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Abstract
Motivated by the long-standing and wide open pancyclicity conjectures of Bondy and Malke-

vitch, we study the cycle spectra of contraction-critically 4-connected planar graphs. We show
that every contraction-critically 4-connected planar graph on n vertices contains a cycle of length
k for every k ∈ {bn

2 c − d
n

108e, . . . , b
n
2 c+ b n

36c} ∪ {
2
3n, . . . , n}.

1 Introduction
A fundamental question in graph theory asks for the set of lengths of cycles in a graph; this set
is called the cycle spectrum of the graph. For instance, hamiltonicity is one of the special cases in
this spectrum that received tremendous attention. A graph G is pancyclic if G contains a k-cycle
for every 3 ≤ k ≤ n, where a k-cycle is a cycle of length k.

Tutte [17] showed in 1956 that every 4-connected planar graph is hamiltonian. In 1973, Bondy [2]
noticed that many non-trivial sufficient conditions for hamiltonicity imply pancyclicity. He made
the following conjecture (see also [1, Conjecture 2]).

Conjecture A (Bondy [2], 1973). Every 4-connected planar graph contains cycles of all lengths
3 ≤ k ≤ n, with the possible exception of one even length.

The reason for the exception of one even length is due to the fact that there are infinitely many
4-connected planar graphs that have no cycle of length four [9] (e.g. the line graphs of 3-regular
cyclically 4-edge-connected planar graphs with girth five). A similar conjecture was proposed
by Malkevitch (we note that Malkevitch made a weaker conjecture restricted to 4-regular graphs
in 1976 [10, Conjecture 1]).

Conjecture B (Malkevitch [11, Conjecture 6.1], 1988). Every 4-connected planar graph that
contains a 4-cycle is pancyclic.

Today, both conjectures of Bondy and Malkevitch are still wide open. Indeed, the best results
so far assure only constantly many different cycle lengths. By using the discharging method, it
was proved that every planar graph with minimum degree at least four contains cycles of length
3 (Euler’s formula), 5 [18] and 6 [5]. For lengths from the other end of the cycle spectrum, the
machinery of Tutte cycles [17] has been used. A series of work [13, 16, 15, 14, 3, 4] showed that
every 4-connected planar graph on n vertices contains a k-cycle for every k ∈ {n − 7, . . . , n − 1}
with k ≥ 3.

Recently, the first author [8] proved that every planar hamiltonian graph with minimum degree
at least four contains a k-cycle for every k ∈ {bn

2 c, . . . , d
n
2 e+ 3}. While this is the first result about
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cycle lengths that are not at an end of the spectrum, it provides only a constant number of cycle
lengths here. Indeed, Chen, Fan and Yu [3] proposed the following conjecture about a constant
number of cycle lengths in these graphs.

Conjecture C (Chen, Fan and Yu [3, Conjecture 1.2], 2004). Every 4-connected planar graph has
a k-cycle for every k ∈ {n− 25, . . . , n} with k ≥ 3.

An interesting discussion in [3] reveals that Tutte’s approach, which was used in proving the
cycle lengths n − 3, . . . , n, cannot be used alone for further improvements. Indeed, the cycle
lengths n − 7, . . . , n − 4 were proved by a combination of Tutte’s method and the distribution of
4-contractible edges in these graphs [3, 4]. This motivates us to approach the conjectures above
by studying contraction-critically 4-connected planar graphs, i.e. the 4-connected planar graphs for
which the contraction of any edge results in a graph that is not 4-connected. As contraction-critical
graphs often serve as base case for inductive proofs in structural graph theory (for more details,
we refer to a beautiful survey of Kriesell [7]), this may be a good starting point for attacking the
aforementioned conjectures.

Our main result is to assure two linearly-sized intervals in the spectra of contraction-critically
4-connected planar graphs. In particular, we show that Conjecture C holds for (sufficiently large)
contraction-critically 4-connected planar graphs in a strong sense, namely even if the number 25 is
replaced by the linear term n/3.

