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Abstract

Grünbaum and Malkevitch proved that the shortness coefficient of cyclically
4-edge-connected cubic planar graphs is at most 76

77 . Recently, this was improved
to 359

366 (< 52
53 ) and the question was raised whether this can be strengthened to

41
42 , a natural bound inferred from one of the Faulkner-Younger graphs. We
prove that the shortness coefficient of cyclically 4-edge-connected cubic planar
graphs is at most 37

38 and that we also get the same value for cyclically 4-edge-
connected cubic graphs of genus g for any prescribed genus g ≥ 0. We also
show that 45

46 is an upper bound for the shortness coefficient of cyclically 4-
edge-connected cubic graphs of genus g with face lengths bounded above by
some constant larger than 22 for any prescribed g ≥ 0.

1 Introduction
In 1973, Grünbaum and Walther [12] introduced two limits called shortness coef-
ficient and shortness exponent that measure how far a given infinite family G of
graphs is from being Hamiltonian. Formally, the shortness coefficient of G is defined
as

ρ(G) := lim inf
G∈G

circ(G)
|V (G)|
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and the shortness exponent of G as

σ(G) := lim inf
G∈G

log circ(G)
log |V (G)| ,

where the circumference circ(G) denotes the length of a longest cycle in a given
graph G. Clearly, for every infinite family G of graphs, σ(G) < 1 implies ρ(G) = 0.

Tutte’s celebrated result that 4-connected planar graphs are Hamiltonian [26]
implies therefore that the shortness coefficient of the 4-connected planar graphs
is 1, and the same conclusion holds if we relax the prerequisite of 4-connectedness
to ‘containing at most three 3-vertex-cuts’ [4]—for a more detailed overview of
hamiltonicity in planar graphs with few 3-vertex-cuts we refer the reader to [22].
However, it is well-known that infinitely many non-Hamiltonian graphs appear when
sufficiently many 3-vertex-cuts are present: Moon and Moser [20] showed that the
shortness exponent of the 3-connected planar (and even maximal planar) graphs is
at most log3 2, while Chen and Yu [5] showed that this upper bound is tight, i.e.
the shortness exponent of these graphs is log3 2. This implies that the shortness
coefficient of the 3-connected planar graphs (that is, the 1-skeleta of polyhedra [23])
is 0.

Historically, key results in the theory of Hamiltonicity have proven that con-
nectivity and circumference of a graph are intimately linked. In the study of cubic
graphs, the classic vertex- and edge-connectivity notions are only of limited use—
instead, the following more fine-grained connectivity notion has been established: A
graph G is cyclically k-edge-connected1 if, for every edge-cut S of G with less than
k edges, at most one component of G − S contains a cycle. For a positive integer
k, let Ck be the class of connected cyclically k-edge-connected cubic graphs, and
let CkP be the subclass of planar graphs in Ck. It is well known that every graph
in Ck is min{k, 3}-connected. Cyclically 4-edge-connected cubic graphs thus have
connectivity 3 but inherit some properties of 4-connected graphs; in the light of
the preceding paragraph, an important question is therefore whether the shortness
coefficient of C4P is strictly between 0 and 1.

Aldred, Bau, Holton, and McKay [1] showed that the smallest non-Hamiltonian
members in C4P have 42 vertices and that there are exactly three such graphs
up to isomorphism, including the Grinberg graph [10] and one of the Faulkner-
Younger graphs [8]. As Thomassen writes [24], Tutte’s theorem [26] implies that
any n-vertex graph G ∈ C4P has a cycle such that the vertices not in that cycle
are pairwise non-adjacent. Since any such cycle must contain at least 3/4 of the
vertices of G, circ(G) ≥ 3

4n.
2 By constructing a graph H from parts of the 42-

vertex Grinberg graph and replacing every vertex of a 4-regular 4-connected planar
1For cubic graphs in the literature frequently shortened to its vertex-analogue cyclically k-

connected, as in the cubic case the two terms coincide if we exclude the triangular prism.
2This settles [12, Conjecture 4]. There is a minuscule improvement of this lower bound to

circ(G) ≥ 3
4n+ 1 in [31] and, as far as we know, no better bound has been published.
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graph with a copy of H, Grünbaum and Malkevitch [11] showed that there are
infinitely many n-vertex graphs in C4P with circumference at most 76

77n, which
gives ρ(C4P) ≤ 76

77 .
3 Recently, the first and second authors [17] improved this long

standing upper bound to ρ(C4P) < 52
53 , and raised the question whether ρ(C4P) ≤ 41

42
holds, which is inspired by the fact that the smallest non-Hamiltonian graphs in C4P
have 42 vertices and circumference 41 each.

