
Generalized cut trees for edge-connectivity

On-Hei S. Lo∗† Jens M. Schmidt‡†

Abstract

We present three cut trees of graphs, each of them giving insights into the
edge-connectivity structure. All three cut trees have in common that they are
defined with respect to a given binary symmetric relation R on the vertex set of
the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we
prove the following:

• A pair of vertices {v, w} of a graphG is pendant if λ(v, w) = min{d(v), d(w)}.
Mader showed in 1974 that every simple graph with minimum degree δ
contains at least δ(δ + 1)/2 pendant pairs. We improve this lower bound
to δn/24 for every simple graph G on n vertices with δ ≥ 5 or λ ≥ 4 or
vertex connectivity κ ≥ 3, and show that this is optimal up to a constant
factor with regard to every parameter.

• Every simple graph G satisfying δ > 0 has O(n/δ) δ-edge-connected
components. Moreover, every simple graph G that satisfies 0 < λ < δ has
O((n/δ)2) cuts of size less than min{ 3

2λ, δ}, and O((n/δ)b2αc) cuts of size
at most min{α · λ, δ − 1} for any given reel number α ≥ 1.

• A cut is trivial if it or its complement in V (G) is a singleton. We provide an
alternative proof of the following recent result of Thorup et al. (to appear
in Discrete Applied Mathematics): Given a simple graph G on n vertices
that satisfies δ > 0, we can compute vertex subsets of G in near-linear
time such that contracting these vertex subsets separately preserves all
non-trivial min-cuts of G and leaves a graph having O(n/δ) vertices and
O(n) edges.

1 Introduction
We propose a general notion of cut trees that are defined with respect to a given
binary relation R on the vertices. We consider only binary relations R that are
irreflexive and symmetric, which allows us to see R as a set of unordered pairs {a, b}

∗School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui
230026, China.

†This work was supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation).

‡University of Rostock, Institute of Computer Science, Rostock, Germany.

1

satisfying a 6= b. We will study these generalized cut trees (see Definition 1) for
three relations, each of them giving structural insights about the edge-connectivity
in graphs.

We call a pair {v, w} of vertices of a graph G pendant if λ(v, w) = min{d(v), d(w)},
where d denotes the degree function on G. The study of pendant pairs is motivated
by the well-known, simple and widely used min-cut algorithm of Nagamochi and
Ibaraki [17], which refines the work of Mader [14, 13] in the early 70s, and was
simplified by Stoer and Wagner [18] and Frank [4]. The key approach of this
algorithm is to iteratively contract a pendant pair of the input graph G := (V,E)
in near-linear time by using maximal adjacency orderings (also known as maximum
cardinality search [19]). Having done that n − 2 times, where n := |V |, one can
obtain a min-cut by just considering the minimum degree of all intermediate graphs.

As early as 1973, and originally motivated by the structure of minimally k-edge-
connected graphs, Mader proved that every graph with minimum degree δ ≥ 1
contains a pendant pair [14]. This holds also for the vertex-connectivity variant of
pendant pairs, which nowadays is most easily proven by using maximal adjacency
orderings. Later, Mader improved his result by showing that every simple graph with
minimum degree δ contains in fact δ(δ+1)

2 pendant pairs [15]. Let κ be the vertex
connectivity of a graph. By considering the cut tree that respects non-pendant pairs
in Section 3, we improve Mader’s result by showing that every simple graph that
satisfies δ ≥ 5 or λ ≥ 4 or κ ≥ 3 contains 1

24δn pendant pairs. We show that this
result is optimal up to a constant factor and that every of the three assumptions
is best possible. We also show how to compute these 1

24δn pendant pairs from a
Gomory-Hu tree in linear time.

In Section 4, we study two other cut trees, from which results on sparsification
done by vertex subset contractions will be derived. In Section 4.1, we consider the cut
tree that respects the vertex pairs {v, w} for which λ(v, w) < δ. We prove that every
simple graph G with δ > 0 has O(n/δ) δ-edge-connected components, and contracting
these components leaves O(n) edges. For a simple graph G satisfying 0 < λ < δ,
it was recently shown [12] that G has O((n/δ)2) min-cuts. We strengthen this and
show that G has O((n/δ)2) cuts of size less than min{3

2λ, δ}, and O((n/δ)b2αc) cuts
of size not larger than min{αλ, δ − 1} for any given α, respectively.

Recently, Kawarabayashi and Thorup [10] gave the first deterministic near-linear
time algorithm for finding a min-cut of G. Subsequently, Henzinger, Rao and
Wang [5] obtained an improved variant with running time O(m log2 n log log2 n) by
replacing the diffusion subroutine with a flow-based one. A crucial step in both
algorithms is a sparsification routine [10, Theorem 3] for large minimum degree δ
that contracts vertex subsets of G such that, after these sparsifications, the remaining
graph has only O((n logc n)/δ) vertices and O(n logc n) edges (for some constant c)
and all non-trivial min-cuts of G are preserved. Thorup and the authors [12] later
showed that, for a simple graph G satisfying δ > 0, we can find some vertex subsets
in near-linear time such that all non-trivial min-cuts are preserved, and only O(n/δ)

2

vertices and O(n) edges are left when these vertex subsets are contracted. This
eliminates the poly-logarithmic factor needed above. Here, we introduce the cut tree
that respects the vertex pairs that are separated by some non-trivial min-cut, and
give an alternative proof of this new result (see Section 4.2). We also show that such
a cut tree exists and can be computed in near-linear time for every simple graph G
satisfying λ 6= 0, 2 (and that excluding these values 0 and 2 is necessary).

A Note on the History of Maximal Adjacency Orderings. Mader’s proof
for the existence of one pendant pair relies strongly on [13, Lemma 1], which uses
special orderings on the vertices. Interestingly, these orderings are maximal adjacency
orderings and this fact exhibits a nowadays almost forgotten variant of them, which
remained long unnamed until 1984 [19]. We are only aware of one place in literature
where this is (briefly) mentioned: [16, p. 443]. Mader’s existential proof can in fact be
made algorithmic. A direct comparison between his original and the modern variant
however shows that the modern maximal adjacency orderings are nicer to describe,
as they work directly on the input graph, while Mader iteratively modifies the graph
by moving edges in order to represent the essential connectivity information on the
already visited vertex set with a clique.

2 Notation
All graphs considered in this paper are non-empty, finite, unweighted and undirected;
they may contain parallel edges but no loops. LetG := (V,E) be a graph. Contracting
a vertex subset X ⊆ V identifies all vertices in X and deletes occurring loops (we do
not require that X induces a connected graph in G).

