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Abstract

We devise several new upper bounds for shortness parameters of regular
polyhedra and of the polyhedra that have two vertex degrees, and relate these
to each other. Grünbaum and Walther showed that quartic polyhedra have
shortness exponent at most log 22/ log 23. This was subsequently improved
by Harant to log 16/ log 17, which holds even when all faces are either trian-
gles or of length k, for infinitely many k. We complement Harant’s result by
strengthening the Grünbaum-Walther bound to log 4/ log 5, and showing that
this bound even holds for the family of quartic polyhedra with faces of length at
most 7. Furthermore, we prove that for every 4 ≤ ℓ ≤ 8 the shortness exponent
of the polyhedra having only vertices of degree 3 or ℓ is at most log 5/ log 7.
Motivated by work of Ewald, we show that polyhedral quadrangulations with
maximum degree at most 5 have shortness coefficient at most 30/37. Finally, we
define path analogues for shortness parameters, and propose first dependencies
between these measures.
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1 Introduction
In this paper, in the light of Steinitz’ Theorem, a polyhedron shall be a plane 3-connected
graph. (A graph is plane if it is planar and embedded in the Euclidean plane.) We denote by
Pk,ℓ the family of all polyhedra in which every vertex has degree k or ℓ. If k = ℓ, we simply
write Pk. Given an infinite family G of graphs and a function f : G → R, lim infG∈G f(G)
is defined to be lim infi→∞ f(Gi), where we take an (arbitrary) enumeration of graphs in
G = {G1, G2, . . . }. We shall study the shortness coefficient and shortness exponent of an
infinite family G of graphs, defined as

ρ(G) := lim inf
G∈G

circ(G)
|V (G)| and σ(G) := lim inf

G∈G

log circ(G)
log |V (G)| ,

respectively, where the circumference circ(G) denotes the length of a longest cycle in a given
graph G := (V (G), E(G)). For a classical reference, see [5].

It is well-known that, unlike planar 4-connected graphs, polyhedra can have relatively
short longest cycles. Building on the influential work of Moon and Moser [14], Chen and
Yu [3] showed that the shortness exponent of polyhedra is log3 2. This implies that the
shortness coefficient of polyhedra is 0. Grünbaum and Walther [5] were among the first
to investigate the shortness parameters of polyhedra. They sought to refine the bounds
by studying polyhedra within certain subclasses. Motivated by this, we propose several
new upper bounds for the shortness parameters of regular polyhedra (where regularity is
understood in the graph-theoretical sense) and of polyhedra with exactly two vertex degrees.
We also examine the relationships between these bounds. Grünbaum and Walther showed
that quartic (i.e. 4-regular) polyhedra have shortness exponent at most log 22/ log 23. This
was subsequently improved by Harant [6] to log 16/ log 17, which holds even when all faces
are either triangles or of length k, for infinitely many k. In this article we complement
Harant’s result by strengthening the Grünbaum-Walther bound to log 4/ log 5, and showing
that this bound even holds for the family of quartic polyhedra with faces of length at most 7.

We also prove that for every 4 ≤ ℓ ≤ 8 the shortness exponent of the polyhedra having
only vertices of degree 3 or ℓ is at most log 5/ log 7. Motivated by work of Ewald [4] and
Reynolds [16], we show that polyhedral quadrangulations—plane graphs in which all faces
have length 4—with maximum degree at most 5 have shortness coefficient at most 30/37. A
good overview (and further references) regarding results on shortness parameters in quad-
rangulations (and triangulations) with restricted vertex degrees is given by Jendrol, and
Kekeňák in [10]. Finally, we define path analogues for shortness parameters, and propose
first dependencies between these measures.

We introduce further terminology used throughout this article. A k-leg fragment F
shall be a graph that contains exactly k half-edges, which we also call the legs of F . Such a
fragment F may be constructed from an induced subgraph G[V (F )] of a graph G by adding
exactly the edges as legs that have one end-vertex in G[V (F )] and the other end-vertex in
G[V (G) \ V (F )]. Consider a k-leg fragment F and a graph G containing a k-leg fragment
W . We say that we replace W with F in G if W together with its k legs is removed from
G, leaving k dangling half-edges, to which we connect the k legs of F using a bijection.
Throughout this paper, if G − W and F are plane, it will always be possible to choose a
bijection such that replacing W with F yields a plane graph as well.

