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Abstract

Grünbaum and Malkevitch proved in 1976 that the shortness co-
efficient of cyclically 4-edge-connected cubic planar graphs is at most
76
77 . We prove that it is at most 359

366 (< 52
53 ).

1 Introduction and Notation
We consider only simple and finite graphs, unless otherwise specified. Given
a graph G, we denote by n the number |V (G)| of vertices of G, we also call
G an n-vertex graph. A k-separator (k-edge cut) S of G is a subset of k
vertices (edges) such that G− S is disconnected. A graph G is 3-connected
if it has no 2-separator, and it is essentially 4-connected if in addition, for
every 3-separator S of G, G− S has a component that is a single vertex. A
fragment of G is a subgraph along with some half-edges of G. If a fragment
has k half-edges, we call it a k-leg fragment (see Figure 1 for an example of
a 4-leg fragment). For vertices x, y ∈ V (G), an x-y-path is a path from x to
y; this notation is also extended to objects other than vertices, for instance,
edges and half-edges.

The circumference circ(G) of a graph G denotes the length of a longest
cycle in G. For infinite graph classes, Grünbaum and Walther [7] proposed
the following measure: The shortness coefficient ρ(F) of an infinite graph
class F is lim infG∈F ,n→∞

circ(G)
n .
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A famous result by Tutte [10] states that every 4-connected planar graph
is Hamiltonian; hence, 4-connected planar graphs have shortness coeffi-
cient 1. However, infinitely many planar graphs of connectivity 3 and with
no spanning cycle exist. Indeed, Moon and Moser [9] showed that there
are infinitely many 3-connected planar graphs with circumference at most
O(nlog3 2), while Chen and Yu [3] showed that every 3-connected planar
graph has circumference at least Ω(nlog3 2); hence, the shortness coefficient
of 3-connected planar graphs is 0. Restricted to cubic graphs, the shortness
coefficient is still 0 [2], while Liu et al. [8] showed that every 3-connected
cubic planar graph has circumference at least Ω(n0.8).

In this paper, we are interested in cyclically 4-edge-connected cubic pla-
nar graphs. A graph G is cyclically 4-edge-connected if it is 3-connected and,
for every 3-edge cut S of G, at most one component of G − S contains a
cycle. Note that for 3-connected cubic graphs different from the prism graph
K2�K3 (where � is the cartesian graph product), cyclic 4-edge-connectivity
and essential 4-connectivity coincide. Let C4 be the class of cyclically 4-edge-
connected cubic planar graphs. It is known that the shortness coefficient of
C4 lies strictly between 0 or 1. Aldred et al. [1] showed that the smallest non-
Hamiltonian graphs in C4 have 42 vertices and that there are exactly three
such graphs, including the Grinberg graph [5] and the Faulkner-Younger
graph [4] on 42 vertices. It is however not known whether ρ(C4) ≤ 41

42 holds.
Grünbaum and Malkevitch [6] proved in 1976 that every graph in C4

has circumference at least 3
4n, and invoking the theory of Tutte paths gives

the slightly improved lower bound 3
4n + 1 (see also [12]). By constructing

a graph H from fragments of the 42-vertex Grinberg graph and replacing
every vertex of a 4-regular 4-connected planar graph with a copy of H, they
also showed that there are infinitely many graphs in C4 with circumference
at most 76

77n, which implies ρ(C4) ≤ 76
77 . This is the best known upper

bound so far.1 We improve this to ρ(C4) ≤ 359
366(< 52

53). Our method is
similar to the one by Grünbaum and Malkevitch, but we use fragments of
the 42-vertex Faulkner-Younger graph (instead of the Grinberg graph) that
are comparably smaller and replace the vertices of a more restricted class of
4-regular planar multigraphs.

1During the proof of this paper, the authors were made aware of a comment by Zaks [11,
p. 97], which states that one can “easily deduce” ρ(C4) ≤ 76

78 from the infinite graph family
Mk described in the paper of Faulkner and Younger [4]. However, the copies of B3 that
are used in Mk have only penalty 1 and not penalty 2 (see Section 2 for the definition of
penalty), and hence, using only the family Mk, one can deduce only ρ(C4) ≤ 77

78 .
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2 An Upper Bound for the Shortness Coefficient
Grünbaum and Malkevitch [6] extracted a 38-vertex fragment H from the
42-vertex Grinberg graph [5] by deleting the vertices of its only 4-face, and
then constructed a 154-vertex 4-leg fragment F from 4 copies of H by adding
two vertices. They showed that if a graph G contains a copy of F and a cycle
C that is not fully contained in F , then C contains at most 152 vertices of
F . This implies ρ(C4) ≤ 152

154 = 76
77 , as then for any 4-regular 4-connected

planar graph (and there are infinitely many such graphs), we can replace
every vertex with a copy of F , which gives a graph in C4. We will use a
similar method, but use a smaller 122-vertex 4-leg fragment than F (this
smaller fragment implies already ρ(C4) ≤ 60

61) and replace the vertices of
graphs from a more restricted graph class to prove the following theorem:

Theorem 1. For the class C4 of cyclically 4-edge-connected cubic planar
graphs, ρ(C4) ≤ 359

366 .