For non-empty and disjoint vertex subsets X,Y ⊂ V , let EG(X,Y) denote the set
of all edges in G that have one endvertex in X and one endvertex in Y . Let further
X := V −X, EG(X) := EG(X,X), dG(X,Y) := |EG(X,Y)| and dG(X) := |EG(X)|;
if X = {v} for some vertex v ∈ V , we simply write EG(v), EG(v, Y), dG(v, Y) and
dG(v). For any subset ∅ 6= X ⊂ V of a graph G, we call EG(X) an edge-cut, or simply
a cut of G. For a connected graph G and any ∅ 6= X,Y ⊂ V (G), EG(X) = EG(Y)
implies either X = Y or X = Y . Thus we may see X as a cut (representing
EG(X,X)) if there is no ambiguity. We say vertices v, w ∈ V are separated by a cut
X if |X ∩ {v, w}| = 1. A cut X of G is trivial if |X| = 1 or |X| = 1. Cuts X and Y
are uncrossing if X ⊆ Y or Y ⊆ X or X ∩ Y = ∅. The length and size of a path are
the number of its edges and vertices, respectively. For a vertex v in G, let NG(v) be
the set of neighbors of v in G, and dG(v) := |NG(v)|. The minimum degree of G is
denoted by δ(G), or simply δ.

For two vertices v, w ∈ V , let λG(v, w) be the maximal number of edge-disjoint
paths between v and w in G. A minimum v-w-cut is a cut X that separates v
and w and satisfies dG(X) = λG(v, w). Two vertices v, w ∈ V are called k-edge-
connected if λG(v, w) ≥ k. For any k, the k-edge-connectivity relation on vertices is

3

symmetric and transitive, and thus its reflexive closure is an equivalence relation that
partitions V ; let the k-edge-connected components be the blocks of this partition.
The edge-connectivity λ(G) of G is the greatest integer such that every two distinct
vertices are λ(G)-edge-connected. A min-cut X is a cut with dG(X,X) = λ(G). The
vertex-connectivity κ(G) of G is defined to be |V | − 1 if G is a complete graph and
otherwise the smallest integer κ(G) such that there exists a vertex subset S ⊆ V
of size κ(G) and G − S is disconnected. We omit parentheses for single elements
(such as vertices or edges) in set subtractions. In order to increase readability, we
will omit subscripts and parameters G whenever the graph is clear from the context.

2.1 Cut Trees

Let T be a tree whose vertex set is a partition of V . We will call the vertices of
such trees blocks. Let AB ∈ E(T) and let CAB be the union of the blocks that are
contained in the component of T −AB containing A, and symmetrically, CBA = CAB .
For an edge AB ∈ E(T), let c(AB) := dG(CAB) be the size of its corresponding
edge-cut in G.

Definition 1. Given an undirected graph G := (V,E) and a binary relation R on V ,
a cut tree T that respects R is a tree whose vertex set is a partition of V , such that
(i) for every A ∈ V (T) and every a, a′ ∈ A, we have {a, a′} /∈ R,
(ii) for every tree edge AB ∈ E(T), there exist a ∈ A and b ∈ B that satisfy
{a, b} ∈ R and

(iii) for every tree edge AB ∈ E(T), there exist a∗ ∈ A and b∗ ∈ B that satisfy
λG(a∗, b∗) = dG(CAB), i.e. CAB is a minimum a∗-b∗-cut in G.

This definition generalizes the well-known Gomory-Hu trees, since a Gomory-Hu
tree is a cut tree that respects the maximal binary relation {{v, w} : v, w ∈ V, v 6= w}
on V : to see this, note that Condition (ii) becomes redundant and Condition (i)
implies that every A ∈ V (T) is a singleton. By choosing the binary relation R in the
above cut tree appropriately, we will prove new facts about the edge-connectivity
structure of graphs in the remaining sections.

3 The Pendant Tree
We call a cut tree T that respects the set of non-pendant vertex pairs a pendant tree.
By Definition 1, we have that (i) every pair of two distinct vertices in a common
block in V (T) is pendant, (ii) for every edge AB ∈ E(T), there are vertices a ∈ A
and b ∈ B such that (a, b) is non-pendant, and (iii) for every edge AB ∈ E(T), there
are vertices a∗ ∈ A and b∗ ∈ B such that c(AB) = λG(a∗, b∗).

The following lemma allows us to find a non-pendant pair from two adjacent
blocks of a pendant tree efficiently.

4

Lemma 2. Let AB be an edge of a pendant tree T and let amax and bmax be vertices
in A and B of maximum degrees, respectively. Then (amax, bmax) is non-pendant.

Proof. By Property (ii) of Definition 1, there are vertices a ∈ A and b ∈ B such that
λ(a, b) < min{d(a), d(b)}. Since (a, amax) and (b, bmax) are pendant, a minimum
a-b-cut can neither separate a from amax nor b from bmax. Hence,

λ(amax, bmax) ≤ λ(a, b)
< min{d(a), d(b)}
≤ min{d(amax), d(bmax)}.

Property (iii) of pendant trees gives the following lemma.

Lemma 3. Let AB be an edge of a pendant tree T and let amax be a vertex in A of
maximum degree. Then c(AB) < d(amax).

Proof. Let bmax be a vertex of maximum degree in B and let a∗ ∈ A and b∗ ∈ B be
such that c(AB) = λ(a∗, b∗) due to Property (iii). By transitivity of λ, we have

λ(amax, bmax) ≥ min{λ(amax, a∗), λ(a∗, b∗), λ(b∗, bmax)}
= min{d(a∗), λ(a∗, b∗), d(b∗)}
= c(AB),

where the first equality follows from the fact that (amax, a∗) and (bmax, b∗) are pendant.
According to Lemma 2, λ(amax, bmax) < d(amax), which gives the claim.

3.1 Constructing Pendant Trees

We will construct a pendant tree by contracting edges in a Gomory-Hu tree. We
recall that a Gomory-Hu tree T of a graph G is a tree on the vertex set V of G such
that, for every edge ab in T , Cab is a minimum a-b-cut in G.

If we replace each vertex v in a Gomory-Hu tree by the singleton set {v}, then it
is precisely a cut tree that respects the maximal irreflexive binary relation. We see a
Gomory-Hu tree as such a cut tree.

Proposition 4. Given a Gomory-Hu tree of a graph G, a pendant tree of G can be
computed in linear time O(|V (G)|+ |E(G)|).

Proof. Let T be a Gomory-Hu tree of G, seen as a cut tree that respects the maximal
irreflexive binary relation. Throughout the algorithm, we maintain the invariant that
every pair of distinct vertices that is contained in a block is pendant. Iteratively for
every edge AB in T , we check whether there is a non-pendant pair {a, b} with a ∈ A
and b ∈ B. We contract AB in T and set the new block as A∪B if and only if there

5

is no such non-pendant pair. We claim that there is such a non-pendant pair if and
only if min{dG(amax), dG(bmax)} > c(AB), where amax and bmax are vertices in A
and B with maximum degrees, respectively. The sufficiency follows from the proof of
Lemma 2, and it remains to show that if min{dG(amax), dG(bmax)} ≤ c(AB), then
{a, b} is pendant for all a ∈ A and b ∈ B.

