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Abstract. We present a linear-time certifying algorithm that tests graphs for 3-
edge-connectivity. If the input graph G is not 3-edge-connected, the algorithm
returns a 2-edge-cut. If G is 3-edge-connected, the algorithm returns a construction
sequence that constructs G from the graph with two nodes and three parallel edges
using only operations that (obviously) preserve 3-edge-connectivity.

1 Introduction

Advanced graph algorithms answer complex yes-no questions such as “Is this graph
planar?” or “Is this graph k-vertex-connected?”. They are not only nontrivial to imple-
ment, it is also difficult to test their implementations, as usually only small test sets are
available. It is hence possible that bugs persist unrecognized for a long time. An example
is the linear time planarity test of Hopcroft and Tarjan [7] in LEDA [13]. A bug was
discovered only after two years of intensive use.

Certifying algorithms [12] approach this problem by computing an additional cer-
tificate that proves the correctness of the answer. This may, e.g., be either a 2-coloring
or an odd cycle for testing bipartiteness, or either a planar embedding or a Kuratowski
subgraph for testing planarity. Certifying algorithms are designed such that checking the
correctness of the certificate is substantially simpler than solving the original problem.
Ideally, checking the correctness is so simple that the implementation of the checking
routine allows for a formal verification. In that case, the solution of every instance is
correct by a formal proof [1].

Our main result is a linear time certifying algorithm for 3-edge-connectivity. Mader [11]
showed that every 3-edge-connected graph can be obtained from K3

2 , the graph consisting
of two vertices and three parallel edges, by a sequence of three simple operations that
each introduce one edge and, trivially, preserve 3-edge-connectivity. We show how to
compute such a sequence in linear time for 3-edge-connected graphs. If the input graph is
not 3-edge-connected, a 2-edge-cut is computed. The previous algorithms [6, 15, 22–24]
for deciding 3-edge-connectivity are not certifying; they deliver a 2-edge-cut for graphs
that are not 3-edge-connected but no certificate in the yes-case.

Our algorithm uses the concept of a chain decomposition of a graph introduced in [19].
A chain decomposition is an ear decomposition [10]. It is used in [21] as a common
and simple framework for certifying 1- and 2-vertex, as well as 2-edge-connectivity.
Further, [20] uses them for certifying 3-vertex-connectivity. Chain decompositions are
an example of path-based algorithms (see, e.g., Gabow [5]), which use only the simple
structure of certain paths in a DFS-tree to compute connectivity information about the
graph.



We use chain decompositions to certify 3-edge-connectivity in linear time. Thus,
chain decompositions form a common framework for certifying k-vertex- and k-edge-
connectivity for k ≤ 3 in linear time. We use many techniques from [20], but in a
simpler form. Hence our paper may also be used as a gentle introduction to the 3-vertex-
connectivity algorithm in [20].

Related Work. Deciding 3-edge-connectivity is a well researched problem, with appli-
cations in fields such as bioinformatics [4] and quantum chemistry [3]. Consequently,
there are many linear time solutions known [6, 15, 22–24]. None of them is certifying.

The paper [12] is a recent survey on certifying algorithms. For a linear time certifying
algorithm for 3-vertex-connectivity, see [20] (implemented in [16]). For general k, there
is a randomized certifying algorithm for k-vertex connectivity in [9] with expected
running time O(kn2.5 + nk3.5). There is a non-certifying algorithm [8] for deciding
k-edge-connectivity in time O(m log3 n) w.h.p..

In [6], a linear time algorithm is described that transforms a graph G into a graph G′

such that G is 3-edge-connected if and only if G′ is 3-vertex-connected. Combined with
this transformation, the certifying 3-vertex-connectivity algorithm from [20] certifies
3-edge-connectivity in linear time. However, that algorithm is much more complex
than the algorithm given here. Moreover, we were unable to find an elegant method for
transforming the certificate obtained for the 3-vertex-connectivity of G′ into a certificate
for 3-edge-connectivity of G.

2 Preliminaries

We consider finite undirected graphs G with n vertices, m edges, no self-loops, and
minimum degree three, and use standard graph-theoretic terminology from [2], unless
stated otherwise. We use uv to denote an edge with endpoints u and v.