Theorem 1. Every contraction-critically 4-connected planar graph on n vertices contains a k-cycle
for every k ∈ {bn

2 c − d
n

108e, . . . , b
n
2 c+ b n

36c} ∪ {
2
3n, . . . , n}.

We will prove our main theorem in Sections 2 (as Corollary 5) and 3 (as Theorem 7). In
addition, we will show in Section 2 that if G has any k-cycle with k > 3, then it has more than k/3
cycles of consecutive lengths including the length k.

We remark that our method also shows that there are many cycles of the lengths given above:
e.g. the number of k-cycles for every k ∈ {2n/3, . . . , n} is at least

( n/3
k−2n/3

)
. For the sake of concise

proofs, we will however restrict ourselves to prove only one cycle for each length.

Preliminaries

One of the main tools behind our proofs is the characterization of contraction-critically 4-connected
graphs by Fontet [6] and Martinov [12]. They showed that a graph is contraction-critically 4-
connected if and only if it is the square of a cycle of length at least five1 or the line graph of a
3-regular cyclically 4-edge-connected2 graph. Since the line graph of a non-planar graph is non-
planar, a planar graph is contraction-critically 4-connected if and only if it is

• the square of a cycle of even length at least six or

• the line graph of a 3-regular cyclically 4-edge-connected planar graph.

In both cases, the graph is 4-regular.
A k-face is a face whose boundary has k edges; we also call a 3-face T a triangular face, a

3-cycle T a triangle, and will denote T often by its (boundary) vertex set.
From now on, we assume that G is a simple contraction-critically 4-connected (and hence 4-

regular) planar graph on n vertices embedded in the plane. We further assume that G is not the
1A square of a cycle is obtained from the cycle by joining each pair of vertices at distance two with an edge.
2A graph G is cyclically 4-edge-connected if, for every edge-cut S of G with less than 4 edges, G − S has a

component that contains no cycle.
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square of a cycle, as these graphs are easily shown to be pancyclic. Hence, G is the line graph of a
(unique) 3-regular cyclically 4-edge-connected planar graph G′ and G is not the octahedral graph
(as that is the square of a cycle of length six), so that G′ 6= K4.

We claim that G′ has no triangular face. Suppose G′ has a triangular face with facial cycle T ,
then T is connected to G′ − T with precisely three edges, as G′ is 3-regular. If these three edges
have three distinct neighbors in G′− T , they form a 3-edge-cut that splits G′ into two components
each of which has some cycle, which contradicts that G′ is cyclically 4-edge-connected. Likewise, it
is not possible that these three edges have two neighbors in G′−T . Finally, if these three edges have
a common neighbor in G′ − T , then G′ = K4, which is however excluded from our consideration.
This proves the claim.

As G is 4-regular, we have |E(G)| = 2n, so that G has n+ 2 faces by Euler’s formula. Given an
embedding of G′ in the plane, we may draw an embedding of G in the same plane such that each
vertex of G is placed in its corresponding edge of G′ and the embedding of G′ does not intersect
the embedding of E(G). Hence there are |V (G′)| facial triangles in G, and each of them contains
a single vertex of G′ in the interior. By the claim of the previous paragraph, the remaining facial
cycles of G, i.e. the outer cycle and those facial cycles whose interiors do not contain any vertex
of G′ have length greater than three. Indeed, each of these two classes of facial cycles partitions
the edge set E(G). We conclude that G is 2-face-colorable (equivalently, the dual of G is bipartite)
and has precisely 2

3n edge-disjoint facial triangles.
Another tool we will use comes from the following result given by the first author [8]. Let C be

a cycle of G. We denote by Cint and Cext the subgraphs obtained from G by deleting the edges of
G in the strict exterior and interior of C of the planar embedding of G.