If G contains vertex-disjoint copies of W , we denote by F
W−→ G the graph obtained by

replacing every copy of W in G with F . In a plane 2-edge-connected graph, the length of
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a face is the number of edges in its boundary. The join of K1 and a cycle shall be called a
wheel, an n-wheel is a wheel of order n.

2 Shortness exponents of polyhedral graphs with few
distinct vertex degrees

We first consider shortness exponents and start with a generalisation of a method proposed
by Bielig in [1]; see also [17, Lemma 2].

Lemma 1. Let F and W be k-leg fragments such that F contains z ≥ 2 vertex-disjoint copies
of W . Let G0 be a graph that contains W , and define Gi := F

W−→ Gi−1 for every i > 0. If
for every cycle C of any graph that contains F as an induced subgraph, either C is contained
in F or C misses at least w ≤ z − 2 copies of W in F , then σ({Gi}i≥0) ≤ log(z − w)/ log z.

Proof. Suppose G0 contains z′ > 0 vertex-disjoint copies of W . Then Gi contains ziz′

copies of W for every i ≥ 0 and zi−1z′ copies of F for every i ≥ 1. Hence, Gi has at least
ziz′|V (W )| vertices. On the other hand, by induction, every cycle Ci of Gi for i ≥ 0 has
length at most

|V (G0)| +
i−1∑
j=0

(z − w)jz′|V (F )| = |V (G0)| + (z − w)i − 1
(z − w) − 1 · z′|V (F )|,

whence

σ({Gi}i≥0) = lim
i→∞

log circ(Gi)
log |V (Gi)|

≤ lim
i→∞

log
(

|V (G0)| + (z−w)i−1
(z−w)−1 · z′|V (F )|

)
log(ziz′|V (W )|) = log(z − w)

log z
.

2.1 Upper bound for σ(P4)
Consider the graph H having circumference 34 in Figure 1 and its vertices x, x1, x2, x3 and
x4. Remove x from H and obtain a 4-leg fragment F . Consider any graph G containing F as
an induced subgraph such that only x1, x2, x3, x4 have a neighbour outside F , and moreover
each xi has exactly one such neighbour (but these neighbours are allowed to coincide). Let
C be a cycle of G that is not entirely contained in F but contains at least one vertex of F .

We now prove that C visits at most 33 of the 38 vertices of F , and that there exists a
5-wheel in F such that C has an empty intersection with this 5-wheel.

First, observe that if C contains a vertex of a 5-wheel W in F , we can modify C to be
another cycle that includes V (C)∪V (W ), while leaving C unchanged outside F . Therefore,
we can assume without loss of generality that if C intersects a 5-wheel, it contains the entire
wheel.

Assume by contradiction that |V (C) ∩ V (F )| ≥ 34, or that C intersects all the 5-wheels
of F . We will omit the symmetric cases.

If C ∩ F consists of one path, let a and b be the end-vertices of this path. Then a, b ∈
{x1, x2, x3, x4}, so let C ′ := (C∩F )∪axb. This forms a cycle of length |V (C)∩V (F )|+1 in H.
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After making slight modifications if necessary, we can assume that V (C ′) ⊃ {x1, x2, x3, x4}.
If |V (C) ∩ V (F )| ≥ 34, then C ′ has length at least 35. On the other hand, if C intersects all
the 5-wheels, then C ′ contains all the vertices of the six 5-wheels in H, and thus its length
would be 36. In both cases, this contradicts the fact that H has circumference 34.