A set of edges that leaves a disconnected graph upon deletion is called edge cut. For
k ≥ 1, let a graph G be k-edge-connected if n ≥ 2 and there is no edge cut X ⊆ E(G)
with |X | < k. Let v→G w denote a path P between two vertices v and w in G and let
s(P) = v and t(P) = w be the source and target vertex of P, respectively. Every vertex in
P\{s(P), t(P)} is called an inner vertex of P and every vertex in P is said to lie on P.

Let T be an undirected tree rooted at vertex r. For two vertices x and y in T , let x be
an ancestor of y and y be a descendant of x if x ∈V (r→T y). If additionally x 6= y, x is a
proper ancestor and y is a proper descendant. We write x≤ y (x < y) if x is an ancestor
(proper ancestor) of y. The parent p(v) of a vertex v is its immediate proper ancestor.
The parent function is undefined for r. Let Km

2 be the graph on 2 vertices that contains
exactly m parallel edges.

Let subdividing an edge uv of a graph G be the operation that replaces uv with a path
uzv, where z was not previously in G. All 3-edge-connected graphs can be constructed
using a small set of operations starting from a K3

2 .

Theorem 1 (Mader [11]). Every 3-edge-connected graph (and no other graph) can be
constructed from a K3

2 using the following three operations:
– Adding an edge (possibly parallel or a loop).



Fig. 1. Two ways of constructing the 3-edge-connected graph shown in the rightmost column. The
upper row shows the construction according to Theorem 1. The lower row shows the construction
according to Corollary 1. Branch (non-branch) vertices are depicted as filled (non-filled) circles.
The black edges exist already, while dotted gray vertices and edges do not exist yet.

– Subdividing an edge xy and connecting the new vertex to any existing vertex.
– Subdividing two distinct edges wx, yz and connecting the two new vertices.

A subdivision G′ of a graph G is a graph obtained by subdividing edges zero or more
times. The branch vertices of a subdivision are the vertices with degree at least three
(we call the other vertices non-branch-vertices) and the links of a subdivision are the
maximal paths whose inner vertices have degree two. If G has no vertex of degree two,
the links of G′ are in one-to-one correspondence to the edges of G. Theorem 1 readily
generalizes to subdivisions of 3-edge-connected graphs.

Corollary 1. Every subdivision of a 3-edge-connected graph (and no other graph) can
be constructed from a subdivision of a K3

2 using the following three operations:
– Adding a path connecting two branch vertices.
– Adding a path connecting a branch vertex and a non-branch vertex.
– Adding a path connecting two non-branch vertices lying on distinct links.

In all three cases, the inner vertices of the path added are new vertices.

Each path that is added to a graph H in the process of Corollary 1 is called a Mader-
path (with respect to H). Note that an ear is always a Mader-path unless both endpoints
lie on the same link.

Figure 1 shows two constructions of a 3-edge-connected graph, one according to
Theorem 1 and one according to Corollary 1. In this paper, we show how to find the
Mader construction sequence according to Corollary 1 for a 3-edge-connected graph in
linear time. Such a construction is readily turned into one according to Theorem 1.

3 Chain Decompositions

We use a very simple decomposition of graphs into cycles and paths. The decomposition
was previously used for linear-time tests of 2-vertex- and 2-edge-connectivity [21] and
3-vertex-connectivity [20]. In this paper we show that it can also be used to find Mader’s
construction for a 3-edge-connected graph. We define the decomposition algorithmically;
a similar procedure that serves for the computation of low-points can be found in [18].

Let G be a connected graph without self-loops and let T be a depth-first search
tree of G. Let r be the root of T . We orient tree-edges uv up, i.e., such that v < u, and
back-edges xy down, that is, such that x < y.



We decompose1 G into a set C = {C1, . . . ,C|C |} of cycles and paths, called chains,
by applying the following procedure for each vertex v in the order in which they were
discovered during the DFS.

First, we declare v visited2. Then, for every back-edge vw with s(vw) = v, we
traverse w→T r until a vertex x is encountered that was visited before; x is a descendant
of v. The traversed subgraph vw∪ (w→T x) forms a new chain C with s(C) = v and
t(C) = x. All inner vertices of C are declared visited. Observe that s(C) and t(C) are
already visited when the construction of the chain starts.