Lemma 2 ([8, Lemma 1]). Let w, g,N1, N2 ∈ N and h ∈ Z such that w + h > 2, 2N1 ≥ N2 + h,
1 ≤ w ≤ N2 and 2w − 4g − h + 3 ≤ N2 ≤ 2w + g + h − 2. Let D be a tree of N1 vertices and let
c : V (D)→ N be vertex weights. Define c(S) := ∑

v∈V (S) c(v) for any subtree S of D. If c(D) = N2
and c(v) ≤ w for all v ∈ V (D), then there exists a subtree S of D of weight w− g + 1 ≤ c(S) ≤ w.

Corollary 3. Let G be a plane graph on n ≥ 6 vertices, and C be a hamiltonian cycle of G such
that Cint contains at least n/2 chords of C. Then, for every k ∈ {bn

2 c, . . . , d
n
2 e+ 3}, Cint contains

a k-cycle, and for every k ∈ {dn
2 e + 3, . . . , 3n+7

4 }, there is a k′ ∈ {k, . . . , 2k − dn
2 e − 3} such that

Cint contains a k′-cycle.

Proof. Let D be the weak dual of Cint, i.e. the graph that is obtained from the dual of Cint by
deleting the vertex corresponding to the unbounded face. It is well-known that D is a tree. For
every vertex v of D, we assign a (positive integer) weight to v equal to the face length of v in G
minus two. Let the weight of a subtree be the sum of the weights of its vertices. For any subtree S
of D, we define φ(S) to be the symmetric difference of the facial cycles that correspond to vertices
of the subtree S (here we see cycles as edge sets). This gives us a bijective mapping between the
subtrees of D and the cycles in Cint.

We claim that a subtree S of weight w is mapped to the cycle φ(S) of length w + 2. We prove
this by induction on |V (S)|. By definition, the claim holds if |V (S)| = 1, so suppose |V (S)| > 1.
Let S′ be obtained from S by deleting a leaf of weight w − w′. Then S′ has weight w′ and, by
induction hypothesis, φ(S′) has length w′ + 2. Note that φ(S′) has exactly one common edge with
the facial cycle corresponding to the deleted leaf in S, which has length w − w′ + 2 by definition.
Thus, the length of φ(S) is (w′ + 2) + (w − w′ + 2)− 2 = w + 2. This proves the claim.

Observe that D has N1 ≥ dn
2 e + 1 vertices, as C has at least dn

2 e chords in Cint. Since φ(D)
is the hamiltonian cycle C, D has weight N2 = c(D) = n − 2. Moreover, c(v) ≤ bn

2 c − 2 for any
v ∈ V (D), as otherwise N2 = c(D) ≥ (bn

2 c − 1) + (N1 − 1) ≥ n− 1, which is a contradiction.
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To prove the first statement, it suffices to show that for every w ∈ {bn
2 c−2, . . . , dn

2 e+1}, D has
a subtree of weight w. Take g := 1 and h := 4. It is straightforward to verify that the inequalities
on w, g,N1, N2, h in the statement of Lemma 2 hold. Therefore, by Lemma 2 and the facts given
in the previous paragraph, D has a subtree of weight w.

For the second statement, we take w := 2k − dn
2 e − 5, g := k − dn

2 e − 2 and h := 4 (where
k ∈ {dn

2 e+3, . . . , 3n+7
4 }). Again, it is straightforward to verify that the inequalities on w, g,N1, N2, h

as well as other conditions given in the statement of Lemma 2 hold. By Lemma 2, D has a subtree
of weight w′ with w′ ∈ {w − g + 1, . . . , w} = {k − 2, . . . , 2k − dn

2 e − 5}. This implies that Cint has
a k′-cycle for some k′ ∈ {k, . . . , 2k − dn

2 e − 3}.

In the remainder of this section, we define the notation that we need. Let C be a cycle of G.
A triangle of G is called an i-triangle of C if it contains exactly i edges of C. Let T = {v, w, z}
be a 1-triangle with vw ∈ E(C) and z /∈ V (C). We say that vw is extendable, as we may extend
C to a longer cycle by replacing its edge vw with the path vzw of length two. Conversely, for any
2-triangle T = {v, w, z} with vz, zw ∈ E(C), we may use T to short-cut C, i.e. to obtain a shorter
cycle by deleting z from C and adding the edge vw.