Thus suppose that min{dG(amax), dG(bmax)} ≤ c(AB). Without loss of generality,
let dG(amax) ≤ c(AB), which implies dG(a) ≤ c(AB) for all a ∈ A. Let a ∈ A and
b ∈ B. By the Gomory-Hu tree properties, T contains vertices a∗ ∈ A and b∗ ∈ B
such that λG(a∗, b∗) = c(AB); in particular, dG(b∗) ≥ dG(a∗) = c(AB). Then {a, b}
is pendant, since

λG(a, b) = min{λG(a, a∗), λG(a∗, b∗), λG(b∗, b)}
= min{dG(a), dG(a∗), c(AB), dG(b∗), dG(b)}
= min{dG(a), dG(b)}.

The first equality is implied by the transitivity of local edge-connectivity, the second
by the fact that every vertex pair of a block is pendant, and the third by dG(b∗) ≥
dG(a∗) = c(AB) ≥ dG(a).

By maintaining for every vertex A ∈ V (T) the maximum degree in G of a vertex
in A, we may evaluate min{dG(amax), dG(bmax)} > c(AB) for every edge AB ∈ E(T)
in constant time. As contracting AB ∈ E(T) and computing the maximum degree
of the contracted vertex A ∪B takes also constant time (note that we do not have
to represent A ∪B explicitly in every intermediate step), the algorithm has running
time O(|V (G)|+ |E(G)|).

Proposition 4 implies in particular that every graph has a pendant tree.
A deterministic construction of a Gomory-Hu tree applies n − 1 times the

uncrossing technique to find uncrossing cuts on the input graph, and hence runs in
time O(nθflow), where θflow is the time needed for a maximum flow subroutine. By
Dinits’ classic algorithm, we know that θflow = O(n2/3m) [2, 8]. Recent progress
on deterministic maximum flow due to Lee and Sidford [11] and Kathuria, Liu and
Sidford [9] shows the improved running time bounds Õ(n1/2m) and O(m4/3+o(1)) for
θflow, where the tilde hides polylogarithmic factors.

For randomized algorithms, it was shown in [1] that a Gomory-Hu tree of a simple
unweighted graph can be constructed in expected running time Õ(nm). Therefore,
by our construction above, we conclude that:
Corollary 5. Given a simple graph G, a pendant tree of G can be constructed
deterministically in running times Õ(n3/2m) and O(nm4/3+o(1)), respectively, and
randomized in expected running time Õ(nm).

3.2 Large Blocks of Degree 1 and 2

In this section, we show that the blocks of a pendant tree have large sizes on average.
This implies a lower bound on the number of pendant pairs, as every pair of vertices

6

in a block is pendant. For any tree T whose vertex set partitions V , let Vk be the
set of blocks of T having degree k in T and let V>k :=

⋃
k′>k Vk′ . We call the blocks

in V1 leaf blocks. In T , the set V2 induces a family of disjoint paths; we call each
such path a straight path. We will prove that the leaf blocks of pendant trees as well
as the blocks that are contained in straight paths are large.

Lemma 6. Let T be a pendant tree of a simple graph G. Then every leaf block A
of T satisfies |A| > δ(G).

Proof. Let p := |A| ≥ 1 and let B be the block adjacent to A in T . By Lemma 3, we
have maxv∈A d(v) > c(AB) ≥

∑
v∈A(d(v)−(p−1)) ≥ maxv∈A d(v)+δ(p−1)−p(p−1),

where the last inequality singles out the maximum degree. Therefore, p > 1 and
p > δ.

Let amax be a vertex of maximal degree in a leaf block A with neighbor B. Since
c(AB) < d(amax), A must actually contain a vertex that has all its neighbors in A,
as otherwise each of the d(amax) incident edges of amax would contribute at least
one edge to the edge-cut, either directly or by an incident edge of the corresponding
neighbor of amax. This gives the following corollary of Lemma 6, of which the
existence of one such vertex subset A was first shown by Mader (without using
pendant trees).

Corollary 7 ([15]). Let T be a pendant tree of a simple graph G. Then every leaf
block A contains a vertex v with N(v) ⊆ A. Hence, every pair in {v} ∪ N(v) is
pendant.

This already implies that simple graphs contain
(δ+1

2
)

= Ω(δ2) pendant pairs.
Note that Lemma 6 and Corollary 7 do not hold for graphs having parallel edges:
for example, consider a block A that consists of two vertices of degree δ, which are
joined by δ − 1 parallel edges. However, even if the graph is not simple, a leaf block
A must always contain at least two vertices due to Lemma 3.

Corollary 8. Every leaf block of a pendant tree of a graph contains at least two
vertices.

For simple graphs, we thus know that leaf blocks give us a large number of
pendant pairs. Since T is a tree, the number of leaf blocks is completely determined
by the number of blocks of degree at least 3, namely |V1| =

∑
A∈V>2(dT (A)− 2) + 2.

Thus, in order to prove a better lower bound on the number of pendant pairs, we
have to consider the case that there are many small blocks of size o(δ) contained in
straight paths. The following two lemmas prove that (i) for every two adjacent blocks
A and B in a straight path that satisfy |A|+ |B| > 2, we have |A|+ |B| ≥ δ−1 = Ω(δ)
and (ii) if δ ≥ 5 or λ ≥ 4 or κ ≥ 3 and P is a subpath of a straight path such that
all blocks of P are singletons, then P contains at most two blocks (see Corollary 11).
This will be used later to show that the bad situation of many small blocks of size
o(δ) can actually not occur.

7

Lemma 9. Let T be a pendant tree of a simple graph G. Let AB be an edge in T
with A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)− 1.

Proof. Let p := |A| and q := |B|, and let A′A,BB′ be edges in T with A′ 6= B and
B′ 6= A. By Lemma 3, we have

∑
v∈A∪B d(v, CA′A) ≤ c(A′A) ≤ maxv∈A d(v)− 1 and∑

v∈A∪B d(v, CB′B) ≤ maxv∈B d(v)− 1. For v ∈ A ∪B, there are at most p+ q − 1
edges that are incident to v and A ∪ B, which implies d(v, CA′A) + d(v, CB′B) ≥
d(v)− (p+ q − 1) (see Figure 1). Therefore,

max
v∈A

d(v) + max
v∈B

d(v)− 2

≥
∑

v∈A∪B
(d(v, CA′A) + d(v, CB′B))

≥
∑

v∈A∪B
(d(v)− (p+ q − 1))

≥max
v∈A

d(v) + max
v∈B

d(v) + (p+ q − 2)δ − (p+ q)(p+ q − 1),

which gives (p+ q)(p+ q − 1) ≥ (p+ q − 2)δ + 2 and thus

(p+ q)(p+ q − 2) ≥ (p+ q − 2)(δ − 1).

Hence, p+ q ≥ δ − 1 if p+ q > 2.

A B

CA0A

CB0B

amax

bmax
v

F1

F2

Figure 1: A graph G with δ = 6 and adjacent blocks A,B ∈ V2 of sizes 3 and
4. Here, d(amax) = d(bmax) = 12, |F1| := |c(AA′)| = 11 ≤ d(amax) − 1 and
|F2| := d(v, CA′A) + d(v, CB′B) = 2 ≥ d(v)− (|A|+ |B| − 1).