Figure 2 illustrates these definitions. Since every back-edge defines one chain, there
are precisely m−n+1 chains. We number the chains in the order of their construction.
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Fig. 2. The left side of the figure shows a DFS tree with a chain decomposition; tree-edges are
solid and back-edges are dashed. C1 is (16,65,54,43,32,21), C2 is (17,76), C3 is (24), C4 is (37),
and C5 is (45). C3 and C5 are nested children of C1 and C4 is an interlacing child of C2. Also,
s(C4) s-belongs to C1.
In the algorithm of Sect. 6, we start with Gc =C1∪C2. In the first phase, we form three segments,
namely {C4}, {C3}, and {C5}. The first segment can be added according to Lemma 4. Then C3
can be added and then C5.

We call C a chain decomposition. It can be computed in time O(n+m). For 2-edge-
connected graphs the term decomposition is justified by Lemma 1.

Lemma 1 ([21]). Let C be a chain decomposition of a graph G. Then G is 2-edge-
connected if and only if G is connected and the chains in C partition E(G).

Since the condition of Lemma 1 is easily checked, we assume from now on that G is
2-edge-connected. Then C partitions E(G) and the first chain C1 is a cycle containing r
(since there is a back-edge incident to r). We say that r strongly belongs (s-belongs) to
the first chain and any vertex v 6= r s-belongs to the chain containing the edge v p(v). We
use s-belongs instead of belongs since a vertex can belong to many chains when chains
are viewed as sets of vertices.

We can now define a parent-tree on chains. The first chain C1 has no parent. For
any chain C 6= C1, let the parent p(C) of C be the chain to which t(C) s-belongs. We

1 If G is not 2-edge-connected, there will be edges and maybe vertices not belonging to any chain.
2 Initially, no vertex is visited.



write C ≤ D (C < D) for chains C and D if C is an ancestor (proper ancestor) of D in the
parent-tree on chains.

The following lemma summarizes important properties of chain decompositions.

Lemma 2. Let {C1, . . . ,Cm−n+1} be a chain decomposition of a 2-edge-connected graph
G and let r be the root of the DFS-tree. Then
(1) For every chain Ci, s(Ci)≤ t(Ci).
(2) Every chain Ci, i ≥ 2, has a parent chain p(Ci). We have s(p(Ci)) ≤ s(Ci) and

p(Ci) =C j for some j < i.
(3) For i≥ 2: If t(Ci) 6= r, t(p(Ci))< t(Ci). If t(Ci) = r, t(p(Ci)) = t(Ci).
(4) If u≤ v, u s-belongs to C, and v s-belongs to D then C ≤ D.
(5) If u≤ t(D) and u s-belongs to C, then C ≤ D.
(6) For i≥ 2: s(Ci) s-belongs to a chain C j with j < i.

4 Chains as Mader-paths

We show that, assuming that the input graph is 3-edge-connected, there are two chains
that form a subdivision of a K3

2 , and that the other chains of the chain decomposition can
be added one by one such that each chain is a Mader-path with respect to the union of
the previously added chains. We will also show that chains can be added parent-first, i.e.,
when a chain is added, its parent was already added. In this way the current graph Gc
consisting of the already added chains is always parent-closed. We will later show how
to compute this ordering efficiently.

We assume that the input graph is 2-edge-connected. This is easily checked using
Lemma 1. This guarantees that the chain decomposition is a partition of the edge set of the
input graph. We will also use the following necessary condition for 3-edge-connectivity.

Proposition 1. Let T be a DFS tree starting at r for a graph G. If G is 3-edge-connected,
then the subtree of every child of r must be connected to r by at least two back-edges.

Using the chain decomposition, we can identify a K3
2 subdivision in the graph as

follows. We may assume that the first two back-edges explored from r in the DFS have
their other endpoint in the same subtree T ′ rooted at some child of r. The first chain C1
forms a cycle. The vertices in C1 \ r are then contained in T ′. By assumption, the second
chain is constructed by another back-edge that connects r with a vertex in T ′. If there is
no such back-edge, Proposition 1 exhibits a 2-edge-cut, namely the tree-edge and the
back-edge connecting r and T ′. Let x = t(C2). Then C1∪C2 forms a K3

2 subdivision with
branch vertices r and x. The next lemma derives properties of parent-closed unions of
chains.