2 Relative cycle lengths
In this section, we discuss how cycles of different lengths may be obtained from an l-cycle of G by
extending extendable edges and short-cutting 2-triangles. As an application, we will prove that G
contains a k-cycle for every 2n/3 ≤ k ≤ n.

For a cycle C, let C1 and C2 be the sets of edges of C that are contained in 1- and 2-triangles,
respectively. Consider an edge e = vw ∈ C1. Let T = {v, w, z} be the (unique) triangle containing
e, and T ′ be the other (unique) triangle containing z. We say that e is in the set Cj

1 if T ′ is a
j-triangle. We have C1 = C0

1 ∪̇ C1
1 ∪̇ C2

1 .

Lemma 4. Let C be a cycle of length l > 3 of G. Then l = |C1| + |C2| and G contains a k-cycle
for every k ∈ I := {l−|C2|/2, . . . , l+ |C0

1 |+ |C1
1 |/2}. In particular, |I| ≥ l/3+2|C0

1 |/3+ |C1
1 |/6+1.

Proof. Since C is not a 3-cycle, every edge of C is either in a 1- or 2-triangle. We have l =
|C1| + |C2| = |C0

1 | + |C1
1 | + |C2

1 | + |C2| and there are exactly |C2|/2 2-triangles of C. For every
k ∈ {l− |C2|/2, . . . , l}, short-cutting C using l− k of these 2-triangles one-by-one gives a k-cycle in
G; note that this procedure does not reach a 3-cycle, as otherwise an edge of G would be contained
in two triangles.

Now consider any edge vw ∈ C1. Let T = {v, w, z} and T ′ = {z, x, y} be the two triangles that
contain z. We first consider the case that vw ∈ C2

1 . As T ′ is a 2-triangle, z ∈ V (C) and xz, yz ∈ C2
and hence |C2

1 | ≤ |C2|/2.
If vw ∈ C0

1 , vw is extendable and T ′ is a 0-triangle. Thus, extending C with vw preserves the
edge-classifications of all edges that are not in T . If vw is in C1

1 , then vw is extendable and T ′ is a
1-triangle. Then extending C with vw preserves the edge-classifications of all edges that are neither
in T nor in T ′. As vw ∈ C1

1 if and only if xy ∈ C1
1 , we may pick one edge from each such pair

{vw, xy} of edges to form a set (C1
1 )′ of |C1

1 |/2 edges. Now, for every k ∈ {l, . . . , l+ |C0
1 |+ |C1

1 |/2},
extending C one-by-one with k − l edges from C0

1 ∪ (C1
1 )′ yields a k-cycle in G.

Hence, G contains a k-cycle for every k ∈ I with

|I| = |C0
1 |+ |C1

1 |/2 + |C2|/2 + 1
= l/3 + 2|C0

1 |/3 + |C1
1 |/6− |C2

1 |/3 + |C2|/6 + 1
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≥ l/3 + 2|C0
1 |/3 + |C1

1 |/6 + 1,

since we proved |C2| ≥ 2|C2
1 |.

Lemma 4 implies immediately the following result, as every 4-connected planar graph is hamil-
tonian [17] and has a cycle of length dn/2e [8].

Corollary 5. Every contraction-critically 4-connected planar graph on n vertices contains a cycle
of length k for every k ∈ {2n/3, . . . , n}∪I, where I is a set of consecutive integers with |I| ≥ n/6+1
and dn/2e ∈ I.

3 Medium cycle lengths
In this section, we exhibit another linearly-sized interval of the cycle spectrum of G by a similar
technique.

Lemma 6. Let C be a hamiltonian cycle of G such that Cint contains at least n/2 chords of C and
a cycle H of length bn

2 c + dn > 3 for some d ≥ 0. Then the number of 2-triangles of H is larger
than (d

3 + 1
108)n.