Here, we show that this is the case by proving ρ(C4P) ≤ 37
38 . We achieve this

bound by using a construction of graphs whose largest face length goes to infinity
(where the length of a face is defined to be the length of the shortest closed walk
bounding the face). As a natural follow-up question, one might ask whether such a
construction is still possible when all face lengths are bounded by a constant. This
is indeed the case, as we shall prove for the graphs in C4P whose face lengths are at
most some constant which is larger than 22 that the shortness coefficient is at most
45
46 .

Bondy and Simonovits [2] showed that σ(C3) ≤ log9 8 ≈ 0.946, while Liu, Yu, and
Zhang [16] showed that σ(C3) ≥ 0.8. Walther [27] proved that σ(C3P) ≤ log27 26
(see also Theorem B in [12]), which solves an open problem by Grünbaum and
Motzkin. Harant [14, 15] and Owens [21] proved for various subclasses of C3P
having at most two different face sizes that their respective shortness exponents are
less than 1. Hence, the shortness coefficients ρ(C3) and ρ(C3P) of the 3-connected
cubic graphs and the 3-connected cubic planar graphs are 0.

In stark contrast, the precise value of ρ(C4) is not known. Indeed, the famous
conjecture of Thomassen that every 4-connected line-graph is Hamiltonian [25] is
equivalent to the statement that every n-vertex graph in C4 has a dominating cy-
cle [9], and an affirmative answer to this would in turn imply a lower bound of
3
4n on the circumference of these graphs. More conservatively, Bondy (see [9]) has
conjectured that there is a constant 0 < c < 1 such that the circumference of every
n-vertex graph in C4 is at least cn. This would imply ρ(C4) ≥ c > 0, while Máčajová
and Mazák [19] even conjecture ρ(C4) ≥ c ≥ 7

8 , and Markström [18] conjectures that
ρ(C4) = 0.

Despite the lack of non-trivial lower bounds for ρ(C4), an upper bound for ρ(C4)
is known: Máčajová and Mazák [19] showed recently that C4 contains an infinite
graph family in which the circumference of every n-vertex graph is at most 7

8n,
which implies ρ(C4) ≤ 7

8 . Here, we provide a general theorem (Theorem 7) that
implies the result of [19]. We extend our results about planar graphs to the subclass
of graphs in C4 that have genus g for any g ≥ 0. We also discuss the shortness
parameters of graphs with large independent sets. We apply it to prove that the
shortness exponent of 5-connected 1-planar graphs is strictly less than 1.

3In [30], Zaks claims that ρ(C4P) ≤ 38
39 has essentially been shown by Faulkner and Younger

in [8] employing their graphs Mk; we do not see that these graphs imply the claimed bound (see [17]
for more details). We will, however, show in Section 3.1 how one can use the Faulkner-Younger
graph to prove ρ(C4P) ≤ 39

40 .
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A fragment of a graph G is a subgraph of G along with some half-edges of G. If
a fragment has k half-edges, we call it a k-leg fragment (see Figure 1 for an example;
the dotted line splits the graph into two 4-leg fragments). For vertices x and y, we
call a path between x and y an xy-path; this notation is extended to objects other
than vertices, for instance edges and half-edges. A face of length k in a plane graph
is called a k-face. We will make tacit use of the Jordan Curve Theorem.

2 Upper Bounds for the Shortness Coefficient of C4P
Grünbaum and Malkevitch [11] extracted a 38-vertex fragment from the 42-vertex
Grinberg graph [10] by deleting the vertices of its 4-face, and then constructed a
154-vertex 4-leg fragment by adding two vertices to four copies of the 38-vertex
fragment. They showed that if a graph G has a cycle C and G contains a copy
of the 154-vertex fragment that does not fully contain C, then C contains at most
152 of the 154 vertices of that fragment. This implies ρ(C4P) ≤ 152

154 = 76
77 , as then

for any 4-regular 4-connected planar graph (of which there are infinitely many), we
can replace every vertex with a copy of the aforementioned fragment, which gives a
graph in C4P.