Lemma 3. Let Gc be a parent-closed union of chains that contains C1 and C2. Then
(1) For any vertex v 6= r of Gc, the edge v p(v) is contained in Gc, i.e., the set of vertices

of Gc is a parent-closed subset of the DFS-tree.
(2) s(C) and t(C) are branch vertices of Gc for every chain C contained in Gc.
(3) Let C be a chain that is not in Gc but a child of some chain in Gc. Then C is an ear

with respect to Gc and the path t(C)→T s(C) is contained in Gc. C is a Mader-path
(i.e., the endpoints of C are not inner vertices of the same link of Gc) with respect to
Gc if and only if there is a branch vertex on t(C)→T s(C).



We can now prove that chains can always be added in parent-first order.

Theorem 2. Let G graph and let Gc be a parent-closed union of chains such that no
child of a chain C ⊂Gc is a Mader-path with respect to Gc and there is at least one such
chain. Then the extremal edges of every link of length at least two in Gc are a 2-cut in G.

Proof. Assume otherwise. Then there is a parent-closed union Gc of chains such that no
child of a chain in Gc is a Mader-path with respect to Gc and there is at least one such
child outside of Gc, but for every link in Gc the extremal edges are not a cut in G.

Consider any link L of Gc. Since the extremal edges of L do not form a 2-cut, there is
a path connecting an inner vertex on L with a vertex that is either a branch vertex of Gc
or a vertex on a link of Gc different from L. Let P be such a path of minimum length. By
minimality, no inner vertex of P belongs to Gc. Note that P is a Mader-path with respect
to Gc. We will show that at least one edge of P belongs to a chain C with p(C) ∈ Gc and
that C can be added, contradicting our choice of Gc.

Let a and b be the endpoints of P, let z be the lowest common ancestor of all points
in P. Since a DFS generates only tree- and back-edges, z lies on P. Since z≤ x for all
x ∈ P, no inner vertex of P belongs to Gc, and the vertex set of Gc is a parent-closed
subset of the DFS-tree, z is equal to a or b. Assume w.l.o.g. that z = a. All vertices of P
are descendants of a. We view P as oriented from a to b.

Since b is a vertex of Gc, the path b→T a is part of Gc by Lemma 2 and hence no
inner vertex of P lies on this path. Let av be the first edge on P. The vertex v must be a
descendant of b as otherwise the path v→P b would contain a cross-edge, i.e. an edge
between different subtrees. Hence av is a back-edge. Let D be the chain that starts with
the edge av. D does not belong to Gc, as no edge of P belongs to Gc.

We claim that t(D) is a proper descendant of b or D is a Mader-path with respect
to Gc. Since v is a descendant of b and t(D) is an ancestor of v, t(D) is either a proper
descendant of b, equal to b, or a proper ancestor of b. We consider each case separately.

If t(D) were a proper ancestor of b the edge b p(b) would belong to D and hence D
would be part of Gc, contradicting our choice of P. If t(D) is equal to b as then D is a
Mader-path with respect to Gc. This leaves the case that t(D) is a proper descendant of
b.

Let yb be the last edge on the path t(D)→T b. We claim that yb is also the last edge
of P. This holds since the last edge of P must come from a descendant of b (as ancestors
of b belong to Gc) and since it cannot come from a child different from y as otherwise P
would have to contain a cross-edge.

Let D∗ be the chain containing yb. Then D∗ ≤ D by Lemma 2.(5) (applied with
C = D∗ and u = y) and hence s(D∗) ≤ s(D) ≤ a by part (4) of the same lemma. Also
t(D∗) = b. Since b = t(D∗) ∈ Gc, p(D∗) ∈ Gc.

As a and b are not inner vertices of the same link, the path t(D∗)→T s(D∗) contains
a branch vertex. Thus D∗ is a Mader-path by Lemma 3. ut

Corollary 2. If G is 3-edge-connected, chains can be greedily added in parent-first
order.

Theorem 2 gives rise to an O((n+m) log(n+m)) algorithm, the Greedy-Chain-
Addition Algorithm. Details can be found in the full version of this paper.



5 A Classification of Chains

When we add a chain in the Greedy-Chain-Addition algorithm, we also process its
children. Children that do not have both endpoints as inner nodes of the chain can
be added to the list of addable chains immediately. However, children that have both
endpoints as inner nodes of the chain cannot be added immediately and need to be
observed further until they become addable. We now make this distinction explicit by
classifying chains into two types, interlacing and nested.

We classify the chains {C3, . . .Cm−n+1} into two types. Let C be a chain with parent
Ĉ = p(C). We distinguish two cases3 for C.