Proof. Since C is a hamiltonian cycle, V (Cint) = V (C) and V (Hint) = V (H). Since H has length
at least four and every triangle encloses a triangular face, every triangle of G is either contained
in Hint or in Hext. For 0 ≤ i ≤ 2, let H i

int be the set of i-triangles of H that are contained in Hint,
and let H>3

int be the set of interior faces of length larger than three in Hint. For every T ∈ H0
int,

we have V (T ) ⊆ V (H), so that every vertex v of T is contained in a 2-triangle of H (which in
turn is contained in Hext). Likewise, for any 1-triangle {u, v, w} in H1

int such that uw ∈ E(H), v is
contained in a 2-triangle of H (which is in Hext). Hence, the number of 2-triangles of H is at least
∆int + 2|H0

int|, where ∆int := ∑2
i=0 |H i

int| is the number of triangles in Hint. Therefore, it suffices to
show that ∆int + 2|H0

int| > (d
3 + 1

108)n.
Next we show that Hint does not only have one interior face. Let D be the weak dual of Cint.

As in the proof of Corollary 3, we consider the bijective mapping φ between the subtrees of D and
the cycles in Cint. Recall that a subtree S of weight k is mapped to the cycle φ(S) of length k+ 2;
in particular, D has weight n − 2. Since Cint has at least dn

2 e + 1 interior faces, D has at least
dn

2 e + 1 vertices. If Hint has only one interior face, then D has a vertex of weight bn
2 c + dn − 2.

Therefore, the sum of the weights of the remaining at least dn
2 e vertices in D is dn

2 e − dn, which
implies d = 0 and that Cint contains exactly dn

2 e chords of C. Moreover, as G has no two triangles
sharing an edge, D has no adjacent vertices of weight one.

Hence, D is a star graph with dn
2 e leaves of weight one each, such that the center vertex has

weight bn
2 c − 2. By the definition of vertex weights of D, the center vertex has degree at most

bn
2 c. This implies that n must be even. More precisely, Cint consists of the even cycle C and n

2
2-triangles of C, and Cext consists of C and n

6 0-triangles of C. Then there exists a facial cycle of
Cext that contains exactly one chord of C and is adjacent to some 0-triangle of C. However, this
facial cycle has length three, since for any pair of adjacent vertices in C, one of them has degree
two and the other one has degree four in Cext. This is not possible, as G has no adjacent triangular
faces.

Hence, Hint has f > 1 interior faces; Hint has in its interior triangular faces and non-triangular
faces. Let DH be the weak dual of Hint. Then DH is a tree. In DH , the vertex that corresponds
to the enclosed face of an i-triangle of H has exactly 3 − i neighbors, each of which encloses a
non-triangular face. Hence, by rooting DH at some vertex corresponding to a face from H>3

int ,
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it is readily to see that |H>3
int | = 2|H0

int| + |H1
int| + 1. Similarly, as the vertices that correspond

to triangles in H1
int have degree two in DH , we have f − |H1

int| ≥ |H1
int| + 1. These imply that

∆int + 2|H0
int| = f − |H>3

int | + 2|H0
int| = f − |H1

int| − 1 ≥ (f − 1)/2. Thus, it suffices to show that
f > cn+ 1, where c := 2d

3 + 1
54 .

Assume to the contrary that this is not the case. Then Cint has at least dn
2 e − cn interior

faces that are not interior faces of Hint. We partition these faces into four subsets F0, F1, F2 and
F>3, according to whether their boundary is a 0-, 1-, 2-triangle of C or has more than three
edges. The weight sum of the vertices of D that are not in the interior of H is dn

2 e − dn. Thus,∑2
i=0 |Fi|+2|F>3| ≤ dn

2 e−dn. Moreover, since∑2
i=0 |Fi|+ |F>3| ≥ dn

2 e−cn, subtracting the former
inequality from two times the latter gives ∑2

i=0 |Fi| ≥ dn
2 e − 2cn+ dn.

