraph of W ∗ whose restriction to V is the identity. This
contradicts that W ∗ is outerplanar.

It suffices to give the mapping for intersection points only, as every witness contains an identical set V
of real vertices. Let w ∈W be an intersection point of degree at least 4. Then N(w) is a clique of size at
least 4 in G. The intersection point w was added due to an R-node clique of that size, and hence N(w) is
a maximal clique of size at least 4. By Lemma 7, any outerplanar witness contains an intersection point
representing that clique; we thus find an image for w in W ∗. Note that a second vertex with the same
neighborhood is not created; this would imply the existence of a second R-node skeleton with the same
vertex set, which is impossible since any two skeletons share at most two vertices.

Let w ∈W be an intersection point of degree 3. Then N(w) is a maximal clique of size 3, and w was
created due to an S-node skeleton that contained a real edge. By Lemma 14, N(w) is represented by an
intersection point in W ∗ as well, and we thus find an image of w in W ∗. Again, any intersection point
mapped to the same image would imply the existence of a second S-node skeleton with the same vertex
set, which is not possible.

Finally, let w ∈ W be an intersection point of degree 2, which must have been added in the last
step, and let N(w) = {u, v}. Clearly, W ∗ must contain an intersection point x adjacent to u and v. If x
has degree at least 4, then N(x) is a clique of size at least 4, which must show up as an R-node of the
SPQR-tree. But then the edge uv was already represented in W by an intersection point corresponding
to x and the algorithm would not have added w. Similarly, if x has degree 3, then N(x) is a maximal
3-clique. Since it is represented by the intersection point x, it follows that the corresponding S-node
contains a real edge by Lemma 14. But then, again, the algorithm would have added an intersection point
to W that corresponds to x.
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Thus, the degree of x must be 2, and we can choose it as an image for w. Since all degree-2 intersection
points inserted in the last step represent distinct edges of G, no two degree-2 intersection points of W
are mapped to the same intersection point of W ∗. Hence, we have found an isomorphism from W to a
subgraph of W ∗.

The correctness proof shows that the algorithm computes a smallest (with respect to subgraph
inclusion) outerplanar witness, and that this witness is unique up to isomorphism.

6 Discussion

We gave an O(n + m) time and space recognition algorithm for map graphs with an outerplanar witness.
The algorithm is certifying. This result is a first step towards improving Thorup’s recognition algorithm
for map graphs with planar witness that requires time about Ω(n120).

For map graphs with outerplanar witness, we proved that that every two maximal cliques of G intersect
in at most two vertices (Lemma 9). One might hope that for arbitrary map graphs at least the intersection
of k maximal cliques (for some k ≥ 2) is bounded from above. The following infinite graph class however
shows that this is not the case:

A

x y

ai bi

xi

Figure 6: Witness of a map graph that has many cliques that all share a large set of vertices.

Lemma 15. For every pair of positive integers k and `, there exist map graphs Gk,` with exactly k
maximal cliques such that these cliques intersect in exactly ` vertices.

Proof. We describe a witness for Gk,`. It consists of a set A of ` vertices, two intersection points x
and y that are both adjacent to all vertices in A, and, for every i = 1, . . . , k, the real vertices ai, bi, an
intersection point xi, and the edges xai, aixi, xibi and biy (see Fig. 6). Since ai and bj are adjacent
in Gk,` if and only if i = j, each of the vertex sets A ∪ {ai, bi}, i = 1, . . . , k is a maximal clique of Gk,`.
The maximal cliques thus intersect in exactly the ` vertices of A.
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