– If s(C) is an ancestor of t(Ĉ) and a descendant of s(Ĉ), C is interlacing. We have
s(Ĉ)≤ s(C)≤ t(Ĉ)≤ t(C).

– If s(C) is a proper descendant of t(Ĉ), C is nested. We have s(Ĉ)≤ t(Ĉ)< s(C)≤
t(C) and t(C)→T s(C) is contained in Ĉ.

These cases are exhaustive as the following argument shows. Let s(Ĉ)v be the first
edge on Ĉ. By Lemma 2, s(Ĉ)≤ s(C)≤ v. We split the path v→T s(Ĉ) into two parts
corresponding to the two cases above, namely t(Ĉ)→T s(Ĉ), and (v→T t(Ĉ))\t(Ĉ).
Depending on which of these paths s(C) lies, it is classified as interlacing or nested.

The following simple observations are useful. For any chain C 6=C1, t(C) s-belongs
to Ĉ. If C is nested, s(C) and t(C) s-belong to Ĉ. If C is interlacing, s(C) s-belongs
to a chain which is a proper ancestor of Ĉ or Ĉ = C1. The next lemma confirms that
interlacing chains can be added once their parent belongs to Gc.

Lemma 4. Let Gc be a parent-closed union of chains that contains C1 and C2, let C be
any chain contained in Gc, and let D be an interlacing child of C not contained in Gc.
Then D is a Mader-path with respect to Gc.

6 A Linear Time Algorithm

According to Lemma 4, interlacing chains whose parent already belongs to the current
graph are always Mader-paths and can be added. Adding a chain may create new
branching vertices which in turn can turn other chains into Mader-paths. This observation
suggests adding interlacing chains as early as possible. Only when there is no interlacing
chain to add, we need to consider nested chains. In that case and if the graph is 3-edge-
connected, some nested chain must be addable (because a previously added chain created
a branching vertex on the tree-path from the sink to the source of the chain). The question
is how to find this nested chain efficiently.

The following observation paves the way. Once we add a nested chain, its interlacing
children and then their interlacing children etc. become addable. This suggests consider-
ing nested chains not in isolation, but to consider them together with their interlacing
offspring. We formalize this intuition in the concept of segment below.

3 In [20], three types of chains are distinguished. What we call nested is called Type 1 there and
what we call interlacing is split into Types 2 and 3 there. We do not need this finer distinction.



Algorithm 1 Certifying linear-time algorithm for 3-edge connectivity.
procedure CONNECTIVITY(G=(V,E))

Let {C1,C2, . . . ,Cm−n+1} be a chain decomposition of G as described in Sect. 3;
Initialize Gc to C1∪C2;
for i from 1 to m−n+1 do

. Phase i: add all chains whose source s-belongs to Ci
Group the chains C for which s(C) s-belongs to Ci into segments;

. Part I of Phase i: add segments with interlacing root
Add all segments whose minimal chain is interlacing to Gc;

. Part II of Phase i: add segments with nested root
Either find an insertion order S1, . . . ,Sk on the segments having a nested minimal chain

or exhibit a 2-edge-cut and stop;
for j from 1 to k do

Add the chains contained in S j parent-first;
end for

end for
end procedure

Nested chains have both endpoints on their parent chain. Consider the chains nested
in chain Ci. Which chains can help their addition by creating branching points on Ci?
First, chains nested in Ci and their interlacing offspring, and second, interlacing chains
having their source on some C j with j < i. Chains having their source on some C j with
j > i cannot help because they have no endpoint on C j. These observations suggest an
algorithm operating in phases. In the i-th phase, we try to add all chains having their
source vertex on Ci.

The overall structure of the linear-time algorithm is given in Algorithm 1. An imple-
mentation in Python is available at https://github.com/adrianN/edge-connectivity.
The algorithm operates in phases and maintains a current graph Gc. Let C1, C2, . . . ,
Cm−n+1 the chains of the chain decomposition in the order of creation. We initialize Gc
to C1 ∪C2. In phase i, i ∈ [1,m− n+ 1], we consider the i-th chain Ci and either add
all chains C to Gc for which the source vertex s(C) s-belongs to Ci to Gc or exhibit a
2-edge-cut. As already mentioned, chains are added parent-first and hence Gc is always
parent-closed. We maintain the following invariant:
Invariant: After phase i, Gc consists of all chains for which the source vertex s-belongs
to one of the chains C1 to Ci.