Note that if we root the tree D at a vertex that corresponds to an arbitrary interior face of H,
then every face in F0 ∪ F1 has at least one descendant in F>3. Thus, we have |F0|+ |F1| ≤ |F>3|.
Hence, dn/2e − dn ≥∑2

i=0 |Fi|+ 2|F>3| ≥ 3∑2
i=0 |Fi| − 2|F2| ≥ 3(dn/2e − 2cn+ dn)− 2|F2|. This

implies |F2| ≥ dn/2e− 3cn+ 2dn, which is a lower bound on the number of 2-triangles of C in Cint.
Let {u, v, w} be a 2-triangle of C in Cint such that uv, vw ∈ E(C). Then v is a vertex of either

a 0- or 1-triangle of C in Cext and neither uv nor vw is contained in a 1-triangle of C. By the above
lower bound on the number of 2-triangles, Cext contains at most n−2(dn/2e−3cn+2dn) ≤ (6c−4d)n
1-triangles of C and at least 1

3((dn/2e − 3cn + 2dn) − (6c − 4d)n) ≥ (1/6 − 3c + 2d)n 0-triangles
of C. Now consider the subgraph of G that is induced by the edges of E(C) that are contained in
some 2-triangle of C contained in Cint; clearly, this subgraph is a union of l vertex-disjoint paths.
No such path may contain two vertices from a 0-triangle T of C in Cext, as otherwise G would
have a 3-separator (consisting of one vertex of T and neighbors of two other vertices of T ). By
this observation, it can be readily shown that l is at least the number of 0-triangles of C in Cext
plus two (by induction on the number of 0-triangles). Since Cext contains at least (1/6− 3c+ 2d)n
0-triangles of C, we have

l ≥ (1/6− 3c+ 2d)n+ 2.

On the other hand, the edges from E(C) that are not contained in any 2-triangle of C in Cint also
induce l vertex-disjoint paths. We deduce that l ≤ n − 2(dn/2e − 3cn + 2dn) ≤ (6c − 4d)n. This
contradicts the previous bound on l, as 1/6− 3c+ 2d = 6c− 4d. Hence, f > cn+ 1, which proves
the lemma.

Theorem 7. Every contraction-critically 4-connected planar graph G on n vertices contains a cycle
of length k for every k ∈ {bn

2 c − d
n

108e, . . . , b
n
2 c+ b n

36c}.

Proof. Let C be a hamiltonian cycle of G. Since |E(G)| = 2n, Cint or Cext contains at least n/2
chords of C, say without loss of generality Cint. By Corollary 3, Cint contains a k-cycle for every
k ∈ {bn

2 c, . . . , d
n
2 e+3}. Let H be a bn

2 c-cycle in Cint. Since n ≥ 9 (as G is not the octahedral graph
and n is a multiple of three), H has length at least four. Then applying Lemma 6 with d := 0
shows that there are more than n/108 2-triangles of H. Short-cutting H by these 2-triangles gives
us a k-cycle in G for every k ∈ {bn

2 c − d
n

108e, . . . , b
n
2 c}.

We may now assume n ≥ 108, as otherwise dn
2 e+ 3 > bn

2 c+ b n
36c. Let k ∈ {d

n
2 e+ 3, . . . , bn

2 c+
b n

36c} ⊂ {d
n
2 e+ 3, . . . , 3n+7

4 }. We have that k = bn/2c+dn for some 0 ≤ d ≤ 1/36. By Corollary 3,
Cint has a cycle H of length k′ ∈ {k, . . . , 2k−dn

2 e−3}, so that k′ = bn/2c+d′n for some d ≤ d′ ≤ 2d.
According to Lemma 6, there are more than (d′/3 + 1/108)n 2-triangles of H. Since d′/2 ≤ d ≤ 1

36 ,
we have k′ − k = (d′ − d)n ≤ (d′/3 + 1/108)n, so that a k-cycle can be obtained from H by
short-cutting 2-triangles of H. This completes the proof.
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