2.1 A 38-Vertex Fragment

We follow a similar strategy, but instead use the 38-vertex 4-leg fragment F obtained
by deleting the outer 4-face of H given in Figure 1, which is considerably smaller
than the 154-vertex 4-leg fragment used by Grünbaum and Malkevitch. We found
F by an exhaustive computer search. For this, we used plantri [3] to generate
cyclically 4-edge-connected cubic plane graphs, and searched for a graph H that
contains a 4-face abcd (cyclically counterclockwise labeled) such that H − a, H − d,
H−a−b, H−c−d and H−ab−cd are non-Hamiltonian. The program determined
that the smallest such graphs have 42 vertices, and that there are exactly 15 such
graphs on 42 vertices. One of these graphs is shown in Figure 1. We proceed with
a proof that this graph H has indeed the stated properties.

2.2 Non-Hamiltonicity Properties

The 4-leg fragment F consists of three smaller 4-leg fragments, two of which are
mirror-symmetric (the two bottom ones, see Figure 1). Given the graphs H1 and
H2 as in Figure 2, we define these smaller 4-leg fragments as follows. Let F1 and
F2 be the 4-leg fragments obtained by deleting the outer 4-faces of H1 and H2,
respectively. We first consider several non-Hamiltonicity properties of the graphs
H1 and H2. We then deduce non-Hamiltonicity properties of the graph H from the
non-Hamiltonicity properties of F1 and the two copies of F2 in H.

Lemma 1. The graphs H1 − c1 − d1 and H1 − a1b1 − c1d1 are non-Hamiltonian.
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Figure 1: The 42-vertex graph H that consists of an outer 4-face and the 38-vertex
4-leg fragment F inside this 4-face.

a1

b1 c1

d1

(a) H1

a2

b2 c2

d2

v1 v2
v3

v4 v5 v6 v7

v8
v9

v10 v11
v12

(b) H2

Figure 2: The graphs H1 and H2.

Proof. We prove the lemma by Grinberg’s criterion [10]. Consider the planar em-
bedding of H1 given in Figure 2a. Then H1−c1−d1 has one 4-face, five 5-faces, one
6-face and one 9-face. Suppose to the contrary that there is a Hamiltonian cycle h
in H1 − c1 − d1. Then, by Grinberg’s criterion, we have

2(ϕ′4 − ϕ′′4) + 3(ϕ′5 − ϕ′′5) + 4(ϕ′6 − ϕ′′6) + 7(ϕ′9 − ϕ′′9) = 0,

where ϕ′k and ϕ′′k are the numbers of k-faces on the inside and on the outside of h
(henceforth, ‘inside’ and ‘outside’ refer to h considered in the embedding). As both
a1 and b1 have degree two, a1b1 is contained in h. Thus, the 6-face must be inside
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and the 9-face outside h, and we deduce that

2(ϕ′4 − ϕ′′4) ≡ 0 (mod 3).

But this is clearly impossible, because the value of the left-hand side is 2 or −2.
Similarly, the graph H1 − a1b1 − c1d1 has one 4-face, seven 5-faces and one 11-

face. Suppose to the contrary that it contains a Hamiltonian cycle. By Grinberg’s
criterion, we have

2(ϕ′4 − ϕ′′4) + 3(ϕ′5 − ϕ′′5) + 9(ϕ′11 − ϕ′′11) = 0.

We deduce that
2(ϕ′4 − ϕ′′4) ≡ 0 (mod 3),

which is impossible for the same reason as before.

Lemma 2. The graphs H2 − a2 − b2, H2 − b2 − c2 and H2 − a2 − d2 are non-
Hamiltonian.

Proof. Consider the planar embedding of H2 given in Figure 2b. The graph H2 −
a2 − b2 has two 4-faces, four 5-faces and one 10-face. Suppose to the contrary that
it contains a Hamiltonian cycle. By Grinberg’s criterion, we have

2(ϕ′4 − ϕ′′4) + 3(ϕ′5 − ϕ′′5) + 8(ϕ′10 − ϕ′′10) = 0.