Lemma 10. Let T be a pendant tree of a simple graph G with |V (T)| > 1. Let
A = {v0} be a block in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that
|A| = |B1| = · · · = |Br| = 1. Let B′i 6= A be the block that is adjacent to Bi in

8

T . Then d(v0) ≤ r2 − 2γ, where γ :=
∑

1≤i<j≤r d(CB′iBi
, CB′jBj

) is the number of
cross-edges. In particular, we have δ(G) ≤ r2 and λ(G) < r2. Moreover, if r = 2,
κ(G) ≤ 2.

Proof. Note that r ≥ 2, since there is no singleton leaf block by Corollary 8. For
every 1 ≤ i ≤ r, let Bi = {vi} and Ci := CB′iBi

. Since every vi can have at
most r neighbors in {v0, v1, . . . , vr}, we have d(vi) ≤ r +

∑r
j=1 d(vi, Cj) for every

i ∈ {0, 1, . . . r}. On the other hand, by Lemma 3, we have, for every i ∈ {1, 2, . . . r},∑r
j=0 d(vj , Ci) +

∑
j 6=i d(Cj , Ci) = d(Ci) ≤ d(vi)− 1 (see Figure 2). Therefore,

r∑
i=1

d(vi) +
r∑
j=0

d(vj , Ci) +
∑
j 6=i

d(Cj , Ci)

 ≤ r∑
i=1

r +
r∑
j=1

d(vi, Cj) + d(vi)− 1

⇐⇒

r∑
i=1

d(v0, Ci) +
∑
j 6=i

d(Cj , Ci)

 ≤ r2 − r

⇐⇒
r∑
i=1

d(v0, Ci) ≤ r2 − r − 2γ,

and hence,

d(v0) ≤ r +
r∑
i=1

d(v0, Ci) ≤ r2 − 2γ.

In particular, this gives δ ≤ r2 and, according to Lemma 3, λ ≤ c(AB1) < d(v0) ≤ r2.
Now, we claim that, if r = 2, then κ ≤ 2. If γ > 0, then κ ≤ δ ≤ d(v0) ≤

r2 − 2γ ≤ 2. If γ = 0, we have d(v0) ≤ 4. Let S := {v0, v1, v2}, which is a separator
of G of size 3. If a vertex z ∈ S has no neighbor in Ci for some i ∈ {1, 2}, S − z is a
separator of size 2, which gives the claim. Otherwise, we have c(ABi) ≥ 3 for every
i ∈ {1, 2}. Since d(v0) ≤ 4 and c(ABi) < d(v0) (Lemma 3), we must have c(ABi) = 3
for every i ∈ {1, 2}. Hence, v0 is of degree 2 in G, which gives the claim.

Setting r = 2 in Lemma 10 gives the following corollary for adjacent blocks of
straight paths.

Corollary 11. Let G be simple and let AB and BC be edges in a straight path of
T . If δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3, then |A|+ |B|+ |C| > 3.

Let V in2 denote the set of blocks A such that A is in V2 and its two neighbors are
also in V2, and let Vout2 denote V2 − V in2 .

The following lemma holds for general trees.

Lemma 12. Let T be a tree. If |V (T)| > 1, then |V>2| ≤ |V1| − 2 and |Vout2 | ≤
4|V1| − 6.

9

C1

C2

C3

B1

B3

A

B2

vA

v1

v3

v2

F1

F2

Figure 2: A graph with δ = 6. Here, r = 3, |F1| :=
∑3
i=1 d(v3, Ci) = 4 ≤ d(v3)− r

and |F2| := c(B3C3) = 6 ≤ d(v3)− 1.

Proof. As T is a tree,
∑
A∈V (T) dT (A) = 2|E(T)| = 2(|V (T)|−1), which yields −2 =∑

A∈V (T)(dT (A)−2) =
∑
A∈V1(dT (A)−2)+

∑
A∈V2(dT (A)−2)+

∑
A∈V>2(dT (A)−2) ≥

−|V1|+0+ |V>2|, i.e. |V>2| ≤ |V1|−2. Since every straight path contains at most two
blocks in Vout2 and contracting every straight path along with one of its neighbors
gives a tree T ′ with V (T ′) = V1∪V>2, we have |Vout2 | ≤ 2E(T ′) = 2(|V1|+ |V>2|−1).
Thus, |Vout2 | ≤ 4|V1| − 6.

Now we are ready to show that the blocks of straight paths contain many vertices
if δ(G) ≥ 5 or λ(G) ≥ 4 or κ(G) ≥ 3.

Lemma 13. Let T be a pendant tree of a simple graph G satisfying δ(G) ≥ 5 or
λ(G) ≥ 4 or κ(G) ≥ 3. Let P be a straight path of T . Then

∑
S∈V (P)

|S| ≥ (|V (P)| − 2)max{4, δ(G)}
3 + 2.

Proof. For any two consecutive edges AB and BC in P , applying Corollary 11 gives
|A| + |B| + |C| > 3. Due to Lemma 9, this implies |A| + |B| + |C| ≥ max{4, δ}.
Since there may be at most two singletons that are not contained in such a triple,
we conclude

∑
S∈V (P) |S| ≥ (|V (P)| − 2)max{4,δ}

3 + 2.

3.3 Many Pendant Pairs

We will use the results on large blocks of the previous section to obtain our main
Theorem 14, which shows the existence of many pendant pairs.

10

Theorem 14. Let G be a simple graph that satisfies δ ≥ 5 or λ ≥ 4 or κ ≥ 3. Then
G contains at least δn

24 pendant pairs.

Proof. Note that n > δ ≥ 3. If G does not contain a non-pendant pair, there are(n
2
)
≥ δn

24 pendant pairs in G. Otherwise, G contains a non-pendant pair. Let T be
a pendant tree of G; then |V (T)| ≥ 2. For every straight path P with |V (P)| ≥ 3,
let P∗ be a subpath obtained from P by deleting at most two endvertices of P
(i.e. nodes in P ∩ Vout2) such that |V (P∗)| is a multiple of 3. Then, we split P∗
into subpaths P∗1 , . . . ,P∗|V (P∗)|/3, each of size 3. By Corollary 11 and Lemma 9,∑
S∈V (P∗i) |S| ≥ max{4, δ} for every i = 1, . . . , |V (P∗)|/3.
Let V∗2 := V2 −

⋃
straight path P,|V (P)|≥3 V (P∗) ⊆ Vout2 . For every leaf node S ∈ V1,

let YS be a collection of nodes that consists of S, at most four nodes from V∗2 and at
most one node from V>2 such that the collections YS (S ∈ V1) form a partition of
V1 ∪ V∗2 ∪ V>2; such allocation exists, as |V∗2 | ≤ |Vout2 | ≤ 4|V1| and |V>2| ≤ |V1| due
to Lemma 12. For every S ∈ V1, let DS be a node in YS of maximum size. Then
|DS | ≥ |S| > δ by Lemma 6. Thus, the number of pendant pairs in G is at least