In contrast to Grünbaum and Malkevitch, who used a big fragment of
the Grinberg graph, we will use the following 4-leg fragment H1 of the
Faulkner-Younger graph (see Figure 1). This 4-leg fragment has 18 vertices
and can also be obtained from the dodecahedron graph by deleting the
two endvertices of any edge (leaving four half-edges); let l− and l+ be the
half-edges at the left lower and upper corners and let r− and r+ be the half-
edges at the right lower and upper corners. Faulkner and Younger noted
the following property of H1.

Lemma 2 ([4, Lemmas 2.1 and 2.2]). Let G be a graph containing H1 and
let C be a cycle of G that contains V (H1). Then C ∩H1 contains either a
l−-r−-path (or by symmetry a l+-r+-path) or a l−-r+-path (or by symmetry
a l+-r−-path).

In the first case of Lemma 2, C ∩ H1 may contain both an l−-r−-path
and an l+-r+-path, but not more, as H1 has only four legs. The path of the
latter case of Lemma 2 however is the only one in the intersection, as H1
is plane. Using H1, we construct the following 60-vertex 4-leg fragment H2,
which consists of three copies of H1 (which we call A, B and D from top to
bottom) and 6 more vertices (see Figure 2a).

Now let G be a graph containing H2 and let C be a cycle of G. We say
that C ∩H2 has penalty k if C misses at least k vertices of H2. Then C ∩H2
is either empty, C, or consists of one or of two paths. The first two cases will
eventually only be beneficial. In the last case, it is again not possible to have
one l−-r+-path and one l+-r−-path simultaneously by planarity. As H2 is
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Figure 1: The 4-leg fragment H1.
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(b) The fragment H3.

Figure 2: Bigger 4-leg fragments.

mirror symmetric along a vertical line, it suffices to consider the following
cases.

Lemma 3. If l− ∈ C ∩H2, then C ∩H2 consists of one of the following:
(i) one l−-l+-path such that C ∩H2 has penalty 0,

4



(ii) one l−-r+-path such that C ∩H2 has penalty 1,
(iii) one l−-r−-path such that C ∩H2 has penalty 2,
(iv) one l−-l+-path and one r−-r+-path such that C ∩H2 has penalty 3, or
(v) one l−-r−-path and one l+-r+-path such that C ∩H2 has penalty 2.

If C ∩H2 consists of (vi) one l+-r+-path, then C ∩H2 has penalty 2.

Proof. In Case (i), there is nothing to show, as the penalty is 0. Note that
we cannot demand a higher penalty in this case, as the l−-l+-path that uses
only diagonally opposite half-edges of A, B and D shows.

In Case (ii), the path either contains an l−F -l
+
F -path (or an r−F -r+

F -path)
for some F ∈ {A,B,D} or misses at least one of the six vertices that are in
no copy of H1. By Lemma 2, C ∩H2 has penalty 1.

In Case (iii), if the path is an l−-r−-path, we may assume that the path
contains a vertex of A. Then each of B and D contains two top-down paths
in its intersection with C. By Lemma 2, this gives a total penalty of 2. If
the path is an l+-r+-path, an analogous statement settles that C ∩H2 has
penalty 2. In Case (vi), C ∩H2 has penalty 2 for the same reason.

In Case (iv), the planarity ofH1 implies that each of A, B andD contains
two top-down paths, which amounts to penalty 3 in total by Lemma 2.

In Case (v), if the l−-r−-path P contains a vertex of the four vertices
between A and B, then the argument of Case (iii) gives penalty 2. Similarly,
it gives penalty 2 if the l+-r+-path Q contains a vertex of the two vertices
between B and D. In the remaining case, if neither P nor Q intersects B,
the penalty is clearly at least |V (B)| ≥ 2. Otherwise at least one of P and
Q, say without loss of generality P , contains a vertex of B. By Lemma 2,
D gives penalty 1. Now we have either Q contains all four vertices between
A and B, then A gives penalty 1, or some of the four vertices contained
neither in P nor Q. In any case, we have penalty 2 in total.

We obtain the 4-leg fragment H3 from two copies of H2 by adding two
new vertices u and v as shown in Figure 2b. Hence, H3 has 122 vertices.
Using the same notation and assumptions as for H2, we have the following
lemma.

Lemma 4. If l− ∈ C ∩H3, then C ∩H3 consists of one of the following:
(i) one l−-l+-path such that C ∩H3 has penalty 2,
(ii) one l−-r+-path such that C ∩H3 has penalty 2,
(iii) one l−-r−-path such that C ∩H3 has penalty 3,
(iv) one l−-l+-path and one r−-r+-path such that C ∩H3 has penalty 2, or
(v) one l−-r−-path and one l+-r+-path such that C ∩H3 has penalty 4.

If C ∩H3 consists of (vi) one l+-r+-path, then C ∩H3 has penalty 3.