We deduce that
2(ϕ′4 − ϕ′′4) + 8(ϕ′10 − ϕ′′10) ≡ 0 (mod 3),

which is impossible, since the 10-face is outside the Hamiltonian cycle and the two
4-faces are both inside (as the vertices c2 and d2 have degree two in H2 − a2 − b2).

For the graph H2 − b2 − c2 we employ a direct argument. Suppose there is a
Hamiltonian cycle h in H2 − b2 − c2. Since the vertices a2, d2, v10 and v12 (in the
notation of Figure 2b) have degree two in this graph, h must contain v1a2d2v3 and
v7v12v11v10v8 as subpaths. Since the edges v9v11, v6v7 and v4v8 are not contained
in h, h must contain v8v9v6, v3v7 and v5v4v1 as subpaths. Altogether we know that
h contains v5v4v1a2d2v3v7v12v11v10v8v9v6 as subpath and hence h does not contain
v2, which violates that h is Hamiltonian. By symmetry of H2, this gives the same
claim for the graph H2 − a2 − d2.

We use the preceding lemmas to prove non-Hamiltonicity properties of H.

Lemma 3. The graphs H − a, H − d, H − a − b, H − c − d and H − ab − cd are
non-Hamiltonian.
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Proof. Suppose to the contrary that H − a contains a Hamiltonian cycle h. Then
h contains the edges bc and cd and therefore exactly one of the edges e and f . If h
contains e, then some vertex of the right-hand side copy of F2 is not contained in
h, since H2 − a2 − b2 is non-Hamiltonian by Lemma 2 (recall that the right-hand
side copy is mirrored which switches {a2, b2} and {c2, d2}). If h contains f , then the
vertices of one of the copies of F2 are not contained in h, since H2 − b2 − c2 and
H2−a2−d2 are non-Hamiltonian by Lemma 2. Hence, H−a is not Hamiltonian. By
the same argument, the graphs H−d, H−a−b and H−c−d are non-Hamiltonian.

The graph H − ab − cd is non-Hamiltonian, because H1 − a1b1 − c1d1 is non-
Hamiltonian by Lemma 1.

Hence, if G is a graph that contains the 4-leg fragment F and a cycle C such
that V (C) ⊃ V (H), then Lemma 3 ensures that C ∩ F consists of an eaed-path of
F or an ebec-path of F or both, where ea, eb, ec, ed are the half-edges in F incident
to a, b, c, d in H, respectively.

2.3 A Cyclic Embedding

Let Gk be the graph obtained from linking k copies of F in a cyclic way as shown in
Figure 3, which is an approach already used by Faulkner and Younger [8]. In every
copy of F (see Figure 1), the edges ea and eb are on the outer cycle, while the edges
ec and ed lie on the inner cycle. It is not difficult to check that Gk is in C4P, as H
is in C4P. Let C be a longest cycle of Gk.

If the faces fin and fout of Gk are on the same side of C (that is, in the same
region of R2 \ C), then we call C a sausage. If C is a sausage, every edge pair
between two adjacent copies of F has the property that either both edges are in C
or none of them is in C. Since C has maximal length, the latter case can happen at
most once. Therefore, every copy of F up to two exceptional copies intersects with
C in the union of an eaeb-path and an eced-path of F . By Lemma 3, this implies
that C does not contain k − 2 vertices of Gk.

If C is not a sausage, then fin and fout lie on different sides of C. Then C
contains exactly one edge from every edge pair between two consecutive copies of F ,
and thus C intersects every copy of F in one e1e2-path of F , where e1 ∈ {ea, ed} and
e2 ∈ {eb, ec}. By Lemma 3, this implies that C misses at least one vertex in every
copy of F (by maximality, exactly one) and therefore does not contain k vertices of
Gk.

Since F has 38 vertices, the shortness coefficient of this infinite subclass of C4P
is 37

38 , which gives the following theorem.

Theorem 4. The shortness coefficient of the class of cyclically 4-edge-connected
cubic planar graphs is at most 37

38 .