∑
S∈V (T)

(
|S|
2

)

≥
∑
S∈V1

|DS |(|DS | − 1)
2 +

∑
straight path P, |V (P)|≥3

∑
S∈V (P∗)

|S|(|S| − 1)
2

≥δ2
∑
S∈V1

|DS |+
1
2

∑
straight path P, |V (P)|≥3

|V (P∗)|/3∑
i=1

∑
S∈V (P∗i)

|S|(|S| − 1)

≥δ2
∑
S∈V1

|DS |+
1
2

∑
straight path P, |V (P)|≥3

|V (P∗)|/3∑
i=1

3
(∑

S∈V (P∗i) |S|
3

(∑
S∈V (P∗i) |S|

3 − 1
))

≥δ2
∑
S∈V1

|DS |+
δ

24
∑

straight path P, |V (P)|≥3

∑
S∈V (P∗)

|S|

≥ δ

12
∑

S∈V1∪V∗2∪V>2

|S|+ δ

24
∑

S∈V2−V∗2

|S|

≥δn24 .

The third inequality follows from Jensen’s inequality, as the function f(x) :=
x(x− 1) is convex for x ≥ 1. The fourth inequality follows from 1

3

(∑
S∈V (P∗i) |S|

)
−

1 ≥ δ
12 for every i = 1, . . . , |V (P∗)|/3, which holds since δ ≥ 3 and

∑
S∈V (P∗i) |S| ≥

max{4, δ} for every i = 1, . . . , |V (P∗)|/3.

While our main theorem shows the existence of Ω(δn) pendant pairs, we will in
addition need the existence of many pendant pairs of a special type: consider the

11

(n
2
)
pendant pairs of the complete graph Kn. We cannot contract these one-by-one

and expect a sparsification result, as there are multiple cyclic dependencies among
the pendant pairs such as the three pendant pairs that consist only of the vertices
of a cycle of length three. In order to argue about contraction-based sparsification
(Theorem 18), we therefore define the following variant of pendant pairs without
such cyclic dependencies. Compared to our main theorem, lower bounds on the
number of these pairs are necessarily weaker (e.g. Kn has at most n− 1 such pairs);
our lower bounds will however be best possible up to constant factors.
Definition 15. A set F of pendant pairs is dependent if V contains at least three
distinct vertices v1, . . . , vk such that {vi, vi+1} ∈ F for all i = 1, . . . , k, where
vk+1 := v1; otherwise, F is independent.

We now identify an independent set of pendant pairs whose contraction implies
not only an additive decrease of the number of vertices by at least 5

17n, but also a
multiplicative decrease by the factor δ (so that the number of vertices left is O(n/δ)).
Lemma 16. Let G be a simple graph that satisfies δ ≥ 5 or λ ≥ 4 or κ ≥ 3. Then
G has an independent set of at least δ

δ+12n = Ω(n) pendant pairs whose pairwise
contraction leaves O(n/δ) vertices in the graph.
Proof. Note that n > δ ≥ 3 and, for this reason, δ

δ+12n ≥
1
5n = Ω(n). First assume

that G does not contain a non-pendant pair. For an arbitrary spanning tree of G,
consider the pair of endvertices of every edge of it. These are n− 1 ≥ δ

δ+12n pendant
pairs which constitute an independent set and whose pairwise contraction leaves
only 1 = O(n/δ) vertex.

Now assume that G contains a non-pendant pair. Let T be a pendant tree of G,
we have |V (T)| ≥ 2. Using the previous results, we can relate n with the number of
blocks in T by considering the blocks in V2 separately as follows.

n =
∑

S∈V (T)
|S|

= |V (T)|+
∑

S∈V1∪V>2

(|S| − 1) +
∑

straight path P

 ∑
S∈V (P)

|S| − |V (P)|

≥ |V (T)|+ |V1|δ +

∑
straight path P, |V (P)|≥3

(|V (P)| − 2)
(max{4, δ}

3 − 1
)

(by Lemmas 6 and 13)

≥ |V (T)|+ |V1|δ + 1
12 |V

in
2 |δ (as δ = 3⇒ (4

3 − 1) > δ
12 and δ ≥ 4⇔ δ

3 − 1 ≥ δ
12)

≥ |V (T)|+ 1
6(|V1|+ |Vout2 |+ |V>2|)δ + 1

12 |V
in
2 |δ

(since 6|V1| ≥ |V1|+ |Vout2 |+ |V>2| by Lemma 12)

≥
(

1 + 1
12δ

)
|V (T)|.

12

Now let F be any forest on the vertex set V (G) such that, for every S ∈ V (T), S
is the vertex set of a component of F . Then {{u, v} : uv ∈ E(F)} is an independent
set of pendant pairs. Therefore, G has an independent set of at least |E(F)| =
n − |V (T)| ≥ (1 − 12

δ+12)n = δ
δ+12n >

n
5 pendant pairs. Furthermore, contracting

every edge in F leaves at most |V (T)| ≤ (1 + 1
12δ)

−1n = O(n/δ) vertices, which
gives the second claim.

We remark that the constants 1/24 and 1/12 that appear in the proofs of
Theorem 14 and Lemma 16 can both be improved for larger δ than 5.

3.4 Tightness

We call a bound tight if it is optimal up to a constant factor. The unions of n
δ+1

many disjoint cliques Kδ+1 show that the number of pendant pairs in Theorem 14
and the number of vertices left after contraction in Lemma 16 are tight. Clearly, an
independent set of pendant pairs is of size at most n− 1, hence also the lower bound
on the pendant pairs in Lemma 16 is tight.

Each of the conditions δ ≥ 5, λ ≥ 4 and κ ≥ 3 in Theorem 14 and Lemma 16
is tight, as the graph in Figure 3 can be arbitrarily large and satisfies δ = 4, λ = 3
and κ = 2, but has only a constant number of pendant pairs. Also the simpleness
condition in both results is indispensable: Consider the path graph on n vertices
whose two end edges have multiplicity δ such that all other edges have multiplicity
δ/2. This graph has precisely two pendant pairs, each at one of its ends.

Figure 3: The bone graph G, whose only pendant pairs are the ones contained in
the two K5 (those form the only leaf blocks of the pendant pair tree). Hence, G has
exactly 20 pendant pairs.

4 Contraction-Based Sparsification
In the recent algorithm of Kawarabayashi and Thorup [10], a crucial sparsification step
is to contract vertex subsets of G such that O((n logc n)/δ) vertices and O(n logc n)
edges remain for some constant c and all non-trivial min-cuts are preserved. We will
show the existence of two such contraction-based sparsifications by considering two
cut tree called δ-edge-connectedness tree, which respects the vertex pairs {v, w} with
λG(v, w) < δ, and non-trivial min-cut tree, which respects the vertex pairs that are
separated by some non-trivial min-cut.