Lemma 5. For all i, the current chain Ci is part of the current graph Gc at the beginning
of phase i or the algorithm has exhibited a 2-edge-cut before phase i.

The next lemma gives information about the chains for which the source vertex
s-belongs to Ci. None of them belongs to Gc at the beginning of phase i (except for chain
C2 that belongs to Gc at the beginning of phase 1) and they form subtrees of the chain
tree. Only the roots of these subtrees can be nested. All other chains are interlacing.

Lemma 6. Assume that the algorithm reaches phase i without exhibiting a 2-edge-cut.
Let C 6=C2 be a chain for which s(C) s-belongs to Ci. Then C is not part of Gc at the
beginning of phase i. Let D be any ancestor of C that is not in Gc. Then:

https://github.com/adrianN/edge-connectivity


(1) s(D) s-belongs to Ci.
(2) If D is nested, it is a child of Ci.
(3) If p(D) is not part of the current graph, D is interlacing.

We can now define the segments with respect to Ci. Consider the set S of chains
whose source vertex s-belongs to Ci. For a chain C ∈S , let C∗ be the minimal ancestor
of C that does not belong to Gc. Two chains C and D in S belong to the same segment
if and only if C∗ = D∗, see Figure 2 for an illustration.

Consider any C ∈S . By part (1) of the preceding lemma either p(C) ∈S or p(C)
is part of Gc. Moreover, C and p(C) belong to the same segment in the first case. Thus
segments correspond to subtrees in the chain tree. In any segment only the minimal
chain can be nested by Lemma 6. If it is nested, it is a child of Ci (parts (2) and (3) of the
preceding lemma). Since only the root of a segment may be a nested chain, once it is
added to the current graph all other chains in the segment can be added in parent-first
order by Lemma 4. All that remains is to find the proper ordering of the segments . We
do so in Lemma 10. If no proper ordering exists, we exhibit a 2-edge-cut.

Lemma 7. All chains in a segment S can be added in parent-first order if its minimal
chain can be added.

It is easy to determine the segments with respect to Ci. We iterate over all chains C
whose source s(C) s-belongs to Ci. For each such chain, we traverse the path C, p(C),
p(p(C)), . . . until we reach a chain that belongs to Gc or is already marked4. In the
former case, we distinguish cases. If the last chain on the path is nested we mark all
chains on the path with the nested chain. If we hit a marked chain we copy the marker to
all chains in the path. Otherwise, i.e., all chains are interlacing and unmarked, we add
all chains in the path to Gc in parent-first order, as this segment can be added according
to Corollary 7. We have now completed part I of phase i, namely the addition of all
segments whose minimal chain is interlacing. We have also determined the segments
with nested minimal chain.

It remains to compute a proper ordering of the segments in which the minimal chain
is nested or to exhibit a 2-edge-cut. We do so in part II of phase i. For simplicity, we will
say ‘segment’ instead of ‘segment containing a nested chain’ from now on.

For a segment S let the attachment points of S be all vertices in S that are in Gc. Note
that the attachment points must necessarily be endpoints of chains in S and hence adding
the chains of S makes the attachment points branch vertices. Nested children C of Ci can
be added if there are branch vertices on t(C)→T s(C), therefore adding a segment can
make it possible to add further segments.

Lemma 8. Let C be a nested child of Ci and let S be the segment containing C. Then all
attachment points of S lie on the path t(C)→T s(C) and hence on Ci.

For a set of segments S1, . . . ,Sk, let the overlap graph be the graph on the segments
and a special vertex R for the branch vertices on Ci. In the overlap graph, there is an
edge between R and a vertex Si, if there are attachment points a1 ≤ a2 of Si such that
there is a branch vertex on the tree path a2→T a1. Further, between two vertices Si and

4 Initially, all chains are unmarked



S j there is an edge if there are attachment points a1, a2 in Si and b1, b2 in S j, such that
a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2. We say that Si and S j overlap.

Lemma 9. Let C be a connected component of the overlap graph H and let S be any
segment with respect to Ci whose minimal chain C is nested. Then S ∈ C if and only if

(i) R ∈ C and there is a branch vertex on t(C)→T s(C) or
(ii) there are attachments a1 and a2 of S and attachments b1 and b2 of segments in C

with a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2.