We can use the same circular arrangement to also give a bound for graphs of
arbitrary genus. Denote by ρg the shortness coefficient of the class of cyclically 4-
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FF

F

F F

fin

fout

Figure 3: A cyclic embedding of copies of F . Red line segments indicate boundaries
between ea and eb.

edge-connected cubic graphs of genus g. For 4-faces F = v0v1v2v3 and F ′ = v′0v
′
1v
′
2v
′
3

of disjoint embedded graphs, we say that we connect F with F ′ when we take the
midpoints mi of vivi+1 and the midpoints m′i of v′iv′i+1, indices mod 4, and join by
an edge mi with m′i for all i.

Theorem 5. For all g ≥ 0 we have ρg ≤ 37
38 .

Proof. Consider the 4-regular 4-connected toroidal graph Cp�Cp (the Cartesian
product of two cycles; p at least 6). Expand each vertex into a 4-cycle. We obtain
the 3-regular cyclically 4-edge-connected toroidal graph A1 containing a 4-face Q.
Let A′1 be a copy of A1 with Q′ denoting the copy of Q. Connect Q with Q′ as
defined above. We obtain the 3-regular cyclically 4-edge-connected genus-2 graph
A2. Iterating this procedure (clearly sufficiently many distant 4-faces are present)
we construct the 3-regular cyclically 4-edge-connected genus-k graph Ak containing
a 4-face R. It is clear that Ak has genus at most k, since we construct it with an
embedding that has this genus. That the genus is indeed equal to k follows from
the fact that one can easily find a subdivision of K3,3 in each copy of A1 such that
all k subdivisions are pairwise vertex-disjoint, and that the genus is additive over
connected components. If we attach half-edges to the midpoints of the edges of R
we get a 4-leg fragment F k with genus k.

We use a circular arrangement as in Figure 3, but this time we insert one copy
of F g, and for the rest we still use the fragment F . If there are n copies of F , we
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call the resulting graph Gg,n. Note that Gg,n has genus g. So we obtain a family of
graphs with genus g for which the ratio of the circumference and the order goes to
37
38 if the order goes to infinity.

2.4 Bounded Face Lengths

The length of the largest face in the graph class Gk that we constructed for Theo-
rem 4 tends to infinity. Here, we show that C4P contains a subclass of graphs whose
face lengths are bounded from above by a constant, so that the shortness coefficient
of this subclass is not much larger than 37

38 .
The following results about such graph families are known. For t ∈ {4, 5}, let

CtP(p, q) be the subclass of graphs in CtP all of whose face lengths are either p
or q. Zaks [29] showed that for all k ≥ 2 we have ρ(C4P(5, 5k + 5)) ≤ 100k+9

100k+10 ,
ρ(C4P(5, 5k+ 17)) < 1 and ρ(C4P(5, 13)) < 1. Walther [28] showed the existence of
an infinite family of non-Hamiltonian connected cyclically 5-edge-connected cubic
planar graphs all of whose face lengths are either 5 or 8, and also proved the stronger
result that ρ(C5P(5, 8)) < 1.

a3

b3 c3

d3

Figure 4: The 50-vertex graph H3 and the 46-vertex 4-leg fragment F3 that is
obtained from H3 by deleting a3, b3, c3 and d3.

Theorem 6. Let g ≥ 0 and ` ≥ 23. The shortness coefficient of the class of
cyclically 4-edge-connected cubic graphs of genus g and with faces of length at most
` is at most 45

46 .

Proof. We first handle the planar case, i.e. the case where g = 0. Consider the
50-vertex graph H3 of Figure 4. We remark that a computer search proved that
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H3 is the smallest cyclically 4-edge-connected cubic plane graph containing a 4-
face a3b3c3d3 (labels given in cyclic order) such that H3, H3 − a3 and H3 − b3 are
non-Hamiltonian (the latter properties are proven similarly as Lemmas 1 and 2).

Let F3 be the 4-leg fragment that is obtained from H3 by deleting the four
vertices a3, b3, c3, d3 on its outer face (each leaving a half-edge). Let ea3 , eb3 , ec3

and ed3 be the half-edges of F3 that are incident to a3, b3, c3 and d3, respectively.
The number of vertices on the clockwise boundary of F3 between ea3 and ed3 is 10,
between ed3 and ec3 is 5, between ec3 and eb3 is 3, and between eb3 and ea3 is 5.