13

By inheriting the argument using large leaf- and V2-blocks for pendant trees to
these new cut trees, we will prove that the contraction of every block in these trees
leaves only O(n/δ) vertices and O(n) edges. In this way, all cuts of size less than δ
and all non-trivial min-cuts will be preserved, respectively.

4.1 The δ-Edge-Connectedness Tree

By definition, every pendant pair of a graph G is δ(G)-edge-connected. Hence, most
of the results about pendant pairs can be transferred directly to statements about
δ-edge-connected pairs. In particular, Lemma 6 gives the following corollary.

Corollary 17. Every simple graph G contains a set S of at least δ+ 1 vertices such
that λ(v, w) ≥ δ for every v, w ∈ S.

More generally, Theorem 14 and Lemma 16 still hold without further ado when
we replace the binary pendant pair relation with the δ-edge-connectedness relation
on vertex pairs. We now show how these arguments give the first sparsification
result described above. To this end, we will use the following relaxation of both
Gomory-Hu and pendant trees. A k-edge-connectedness tree (also known as partial
Gomory-Hu tree [1]) is a cut tree that respects {{v, w} : λG(v, w) < k}.

A k-edge-connectedness tree T exists for every graph, as we can contract all
edges that induce cuts of size larger than k in a Gomory-Hu tree. Moreover, T can
be computed similarly as in the approach that was used in Proposition 4, and hence
in deterministic time O(nθflow). For randomized algorithms, [1] showed that T can
be constructed in expected running time Õ(m+ nk2).

In this section, we focus on the case that k = δ, i.e. on the δ-edge-connectedness
tree T . By Property (i) of Definition 1, every block of T is δ-edge-connected and
therefore a subset of a δ-edge-connected component of G. By Property (ii) and (iii),
no δ-edge-connected component intersects two (not necessarily adjacent) blocks A
and B of T , as A and B are separated by a cut of size less than δ. Hence, the blocks
of every δ(G)-edge-connectedness tree are precisely the δ-edge-connected components
of G.

4.1.1 Contractions Preserving Small Cuts

Now we relate T to any pendant tree T ′ of G. Since T ′ is pendant, every block
of T ′ is δ-edge-connected and therefore a subset of some block of T . Hence, the
vertex partition of every pendant tree refines the partition of V into δ-edge-connected
components. It is also not hard to see that, given a δ-edge-connectedness tree T ,
there is a pendant tree T ′, such that contracting all edges e ∈ E(T ′) with c(e) ≥ δ
gives T .

Theorem 18. Contracting every δ-edge-connected component of a simple graph G
satisfying δ > 0 leaves O(n/δ) vertices and O(n) edges.

14

Proof. If 1 ≤ δ ≤ 4, then δn ≤ 4n and hence there are trivially at most n ≤ 4n/δ =
O(n/δ) many vertices left after the contractions. If δ ≥ 5, consider any pendant tree
T ′ of G and contract every of its blocks. Since the partition of any pendant tree
refines the partition of V into the δ-edge-connected components of G, Lemma 16
implies that these contractions leave only O(n/δ) vertices.

Now let T be a δ-edge-connectedness tree of G and consider the edges that are
left after the contractions. Every remaining edge is contained in some edge-cut of G
that is induced by an edge of T . Since T is a δ-edge-connectedness tree, every such
edge-cut has size at most δ − 1. By the result above, T has O(n/δ) blocks. Hence,
there are at most O(n/δ) · (δ − 1) = O(n) edges left.

Note that the graph after contraction may have multiedges. The following is
a fundamental corollary of Theorem 18. Despite its generality, it appears to be
unknown so far.

Corollary 19. Every simple graph G with δ > 0 has O(n/δ) many δ-edge-connected
components.

It was recently shown [12] that every simple graph G that satisfies 0 < λ(G) <
δ(G) has O((n/δ)2) min-cuts. We strengthen this to cuts of size not much larger
than λ(G) as follows.

Theorem 20. Every simple graph G that satisfies 0 < λ < δ has O((n/δ)2) cuts of
size less than min{3

2λ, δ}.

Proof. Henzinger and Williamson [6] proved that in any connected graph H the
number of cuts of size less than 3

2λ(H) is at most O(|V (H)|2). Let G′ be the graph
obtained from G by contracting every δ-edge-connected component. This preserves
every cut of size less than δ. As contractions do not decrease the edge-connectivity
of any vertex pair, G′ has precisely the same cuts of size less than δ as G. Thus, we
can count the number of these cuts in G′ instead of in G. Since λ(G′) = λ(G) > 0,
δ(G′) > 0 and G′ is connected. Applying Theorem 18 to G and [6] to H := G′

therefore shows that G has O((n/δ)2) cuts of size less than min{3
2λ, δ}.

Theorem 21. Given any real number α ≥ 1, every simple graph G that satisfies
0 < λ < δ has O((n/δ)b2αc) cuts of size at most min{αλ, δ − 1}.

Proof. Karger [7] proved that in any connected graph H the number of cuts of size
at most α ·λ(H) is in O(|V (H)|b2αc). Again, let G′ be the graph obtained from G by
contracting every δ-edge-connected component. Applying Theorem 18 to G and [7]
to H := G′ shows that G has O((n/δ)b2αc) cuts of size at most min{αλ, δ − 1}.

The same approach can also be used to strengthen various other upper bounds
known on the number of small cuts.

15

4.2 The Non-Trivial Min-Cut Tree

Although the δ(G)-edge-connectedness tree preserves all (not necessarily minimum)
cuts of size less than δ, it does not preserve cuts of size δ. However, one could not
expect to preserve all cuts of size δ by contracting vertex subsets leaving say O(n/δ)
vertices, as the complete graph Kδ+1 shows. Hence, we will preserve only non-trivial
min-cuts. To this end we consider a new cut tree, which can be used to obtain an
upper bound on the number of non-trivial min-cuts.

A non-trivial min-cut tree T is a cut tree that respects the vertex pairs separated
by some non-trivial min-cut, and satisfies the following additional property:

(iv) for every AB ∈ E(T), CAB is a non-trivial min-cut

It is clear that Property (iv) implies Properties (ii) and (iii). Property (i)
implies that all non-trivial min-cuts will be preserved if every block is contracted.
Property (iv) is equivalent to saying that no leaf block is a singleton and c(AB) = λ
for all AB ∈ E(T).

Unlike pendant trees, non-trivial min-cut trees do not exist for every graph.
To see this, consider any cycle of length at least four. As every edge is contained
in a non-trivial min-cut, every leaf block A of a non-trivial min-cut tree T is an
independent set of size at least two in G. Then the tree edge AB ∈ E(T) satisfies
c(AB) ≥ 4, which contradicts Property (iv). We conclude that not every graph with
λ(G) = 2 has a non-trivial min-cut tree. However, we will show that non-trivial
min-cut trees exist for all simple graphs G with λ(G) 6= 0, 2.