5



Proof. Let e, f, g, h and i be the edges of H3 as indicated in Figure 2b. In
Case (i), if the edges e and f are not in C, we have penalty |V (H2)|+2 ≥ 2,
so assume they are in C. Then the left copy of H2 is in Case (v) of Lemma 3,
which gives penalty 2.

In Cases (ii) and (iii), the respective path P must contain exactly one
of the edges e and f and exactly one of g and h. If e ∈ P , we have penalty
2 by Case (iii) of Lemma 3, and if f ∈ P , we have penalty 1 by Case (ii)
of Lemma 3. Using the symmetric arguments for g and h and r− or r+, we
thus have total penalty 2 in Case (ii) (C misses exactly two vertices of H3
only if i ∈ P ) and total penalty 3 in Case (iii) (as either one of the vertices
u and v is missing or we have either an l−-e-path or an g-r−-path, all of
which adds 1 to the penalty). In Case (vi), C ∩ H2 has penalty 3 for the
same reason.

In Case (iv), either one path implies penalty 2 due to Case (v) of
Lemma 3 or the vertices of each of the two paths P and Q are the ver-
tices of a copy of H2 (each implying penalty 0 by Case (i) of Lemma 3).
Then the penalty is 2 in total, as the latter case misses the end vertices of i.

In Case (v), the l−-r−-path contains the edges e and g and the l+-r+-
path contains the edges f and h by planarity of H3. Hence both copies of H2
give penalty 2 by Case (v) of Lemma 3, which implies total penalty 4.

Now consider any 4-regular 4-connected planar graph G′ and replace
each vertex along with its four incident half-edges with the 4-leg fragment
H3. The graph G on n vertices obtained in this way is cubic, cyclically
4-edge-connected and planar and thus in C4. Let C be a longest cycle of G.
If C is contained in some copy of H3, we have circ(G) ≤ 1

2n, as |V (G′)| ≥ 2.
Otherwise, every copy of H3 in G has penalty at least 2 due to Lemma 4,
and hence circ(G) ≤ 120

122n = 60
61n, since there are infinitely many 4-regular

4-connected planar graphs.
This implies already ρ(C4) ≤ 60

61 . In the following, we will further improve
this bound by replacing vertices of some more specific graphs, such that any
cycle in the constructed graphs must encounter many cases of high penalty,
namely Cases (iii), (v) and (vi) of Lemma 4.

Let H4 be the 4-leg fragment shown in Figure 3 that contains two copies
of H3 in the same orientation as in Figure 2 (we say that these copies are
of Type II ) and one copy of H3 that is rotated by 90 degrees (we say that
this copy is of Type I ). Let Gk be the graph obtained from linking k copies
of H4 in a cyclic way, as shown in Figure 3b. It is not difficult to check that
Gk is in C4. Let C be a longest cycle of Gk. Then C divides the plane into
two open sets; let in(C) be the bounded (inner) open set and let out(C) be
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(b) The graph G6 (the grey subgraphs depict copies
of H3).

Figure 3: Construction of the graph G6.

the unbounded (outer) open set.
If the face fin of Gk (see Figure 3b) intersects out(C) (see Figure 4a),

then every edge pair that is cut by a dotted line segment of Figure 4a has
the property that either both edges are in C or none of them is in C. By the
maximality of C, the latter case can happen at most once. Therefore, up to
this one exceptional edge pair, every Type I-copy of H3 has one l−-r−-path
and one l+-r+-path when intersecting with the cycle C, which gives penalty
4 due to Case (v) of Lemma 4. Since every Type II-copy of H3 has penalty
at least 2 by Lemma 4, every copy of H4 has penalty 8, except possibly one
which has penalty 6 (when its edges cut by dotted line segments are not all
contained in the cycle). Hence, for k ≥ 2, every copy of H4 has penalty at
least 7 on average.

If fin does not intersect out(C), it intersects in(C) (see Figure 4b). Then
C contains exactly one edge from every edge pair that is cut by a dotted line
segment of Figure 4b. Since C has maximal length, both Type II-fragments
in every copy of H4 of Gk intersect C. For the intersection of C with these
two Type II-copies, we distinguish the following two cases:

(a) C enters the first Type II-copy from outside, proceeds to the second
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fin

out(C)
in(C)

(a) fin intersects out(C).

fin

in(C)

out(C)

(b) fin intersects in(C).

Figure 4: Two cases of a cycle C in G6.

Type II-copy, and then returns to the first copy before it leaves the in-
tersection.
Then the first copy is in Case (v) of Lemma 4, and the second is in
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Case (i) of Lemma 4.

(b) C enters the first Type II-copy from outside, proceeds to the second
Type II-copy, and does not return to the first copy.
Then one copy is in Case (iii) or (vi) of Lemma 4 and the other in
Case (ii) of Lemma 4.

Therefore, for both Cases (a) and (b), at least one H3-copy has penalty 3,
and thus any H4-copy has penalty 7 in total.

Since every copy of H4 has penalty 7, the shortness coefficient ρ(C4) is
therefore at most 3·122−7

3·122 = 359
366 < 52

53 . This completes the proof of Theo-
rem 1.
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