If C ∩ F consists of two paths, let P and Q be these two paths. If P is an x1x2-path
and Q is an x3x4-path, then the cycle P ∪ Q ∪ x1x4 ∪ x2x3 is a cycle of length at least 35
in H if |V (C) ∩ V (F )| ≥ 34, or at least 36 if C intersects all the 5-wheels. This leads to
a contradiction. The same argument applies if P is an x1x4-path and Q is an x2x3-path.
Since F is planar, no other situations can occur.

Therefore, |V (C) ∩ V (F )| ≤ 33. Let W be any of the five 5-wheels contained in F .
Figure 1 shows that, if C ∩ F contains a vertex of W , C ∩ F can be extended to a path or
a vertex-disjoint union of two paths with the same end-vertices that contains all vertices of
W . Combining this with the result above that C visits at most 33 vertices of F , we conclude
that there is a 5-wheel W in F such that C ∩ W = ∅. A very similar reasoning for H yields
that also a longest cycle of H misses one entire 5-wheel. We summarise our findings in the
following lemma and use this to prove our new bound on σ(P4).

Lemma 2. Consider the graph H and its vertex x in Figure 1, and let G be a graph
containing the fragment F := H − x as an induced subgraph such that the only vertices of F
with neighbours in G − F are in N(x). For any cycle C in G, there is an induced 5-wheel
W in F such that C ∩ W = ∅; in particular, this holds for G = H.

x

x1

x2 x3

x4

Figure 1: The quartic polyhedron H of order 39 and circumference 34, see [18]. The
4-leg fragment F is obtained from H by removing x.
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Theorem 3. The shortness exponent of the family of all quartic polyhedra, and of the family
of all quartic polyhedra in which every face has length at most 7, is at most log 4/ log 5 ≈
0.861353.

Proof. Consider the graph H and the 4-leg fragment F from Lemma 2; F contains z := 5
vertex-disjoint copies of the 5-wheel W . We take G0 := H, and define Gi := F

W−→ Gi−1
for i > 0. As shown above, every cycle that is not entirely contained in F misses at least
w := 1 copy of W . By Lemma 1, this implies that σ({Gi}i≥0) ≤ log 4/ log 5. Finally, one
can easily check that every Gi is a quartic polyhedron and that every face of Gi has length
at most 7 (this gives the second claim). As this class is a subclass of the quartic polyhedra,
the first claim follows from the second.

Theorem 6 (ii)–(iv) of Grünbaum and Walther [5] states that the shortness exponent
for the family of all quartic polyhedra, with face lengths bounded above by 24, 26, and 30,
respectively, is at most log 26

log 27 ≈ 0.988549, log 24
log 25 ≈ 0.987318, and log 22

log 23 ≈ 0.985823. The best-
known bound on the shortness exponent for general quartic polyhedra is log 16

log 17 ≈ 0.978602,
which was given by Harant [6]. Theorem 3 improves all of these bounds.

If only two types of faces are allowed, Harant [6] (see also [9]) has shown that the
shortness exponent of the family of all quartic polyhedra containing only triangles and faces
of length k for any k ≥ 58 such that k is not a multiple of 3 is at most log 16/ log 17 ≈
0.978602. Owens [15] has proven that the shortness exponent of the family of all quartic
polyhedra containing only triangles and faces of length k is less than 1 for any k ≥ 12. Note
that, since for a given infinite family G of graphs, σ(G) < 1 implies ρ(G) = 0, the shortness
coefficient of the family of all quartic polyhedra (and various subclasses thereof) is 0.

2.2 Upper bound for σ(P3,ℓ) for every 4 ≤ ℓ ≤ 8
Let H be the 14-vertex Fruchard graph or one of the four derived 14-vertex graphs from
Figure 2. The vertex set is the same for all these graphs and can be partitioned into V1 and
V2 such that V1 and V2 have eight and six vertices, respectively, and

⋃
v∈V1

N(v) ⊆ V2. This
partition is depicted in Figure 2, where the white and the black vertices constitute V1 and
V2, respectively.