4.2.1 Construct Non-Trivial Min-Cut Tree from Cactus Representation

We call a multigraph K a cactus if it is 2-edge-connected, contains no loops, and
each edge in K belongs to exactly one cycle (which may be of length 2, i.e. a pair of
parallel edges). This is equivalent to saying that all maximal 2-connected subgraphs
of K are cycles. Note that an edge min-cut in K is exactly two edges from a cycle
in K. Let C be a cycle in K and v be a vertex in C. We denote by K[C, v] the
component containing v of the graph that is obtained from K by deleting the two
edges incident to v in C. We denote by C(G) the set of all min-cuts of G and by
NC(G) that of all non-trivial min-cuts of G.

A cactus representation (K, ϕ) of G consists of a cactus K and a mapping ϕ from
V (G) to V (K) such that (a) for every min-cut X in G, there is a min-cut Y in K
with X = ϕ−1(Y) and (b) for every min-cut Y in K, ϕ−1(Y) is a min-cut in G. A
vertex v in K is empty if ϕ−1(v) is empty, a singleton if ϕ−1(v) consists of exactly
one vertex of G, and a k-junction if v is contained in exactly k cycles of K. A cactus
representation (K, ϕ) of G is minimal if one cannot get another cactus representation
by contracting an edge of K and revising the mapping correspondingly.

It has been proven by Dinits et al. [3] that every graph G admits a cactus
representation. Furthermore, Kawarabayashi and Thorup [10] show that a cactus

16

representation can be computed in near-linear time. We first consider some lemmas
which help us to show that a non-trivial min-cut tree can be constructed from a
cactus representation in near-linear time for simple graphs G with λ(G) 6= 0, 2.

Lemma 22. Let (K, ϕ) be a cactus representation of G. If K contains a cycle C of
length larger than two, let u and v be adjacent vertices in C, then G has exactly λ/2
edges between ϕ−1(K[C, u]) and ϕ−1(K[C, v]); in particular, λ is even.

Proof. Let X1 := ϕ−1(K[C, u]), X2 := ϕ−1(K[C, v]) and X3 := V − X1 − X2. As
(K, ϕ) is a cactus representation, X1, X2 and X3 are min-cuts in G, respectively.
This implies that d(X1, X2) + d(X1, X3) = d(X2, X3) + d(X2, X1) = d(X3, X1) +
d(X3, X2) = λ. Therefore, d(X1, X2) = λ/2.

Proposition 23. Let G be a simple graph with λ 6= 0, 2. Then a non-trivial min-cut
tree T of G can be computed in time Õ(|E(G)|).

Proof. Let (K, ϕ) be a minimal cactus representation of G. We are going to construct
a collection U := U1 ∪ U2 of uncrossing min-cuts of K, which will then be used to
construct a non-trivial min-cut tree T .

For every cycle C := ({v1, . . . , vl}, {v1v2, . . . , vl−1vl, vlv1}) of length l in K, we
proceed as follows.

If there are two distinct cactus vertices say v1 and vi (1 < i ≤ l) in C with
|ϕ−1(K[C, v1])| > 1 and |ϕ−1(K[C, vi])| > 1. We put the following l − 1 cuts into
U1:

⋃j
k=1K[C, vk] for j = 1, . . . , i− 1, and

⋃j
k=iK[C, vk] for j = i, . . . , l− 1. Each of

these l − 1 cuts represents some non-trivial min-cut of G.
If, for every cactus vertex v in C except v1, we have |ϕ−1(K[C, v])| = 1, we claim

that l = 2. Otherwise, if l > 2, then by Lemma 22, λ must be even. By our condition
λ 6= 0, 2, we have λ ≥ 4. By Lemma 22, there are λ/2 ≥ 2 edges between ϕ−1(K[C, v2])
and ϕ−1(K[C, v3]), which is not possible since |ϕ−1(K[C, v2])| = |ϕ−1(K[C, v3])| = 1
and G is simple. By the minimality of (K, ϕ), we know that v2 is a 1-junction
singleton in C. We put the cut {v2} into U2. Note that ϕ−1({v2}) is a trivial min-cut
of G.

After collecting cuts for every cycle in K, we now have a collection U of |V (K)|−1
uncrossing min-cuts of K. It is known that such a collection of uncrossing cuts can
be represented by a tree T0 on V (K). More precisely, two vertices are adjacent in T0
if they are separated by only one cut from U . So, the min-cuts in U are one-to-one
corresponded to the edges of T0. We replace every vertex v ∈ V (T0) by ϕ−1(v), so it
becomes a tree whose vertex set is “almost” a partition of V (G), as the vertices form
a disjoint union of V (G) but some of them can be empty. To obtain a non-trivial
min-cut tree T , we first contract the edges corresponding to the cuts in U2, and
then iteratively contract edges which contain some empty endvertex. Recall that the
new vertex after an edge contraction is defined to be the union of the endvertices
of the edge to be contracted. It is straightforward to justify that the tree satisfies
Properties (i) and (iv) since the first step has been done, and its vertex set becomes

17

a partition of V (G) after the second step. Thus we obtain a non-trivial min-cut tree
T .

We use the result of Kawarabayashi and Thorup [10] to find a cactus representation
of G in near-linear time. All subsequent steps such as verifying the minimality of
(K, ϕ), collecting cuts to form U and contracting tree edges in T0 can be done in linear
time. We conclude that a non-trivial min-cut tree can be constructed in near-linear
time.

4.2.2 Contractions Preserving Non-Trivial Min-Cuts

The following lemma assures that leaf blocks must have size Ω(δ).

Lemma 24. Every non-trivial min-cut A ⊂ V (G) of a simple graph G satisfies
|A| ≥ δ. In particular, every leaf block A of a non-trivial min-cut tree of G satisfies
|A| ≥ δ.

Proof. For the first claim, let p := |A|. Then δ ≥ λ ≥
∑
v∈A(d(v) − (p − 1)) ≥

pδ − p(p − 1) implies p ≥ δ, as p > 1. The second claim follows directly from the
first.

We remark that a non-trivial min-cut tree would also exist for graphs that satisfy
λ ∈ {0, 2} if we would omit Property (iv); however, for such cut trees, Lemma 24
does not hold in general.

The following analogues of Lemmas 9 and 10 will ensure that the number of
vertices will decrease by a factor of Ω(δ) when contracting all blocks of a non-trivial
min-cut tree.

Lemma 25. Let T be a non-trivial min-cut tree of a simple graph G. Let A′A,AB,BB′
be edges in T such that A,B ∈ V2. If |A|+ |B| > 2, |A|+ |B| ≥ δ(G)/2.

Proof. Let p := |A| and q := |B|. It is clear that
∑
v∈A∪B d(v, CA′A) ≤ λ ≤ δ,∑

v∈A∪B d(v, CB′B) ≤ δ and d(v, CA′A) + d(v, CB′B) ≥ d(v)− (p+ q − 1). Therefore,
2δ ≥

∑
v∈A∪B(d(v, CA′A) + d(v, CB′B)) ≥

∑
v∈A∪B(d(v)− (p+ q − 1)) ≥ (p+ q)(δ −

(p+ q − 1)), which gives p+ q ≥ p+q−2
p+q−1 · δ ≥

1
2 · δ if we assume p+ q > 2.