For k ≥ 0, let Ok be the graph of an octahedron with k additional bands of
quartic vertices, that is, Ok consists of 4(k+ 1) + 2 vertices, denoted by s, t, ui,j for
i ∈ {0, . . . , k} and j ∈ {1, 2, 3, 4}, and 8(k + 1) + 4 edges, such that ui,1ui,2ui,3ui,4
is an induced 4-cycle for every i ∈ {0, . . . , k} and su0,j . . . uk,jt is an induced path
of order k + 3 for every j ∈ {1, 2, 3, 4}. Then O0 is the octahedron graph, and, for
every k ≥ 1, Ok is a 4-regular 4-connected graph in which all faces are triangular or
quadrangular.

Then, for any k ≥ 0, the graph obtained from Ok by replacing every vertex with
a copy of F3 is such that every longest cycle misses at least one vertex of every copy
of F3, because H3, H3−a3, and H3− b3 are non-Hamiltonian. One can easily verify
that replacing the vertices can be done in such a way that the largest faces in the
resulting graph have size at most 23, see Figure 5 for an example.

The families of graphs for genus g ≥ 1 are obtained by not replacing the vertex
s by a copy of F3, but by a copy of F g. When this is done for the configuration
shown in Figure 5, this does not increase the maximum face size.

3 Upper Bounds for the Shortness Coefficient of C4
3.1 General Cubic Graphs

We first extend the above results by using a similar approach to obtain a general
upper bound for ρ(C4).

Theorem 7. Let G be a cyclically 4-edge-connected cubic n-vertex graph. Then
ρ(C4) ≤ circ(G)−2

n−2 , and if there exist adjacent vertices v, w in G such that G− v−w
is planar, then ρ(C4P) ≤ circ(G)−2

n−2 .

Proof. Let xy be an edge of G. We see G−x−y as a fragment F with legs a, b, c, d,
where a and d were incident with x (in G) and b and c were incident with y. We
adapt a definition of Chvátal [6] and call a pair (v, w) of legs of F good if there exists
a vw-path in F on at least circ(G)−1 vertices. A pair of pairs ((v, w), (v′, w′)) of legs
of F is said to be good if there exist two disjoint paths P1 and P2 in F , one between
v and w and one between v′ and w′, such that |V (P1)|+ |V (P2)| ≥ circ(G)− 1.

Consider the pair (a, b) and assume it to be good. Then G contains an ab-path
on at least circ(G) − 1 vertices, which does not visit the vertices x and y. Joining
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Figure 5: The graph obtained by replacing every vertex of O2 by a copy of F3. Red
edges indicate clockwise boundaries between ea3 and ed3 , which contain 10 vertices.

the legs a and b via x and y, we obtain a cycle in G of length at least circ(G)+1, an
obvious contradiction. So (a, b) is not good. The pairs (a, c), (b, d), (c, d) are dealt
with analogously. Now consider the pair of pairs ((a, b), (c, d)) and suppose it is
good. Then G contains an ab-path P1 and a cd-path P2 such that P1 ∩ P2 = ∅ and
|V (P1)| + |V (P2)| ≥ circ(G) − 1. Taking P1 ∪ P2 as subgraph of G and joining the
legs a and d via x, as well as b and c via y, we obtain a cycle in G of length at least
circ(G) + 1, once more a contradiction. The case ((a, c), (b, d)) is analogous. We
conclude that none of the pairs (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d))
is good.

As depicted in Figure 3, we cyclically arrange k copies of F such that leg a (of
copy `) and leg b (of copy `+ 1), as well as leg d (of copy `) and leg c (of copy `+ 1)
are joined. We obtain a graph O that is obviously cubic, and planar if F is planar.
The proof that O is cyclically 4-edge-connected is straightforward but tedious and
therefore omitted.