Take an arbitrary vertex v ∈ V1, and consider the 3-leg fragment F obtained from H
by deleting v. In particular, F has seven white vertices and six black vertices. Let G be a
graph containing F as an induced subgraph, and let C be a cycle of G. Since only black
vertices are incident to a half-edge in F and

⋃
w∈V1

N(w) ⊆ V2, we conclude that the cycle
C misses at least two vertices of V1 − v if it is not entirely contained in F .

Theorem 4. For every 4 ≤ ℓ ≤ 8, the shortness exponent of the family P3,ℓ is at most
log 5/ log 7 ≈ 0.827087.

Proof. Applying Lemma 1 gives the claim when choosing G0 := H, F as the 3-leg fragment
obtained from H by removing an arbitrary vertex v ∈ V1, and W as a single vertex of
degree 3 in V1 − v.

2.3 Relations between shortness exponents
For two graph classes G1 and G2 that satisfy G1 ⊆ G2, σ(G1) ≥ σ(G2) holds by definition.
In the following, we derive more detailed relations between the shortness exponents of sub-
classes of polyhedra. We first prove a strengthening of a result of Bielig [1] (see also [17]).
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Figure 2: The Fruchard graph (top) and four derived graphs (bottom). Each derived
graph is obtained by iteratively adding a matching that covers precisely all black
vertices. These are all non-traceable polyhedra on 14 vertices with degrees 3 and 4
(resp. 3 and 5, 3 and 6, 3 and 7, 3 and 8). Note that the white vertices form an
independent set and all have degree 3.

Lemma 5. Let G1 and G2 be infinite families of graphs and φ : G1 → G2. If there exist
constants a, b > 0 such that every G ∈ G1 satisfies circ(φ(G)) ≤ a · circ(G) and |V (φ(G))| ≥
b · |V (G)|, then σ(G1) ≥ σ(G2).

Proof. Define G′
2 := {φ(G) : G ∈ G1}. Clearly, G′

2 ⊆ G2. For every H ∈ G′
2, there are only

finitely many graphs G ∈ G1 with φ(G) = H, since |V (G)| ≤ b−1 · |V (H)|. This implies that
G′

2 is infinite and that

σ(G′
2) = lim inf

G∈G′
2

log circ(G)
log |V (G)| = lim inf

G∈G1

log circ(φ(G))
log |V (φ(G))| .

Since a and b are constants and any sequence of graphs φ(G) with G ∈ G1 has an
unbounded number of vertices, we have

lim inf
G∈G1

log(a−1 · circ(φ(G)))
log(b−1 · |V (φ(G))|) = lim inf

G∈G1

log circ(φ(G))
log |V (φ(G))| .

This gives the claim that

σ(G1) = lim inf
G∈G1

log circ(G)
log |V (G)| ≥ lim inf

G∈G1

log(a−1 · circ(φ(G)))
log(b−1 · |V (φ(G))|)

= lim inf
G∈G1

log circ(φ(G))
log |V (φ(G))| = σ(G′

2) ≥ σ(G2).
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Theorem 6. The following inequalities hold.

1. σ(P3) ≥ σ(P4);

2. σ(P3,ℓ) ≥ σ(P5,ℓ) for every ℓ ≥ 3;

3. σ(P3) ≥ σ(P5); and

4. σ(P3) ≥ σ(P4,k) for every k ≥ 3.

Proof.

1. For every G ∈ P3, let φ(G) be the medial graph (or, here equivalently, the line graph)
of G. It is clear that φ(G) ∈ P4, and |V (φ(G))| = 3