Lemma 10. Assume the algorithm reaches phase i. If the overlap graph H induced by
the segments with respect to Ci is connected, we can add all segments of Ci. If H is not
connected, we can exhibit a 2-edge-cut for any component of H that does not contain R.

It remains to show that we can find an order as required in Lemma 10, or a 2-edge-cut,
in linear time. We reduce the problem of finding an order on the segments to a problem
on intervals. W.l.o.g. assume that the vertices of Ci are numbered consecutively from 1 to
|Ci|. Consider any segment S, and let a0 ≤ a1 ≤ . . .≤ ak be the set of attachment points
of S, i.e., the set of vertices that S has in common with Ci. We associate the intervals
{[a0,a`]|1≤ `≤ k}∪{[a`,ak]|1≤ ` < k}, with S and for every branch vertex v on Ci we
define an interval [0,v]. See Figure 3 for an example.

1 2 3 4 1 2 3 40

Fig. 3. Intervals for the solid segment with attachment points 1,2,4.

We say two intervals [a,a′], [b,b′] overlap if a≤ b≤ a′ ≤ b′. Note that overlapping is
different from intersecting; an interval does not overlap intervals in which it is properly
contained or which it properly contains. This relation naturally induces a graph H ′ on the
intervals. Contracting all intervals that belong to the same segment makes H ′ isomorphic
to the overlap graph as required for Lemma 10. Hence we can use H ′ to find the order
on the segments.

A naive approach that constructs H ′, contracts intervals, and runs a DFS will fail,
since the overlap graph can have a quadratic number of edges. However, using a method
developed by Olariu and Zomaya [17], we can compute a spanning forest of H ′ in time
linear in the number of intervals. The presentation in [17] is for the PRAM and thus
needlessly complicated for our purposes. A simpler explanation can be found in the full
version of this paper [14].

Since the number of intervals created for a chain Ci is bounded by |NC(Ci)|+
2|In(Ci)|+ |Vbranch(Ci)|, where NC(Ci) are the nested children of Ci, In(Ci) are the
interlacing chains that start on Ci, and Vbranch(Ci) is the set of branch vertices on Ci, the
total time spent on this procedure for all chains is O(m). From the above discussion
follows:



Theorem 3. For a 3-edge-connected graph, a Mader construction sequence can be
found in time O(n+m).

7 Verifying the Certificate

The certificate is either a 2-edge-cut, or a sequence of Mader-paths. For a 2-edge-cut, we
simply remove the two edges and verify that G is no longer connected.

Checking the Mader sequence is slightly more involved. We assume that each edge
in a Mader-path is doubly linked to the corresponding edge in G. Let G′ be a copy of
G. We remove the Mader-paths again, in reverse order, suppressing vertices of degree
two as they occur. This can create multiple edges and loops. Let G′i be the multi-graph
before we remove the i-th path Pi. There are several things that we need to verify:

– G must have minimum degree three.
– The union of Mader-paths must be isomorphic to G and the Mader-paths must

partition the edges of G. This is easy to check using the links between the edges of
the paths and the edges of G.

– The paths we remove must be ears. More precisely, at step i, Pi must have been
reduced to a single edge in G′i, as inner vertices of Pi must have been suppressed if
Pi is an ear for G′i.

– The Pi must not subdivide the same link twice. That is, after deleting the edge
corresponding to Pi, it must not be the case that both endpoints are still adjacent (or
equal, i.e. Pi is a loop) but have degree two.

– When only two paths are left, the graph must be a K3
2 .

8 Conclusion

We presented a certifying linear time algorithm for 3-edge-connectivity based on chain
decompositions of graphs. It is simple enough for use in a classroom setting and can
serve as a gentle introduction to the certifying 3-vertex-connectivity algorithm of [20].
We also provide an implementation in Python, available at https://github.com/
adrianN/edge-connectivity.

There remain some open problems. Foremost, our algorithm only computes one
2-edge-cut. Is it possible to compute the 3-edge-connected components easily?

Mader’s construction sequence is general enough to construct k-edge-connected
graphs for any k ≥ 3, and can thus be used in certifying algorithms for larger k. So far,
though, it is unclear how to compute these more complicated construction sequences.
We hope that the chain decomposition framework can be adapted to work in these cases
too.
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