Consider a cycle C in O and the intersection I = C ∩F , where F is an arbitrary
copy of the above fragment residing in O. Furthermore, we assume that C is not fully
contained in F , and that C visits at least circ(G)−1 vertices of F . If I is composed
of one component P , P is either a bc-path or an ad-path, as (a, b), (a, c), (b, d), (c, d)
are not good. If I consists of two disjoint components P1 and P2, P1 is an ad-path
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and P2 is a bc-path, since ((a, b), (c, d)), ((a, c), (b, d)) are not good. Hence, a longest
cycle in O misses in each of at least k−2 copies of F at least n−circ(G) vertices.

We apply Theorem 7 to the Petersen graph and the 42-vertex Faulkner-Younger
graph [8] in order to obtain:

Corollary 8. ρ(C4) ≤ 7
8 and ρ(C4P) ≤ 39

40 .

Note that the bound on ρ(C4P) is slightly weaker than what we gave in Theo-
rem 4. The bound on ρ(C4) was due to Máčajová and Mazák [19] which improved
a bound by Hägglund who—as Markström wrote in [18, p. 2]—indirectly proved in
[13] that ρ(C4) ≤ 14

15 . In fact, applying Theorem 7 to the Petersen graph precisely
gives us the graph class which was constructed by Máčajová and Mazák:

Corollary 9. There are infinitely many cyclically 4-edge-connected cubic n-vertex
graphs G with circ(G) ≤ 7

8n.

3.2 Graphs with Large Independent Sets

We end this paper with an extension of a technique used in the proof of a recent
theorem of Fabrici et al. [7]. Given a graph having a large independent set, we
construct a sequence of graphs and prove an upper bound of its shortness exponent.

Let G be a graph and U ⊂ V (G) be an independent set such that each vertex
v in U has degree d. Now we fix a vertex w ∈ U and obtain a d-leg fragment F by
deleting w and its incident half-edges. Vertices from S := U − w are called special.
Starting with G0 := G, we construct an infinite sequence GG,S = (Gk)k≥0 of graphs
as follows. Let Gk be as already constructed and obtain Gk+1 from Gk by replacing
each special vertex of Gk with a copy of F . Set the special vertices of Gk+1 to be
those from each copy of F . The family GG,S inherits various properties from G such
as planarity, regularity and connectivity.

Theorem 10. Let d ≥ 3 and G be a 2-connected (n + 1)-vertex graph containing
an independent set U ⊂ V (G) and each vertex in U has degree d. Let w ∈ U be the
vertex to be deleted to obtain an n-vertex d-leg fragment F , and S := U − w be the
set of special vertices. If n

2 < |S| < n, we have

ρ(GG,S) = 0 and σ(GG,S) ≤ log(n− |S|)
log |S| .

Proof. Let Tk be a longest closed trail of Gk visiting each non-special vertex of Gk

at most once. Put nk := |V (Gk)| and tk := |V (Tk)|. Since a longest cycle of Gk is
also a closed trail of Gk, we have circ(Gk) ≤ tk for every k ≥ 0. We denote by u
the number of non-special vertices in the fragment F obtained from G. Since Gk−1
can be obtained from Gk by contracting the copies of F into special vertices, the
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trail Tk will be contracted to be a trail of length at most tk/u. This implies that
tk ≤ u · tk−1, and hence

tk ≤ uk · t0.

Furthermore,

nk = 2 + (n− 1) ·
k∑

j=0
|S|j = 2 + (n− 1) · |S|

k+1 − 1
|S| − 1 > |S|k+1.

Therefore,

σ(GG,S) ≤ lim
k→∞

log tk
lognk

≤ lim
k→∞

log u+ 1
k log t0

(1 + 1
k ) log |S|

= log u
log |S| .

By the assumption, 0 < u < |S|, hence we have that σ(GG,S) is bounded above by
some constant less than 1, which implies that ρ(GG,S) = 0.

In [7] it was shown that there exists a 5-connected 1-planar graph G0 to which we
can apply Theorem 10, so the shortness coefficient of the 5-connected 1-planar graphs
is 0. (For the definition of “1-planar” graphs, we refer to [7].) Furthermore, there
exists no planar cubic cyclically 5-edge-connected graph satisfying the conditions
stated in Theorem 10, since if there would be, we would have ρ(C5P) = 0, which is
false, as by Tutte’s theorem [26] we have ρ(C5P) ≥ 3

4 .
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