2 |V (G)|, since, by definition, each
element in V (φ(G)) corresponds to an element in E(G). Moreover, every vertex v of
G corresponds to the boundary cycle Tv of a 3-face in φ(G) such that the set V (Tv)
corresponds to {vw ∈ E(G) : w ∈ NG(v)}, and this partitions the edges of φ(G) into
sets of size 3.
Let C be a longest cycle of φ(G). We want to translate this cycle into a (long) cycle in
G. There is a canonical way to do this translation, but this translation only works if
there is no vertex v ∈ V (G) such that |C ∩ Tv| = 2. Therefore, we will first translate
C into another cycle which satisfies this condition. Note that since G contains a
cycle of length at least 3, we have that C has at least six vertices. For any vertex
v ∈ V (G), the intersection C ∩ Tv contains thus at most two edges. If it contains
exactly two edges, we can replace these two edges by the third edge from Tv to obtain
a shorter cycle. Exhaustively iterating this process, we obtain a cycle C ′ in φ(G) with
|V (C)| ≤ 2 · |V (C ′)|. It is easily seen that G contains a cycle of length at least |V (C ′)|,
hence we have that circ(φ(G)) ≤ 2 · circ(G) and, by Lemma 5, σ(P3) ≥ σ(P4).

2. For every G ∈ P3,ℓ, we replace every cubic vertex v ∈ V (G) by the 3-leg fragment
shown in Figure 3 to obtain a graph φ(G) ∈ P5,ℓ. Clearly, |V (φ(G))| ≥ |V (G)|. By
transforming cycles in φ(G) of length at least 16 into cycles in G, one can show that
circ(φ(G)) ≤ 15 · circ(G), and hence, by Lemma 5, σ(P3,ℓ) ≥ σ(P5,ℓ).

Figure 3: A 15-vertex 3-leg fragment.
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Figure 4: Replacing each edge in a perfect matching with the fragment shown on
the right. Each replacement results in four vertices of degree k and 2k + 1 vertices
of degree 4.

3. This case is analogous to the previous case, but here we replace all vertices by the
3-leg fragment of Figure 3.

4. Let G ∈ P3. Consider a perfect matching M in G, which must exist by Petersen’s
Theorem. If we replace each edge of M with the fragment shown in Figure 4, we
obtain a graph, denoted φ(G), which belongs to P4,k. Clearly, |V (φ(G))| ≥ |V (G)|.
Let C be a longest cycle in φ(G). It is clear that C is not contained in any fragment.
We can transform C into a cycle C ′ in G as follows: the edges not contained in any
fragment are retained. The other edges form a vertex-disjoint family of paths, and
each path is contracted to a vertex or an edge in the obvious way. Since the length
of C is at most k + 3 times the length of C ′, we have circ(φ(G)) ≤ (k + 3) · circ(G).
Hence, by Lemma 5, we conclude that σ(P3) ≥ σ(P4,k).

This gives the claim.

We conclude this section with an overview of the best currently available bounds (see
Table 1) that arise from Theorems 3, 4, and 6.

3 Shortness coefficient for polyhedral quadrangulations
with maximum degree at most 5

Ewald [4] proved that the polyhedra with both maximum degree and face lengths at most 4
have shortness exponent 1, and it is easy to see that they need not be hamiltonian by
considering for instance Fruchard’s graph depicted in Fig. 2, or Herschel’s graph—see also
Reynolds’ paper [16]. However, no upper bound less than 1 is known for the shortness
coefficient. Continuing our investigation of the shortness parameters of polyhedral graphs
with few distinct vertex degrees, we now prove an upper bound for the polyhedra with
maximum degree at most 5 in which all faces have length 4.

Consider the 37-vertex fragment F of Figure 5 (a). By connecting the legs on the top
of F one-by-one with the ones on the bottom from left to right, we obtain a cylinder C
that may be extended arbitrarily by joining horizontally i further copies of C. Let Gi be
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Best currently available bounds for the shortness exponent:

Graph class Lower bounds Matching bound Upper bounds

P3 max(σ(P4), σ(P5)) log 22
log 23

P4
log 2
log 3 min(σ(P3), log 4

log 5)

P5 σ(P3,5)

P3,4 σ(P4,5) min(σ(P4), log 5
log 7)

P3,5 σ(P4,5) min(σ(P3), log 5
log 7)

P3,6
log 2
log 3 min(σ(P3), log 5

log 7)

P3,7
log 2
log 3 min(σ(P3), log 5

log 7)

P3,8
log 2
log 3 min(σ(P3), log 5

log 7)

P4,5
log 2
log 3 min(σ(P5), σ(P3,4))