Lemma 26. Let T be a non-trivial min-cut tree of a simple graph G. Let A be a block
in Vr with neighborhood B1, . . . , Br ∈ V2 in T such that |A| = |B1| = · · · = |Br| = 1.
Then δ(G) ≤ r2 + r.

Proof. Let A := {v0}. For every i ∈ {1, . . . , r}, let Bi := {vi} and B′i 6= A be the
block that is adjacent to Bi in T . Let Ci := CB′iBi

. Since every vi (i ∈ {0, 1, . . . , r})
can have at most r neighbors in {v0, v1, . . . , vr}, we have, for every i ∈ {0, 1, . . . , r},
d(vi) ≤ r +

∑r
j=1 d(vi, Cj). On the other hand, we have, for every i ∈ {1, . . . , r},∑r

j=0 d(vj , Ci) ≤ λ ≤ δ. Therefore,
∑r
i=1(δ +

∑r
j=0 d(vj , Ci)) ≤

∑r
i=1(d(vi) + δ) ≤∑r

i=1(r +
∑r
j=1 d(vi, Cj) + δ), which implies r2 ≥

∑r
i=1 d(v0, Ci) ≥ d(v0) − r ≥

δ − r.

18

Now we present an alternative proof of the sparsification result in [12].

Theorem 27. Let G be a simple graph with δ > 0 and let T be a non-trivial min-cut
tree of G. Then contracting every block of T leaves O(n/δ) vertices and O(n) edges.

Proof. We can assume δ ≥ 7, as otherwise δn ≤ 6n, which implies that there are at
most n ≤ 6n/δ = O(n/δ) vertices left after the contractions. We can also assume
that |V (T)| > 1, as otherwise the contraction leaves precisely 1 = O(n/δ) vertex; in
particular, we have V0 = ∅. Since δ ≥ 7, Lemma 26 implies that there are no distinct
blocks B1, B2, B3 ∈ V2 satisfying B1B2, B2B3 ∈ E(T). We conclude by Lemma 25
that, for every straight path P,

∑
S∈Vin

2 ∩V (P) |S| = |V in2 ∩ V (P)| · Ω(δ). Now the
number of vertices can be bounded as follows.

n =
∑

S∈V (T)
|S|

≥
∑

S∈V1∪V>2

|S|+
∑

straight path P

 ∑
S∈Vin

2 ∩V (P)
|S|

≥ |V1| · Ω(δ) +

∑
straight path P

(
|V in2 ∩ V (P)| · Ω(δ)

)
(by Lemma 24)

= (|V1|+ |Vout2 |+ |V>2|) · Ω(δ) + |V in2 | · Ω(δ) (by Lemma 12)
= |V (T)| · Ω(δ).

Therefore, |V (T)| = O(n/δ) vertices and at most (|V (T)| − 1) · λ = O(nλ/δ) ≤ O(n)
edges will be left if all blocks of T are contracted.

4.3 Tightness

We show that the above results are tight, except for the cases in which this was
already shown. The following graph shows that the bounds of Corollaries 17 and 19
and Theorems 18 and 27 (vertex- and edge-bound) are tight. Let n ≥ 3(δ+ 1), δ ≥ 2
and assume that n is a multiple of δ + 1 (the last assumption can be avoided by a
simple modification of the construction). Then the graph G obtained from the cycle
on n/(δ + 1) vertices by replacing all vertices with a copy of Kδ+1 shows tightness.

Although this fixes λ(G) = 2, this example can be readily generalized to tight
graphs having larger and even λ such that λ < δ/2. To do so, obtain a graph G′
from G by adding λ/2− 1 cycles that are vertex-disjoint from the first initial cycle
C, but visit exactly the same complete subgraphs in the same order as C.

References
[1] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) Gomory-Hu

tree construction algorithm for unweighted graphs. In Proceedings of the 39th
Annual Symposium on Theory of Computing (STOC’07), pages 605–614, 2007.

19

[2] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a Network
with Power Estimation. Soviet Math Doklady, 11:1277–1280, 1970.

[3] E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a
family of minimal weighted cuts in a graph. In A. A. Fridman, editor, Studies
in Discrete Optimization (in Russian), pages 290–306, Nauka, Moscow, 1976.

[4] A. Frank. On the edge-connectivity algorithm of Nagamochi and Ibaraki.
Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble, March 1994.

[5] M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge con-
nectivity. In Proceedings of the 28th Annual Symposium on Discrete Algorithms
(SODA’17), pages 1919–1938, 2017.

[6] M. Henzinger and D. P. Williamson. On the number of small cuts in a graph.
Information Processing Letters, 59:41–44, 1996.

[7] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–
76, 2000.

[8] A. V. Karzanov. On finding a maximum flow in a network with special structure
and some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom
(in Russian), pages 81–94, 1973.

[9] T. Kathuria, Y. P. Liu, and A. Sidford. Unit capacity maxflow in almost O(m4/3)
time. In Proceedings of the 61st Annual Symposium on Foundations of Computer
Science (FOCS’20), 2020.

[10] K. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear
time. Journal of the ACM, 66(1):4:1–4:50, 2018.

[11] Y. T. Lee and A. Sidford. Path-finding methods for linear programming: Solving
linear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow.

In Proceedings of the 55th Annual Symposium on Foundations of Computer
Science (FOCS’14), 2014.

[12] O.-H. S. Lo, J. M. Schmidt, and M. Thorup. Compact cactus representations of
all non-trivial min-cuts. Discrete Applied Mathematics, to appear.

[13] W. Mader. Existenz gewisser Konfigurationen in n-gesättigten Graphen und in
Graphen genügend großer Kantendichte. Mathematische Annalen, 194:295–312,
1971.

[14] W. Mader. Grad und lokaler Zusammenhang in endlichen Graphen. Mathema-
tische Annalen, 205:9–11, 1973.

[15] W. Mader. Kantendisjunkte Wege in Graphen. Monatshefte für Mathematik,
78(5):395–404, 1974.

20

[16] W. Mader. On vertices of degree n in minimally n-connected graphs and
digraphs. Bolyai Society Mathematical Studies (Combinatorics, Paul Erdős is
Eighty, Keszthely, 1993), 2:423–449, 1996.

[17] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992.

[18] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.

[19] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

21

	Introduction
	Notation
	Cut Trees

	The Pendant Tree
	Constructing Pendant Trees
	Large Blocks of Degree 1 and 2
	Many Pendant Pairs
	Tightness

	Contraction-Based Sparsification
	The delta-Edge-Connectivity Tree
	Contractions Preserving Small Cuts

	The Non-Trivial Min-Cut Tree
	Construct Non-Trivial Min-Cut Tree from Cactus Representation
	Contractions Preserving Non-Trivial Min-Cuts

	Tightness