Table 1: An overview of the bounds for shortness exponents for several subclasses
of polyhedra. The lower bounds log 2

log 3 in this table arise from the general lower
bound for polyhedra [3]. The upper bound log 22

log 23 in the top row is implied by the
first statement of Section 2.3 and [5, Theorem 7(iv)]. The matching bound σ(P3,5)
is implied by combining the same argument with σ(P3,5) ≥ σ(P5), which follows
from Theorem 6.2 for ℓ = 5. This matching bound in turn implies the lower bound
σ(P3,5) = σ(P5) ≥ σ(P4,5). Using Theorem 6.2 for ℓ = 4 gives the lower bound
σ(P3,4) ≥ σ(P4,5).

the graph obtained from this extended cylinder by joining the remaining half-edges at each
end to a copy of the graph shown in Figure 5 (b), which we will call a cap, via a bijection
given by the order of the legs as given in Figure 5 (so that planarity is preserved). For the
half-edges at the right-hand end of C the bipartition shown in Figure 5 (b) can be used,
while for the half-edges at the left-hand end of C we reverse black and white in order to
obtain a vertex-colouring, which proves that Gi is bipartite.

Clearly, the vertices of the caps do not influence the shortness coefficient. Since F is
bipartite and has exactly 15 black vertices and 22 white vertices, we obtain the following
theorem.

Theorem 7. The shortness coefficient of the polyhedral quadrangulations with maximum
degree at most 5 is at most 30/37 = 0.810.

Note that this complements the corresponding shortness exponent result in the list given
by Grünbaum and Walther [5].
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Figure 5: (a) A 37-vertex fragment. (b) A cap.

4 Shortness parameters for paths
In this brief closing section, we extend the results known for shortness coefficients and
exponents by proposing similar measures for longest paths, and relate these measures to the
well-known ones. Following Kapoor, Kronk, and Lick [11], for a graph G, let ∂(G) denote
the length (i.e. number of edges) of a longest path in G. We now define the path shortness
coefficient and the path shortness exponent of a family G of graphs as

ρP (G) := lim inf
G∈G

∂(G)
|V (G)| and σP (G) := lim inf

G∈G

log ∂(G)
log |V (G)| ,

respectively.
Clearly, long cycles imply long paths. All known lower bounds for the shortness coeffi-

cient and exponents are also valid for the path coefficient and exponent, as replacing circ(G)
with circ(G) − 1 in the numerator does not influence the limit. The validity of the converse
direction is in general not known. However, if we have information on the connectedness of
the graphs, we have the following.

Theorem 8. Let k ≥ 3 and G be an infinite family of k-connected graphs. Then
1. ρP (G) ≤ 3k−4

2k−4 · ρ(G);

2. σP (G) = σ(G); and
3. if k = 3 and every graph of G is 3-regular, ρP (G) ≤ 3

2 · ρ(G).

Proof. Locke [13] proved that if a k-connected graph G contains a path of length ℓ, then
G contains a cycle of length at least 2k−4

3k−4 · ℓ. This implies the first two statements of the
theorem. For k = 3 and 3-regular graphs G, Bondy and Locke [2] showed the stronger result
that every path of length ℓ in G implies that G contains a cycle of length at least 2

3 · ℓ + 2;
since constant summands do not influence the limit, the third statement follows.
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Applying Theorem 8 to well-known results for shortness coefficients gives the following
corollary.

Corollary 9. Every subclass of 3-connected graphs with shortness exponent less than 1 has
path shortness coefficient 0, for example:

1. the cubic, quartic and quintic polyhedra by [5, Theorem A], Theorem 3 and [5, Theo-
rem 5(i)];

2. for every q ≥ 136, the 3-regular polyhedral graphs in which every face has length at
most q by [8, Theorem 2];

3. for every q ≥ 29 such that q ̸≡ 0 (mod 3), the 5-regular polyhedral graphs in which
every face has either length 3 or q by [7, p. 144]; and

4. the 5-connected 1-planar graphs by [12, Section 3.2].
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