Contractible Edges in Longest Cycles

Tsz Lung Chan
Department of Mathematics
The Chinese University of Hong Kong
Matthias Kriesell
Institute of Mathematics
Technische Universität Ilmenau
Jens M. Schmidt
University of Rostock
Institute of Computer Science

Abstract

This paper investigates the number of contractible edges in a longest cycle C of a k-connected graph $(k \geq 3)$ that is triangle-free or has minimum degree at least $\frac{3}{2} k-1$. We prove that, except for two graphs, C contains at least $\min \{|E(C)|, 6\}$ contractible edges. For triangle-free 3-connected graphs, we show that C contains at least $\min \{|E(C)|, 7\}$ contractible edges, and characterize all graphs having a longest cycle containing exactly six/seven contractible edges. Both results are tight. Lastly, we prove that every longest cycle C of a 3 -connected graph of girth at least 5 contains at least $\frac{|E(C)|}{12}$ contractible edges.

AMS classification: 05C40, 05C05.
Keywords: Contractible edge, Longest cycle, k-connected graph, Triangle-free

1 Introduction

The study of contractible edges began with Tutte [25], who proved that every 3 -connected graph non-isomorphic to K_{4} contains a contractible edge. Since then, a lot of research has been done on the existence and distribution of contractible edges in k-connected graphs. The surveys by Kriesell [18] and Ando [4] collect and summarize many results in this area.

One interesting question to ask is what classes of subgraphs contain a contractible edge and how many. For every 3 -connected graph other than K_{4} and the prism $K_{2} \times K_{3}$, Dean et al. [7] proved that every longest cycle contains at least three contractible edges. Later, Ellingham et al. [11] proved that for any non-hamiltonian 3-connected graph, every longest cycle contains at least six
contractible edges. Aldred et al. [1] characterized all 3-connected graphs that have a longest cycle containing exactly three contractible edges. Fujita [13, 16] classified all 3-connected graphs that have a longest cycle containing precisely four contractible edges. Fujita and Kotani [17] classified all 3-connected graphs of order at least 16 that have a longest cycle containing precisely five contractible edges. For any 3-connected graph of order at least five, Fujita [14] proved that there exists a longest cycle C such that C contains at least $\frac{|V(C)|+9}{8}$ contractible edges, and later [15] improved the lower bound to $\frac{|V(C)|+7}{7}$.

Besides longest cycles, maximum matchings in 3-connected graphs nonisomorphic to K_{4} were shown to contain a contractible edge by Aldred et al. [2]. They [3] also characterized all 3-connected graphs with a maximum matching that contains precisely one contractible edge. Elmasry et al. [12] proved that every depth-first search (DFS) tree in a 3-connected graph non-isomorphic to K_{4} contains a contractible edge. Recently, Kriesell and Schmidt [20] made an improvement, and proved that every DFS tree of a 3-connected graph nonisomorphic to K_{4}, the prism or the prism plus an edge has two contractible edges.

Note that all the above work focuses on 3-connected graphs, as k-connected graphs may not contain any contractible edge for every $k \geq 4$. By imposing extra conditions, Thomassen [24] proved that every triangle-free k-connected graph contains a contractible edge (see also Egawa et al. [10]), while Egawa [9] proved the same for k-connected graphs that have minimum degree at least $\lfloor 5 n / 4\rfloor$. For k-connected graphs that are triangle-free or have minimum degree at least $\frac{3}{2} k-1$, Kriesell and Schmidt [20] proved that except for the graphs K_{k+1} where $k=1,2$, every spanning tree has two contractible edges. For every k-connected graph $(k \geq 4)$ of minimum degree at least $\frac{3}{2}(k-1)$, they showed that every DFS tree has two contractible edges.

Inspired by these results, in this paper, we initiate the investigation of the number of contractible edges in longest cycles of k-connected graphs $(k \geq 3)$ that are triangle-free or have minimum degree at least $\frac{3}{2} k-1$. More specifically, we study the largest value $f(k)$ such that every longest cycle C contains at least $\min \{|E(C)|, f(k)\}$ contractible edges. Section 2 introduces the necessary terminology and basic tools used throughout the paper. Section 3 gives lower bounds for $f(k)$. We prove that, except for two graphs, C contains at least $\min \{|E(C)|, 6\}$ contractible edges. In Section 4, by constructing specific examples, we find upper bounds for $f(k)$. Section 5 deals with triangle-free 3-connected graphs exclusively. We show that C contains at least $\min \{|E(C)|, 7\}$ contractible edges, and characterize all graphs having a longest cycle containing exactly six/seven contractible edges. In Section 6, we consider 3-connected graphs of girth at least 5 and prove that every longest cycle C in these graphs contains at least $\frac{|E(C)|}{12}$ contractible edges, which is a first dependency result on $|E(C)|$ applicable to all longest cycles. In Section 7, all the results are summarized and open problems are raised.

2 Preliminaries

All graphs throughout the paper are assumed to be finite, simple and undirected. For terminology not defined here, we refer to [8] or [5]. For a graph G, a set $T \subseteq V(G)$ is a $|T|$-separator of G if $G-T$ is disconnected. For $k \geq 1$, a noncomplete graph G is called k-connected if $|V(G)|>k$ and G does not contain a $(k-1)$-separator. Let x be a vertex in G and S be a subset of $V(G)$ such that $x \notin S$ and $|S| \geq l$. An x-S l-fan is the union of l distinct x - S paths that pairwise intersect exactly at x. By Menger's theorem, an $x-S k$-fan always exists. Let $\kappa(G)$ denote the connectivity of G, that is, the largest k such that G is k-connected. Define $\mathfrak{T}(G)$ to be the set of all $\kappa(G)$-separators of G, or simply write \mathfrak{T} if it is clear from the context. For an edge e, let $V(e)$ be the set of endvertices of e. An edge e of a k-connected graph G is called k-contractible if the graph G / e obtained from G by contracting e, that is, identifying its endvertices, and removing loops and multiple edges, is k-connected. No edge in K_{k+1} is k-contractible, but all edges in $K_{\ell}, \ell \geq k+2$, are. It is well-known and straightforward to check that an edge e of a noncomplete k-connected graph G is not k-contractible if and only if $\kappa(G)=k$ and $V(e) \subseteq T$ for some $T \in \mathfrak{T}$. In the following, we will write k-contractible as contractible if the context is clear. For two disjoint vertex subsets X and Y of a graph G, let $E_{G}(X)$ be the set of edges that X induces in G and let $E_{G}(X, Y):=\{x y \in E(G): x \in X$ and $y \in Y\}$. For the k-connected graphs that are either triangle-free or have minimum degree at least $\frac{3}{2} k-1$, define $f(k)$ to be the largest value such that every longest cycle C in these graphs contains at least $\min \{|E(C)|, f(k)\}$ contractible edges.

For $T \in \mathfrak{T}$, a T-fragment is the union of vertex sets of at least one but not all components of $G-T$. A fragment A of G is a T-fragment for some $T \in \mathfrak{T}$. For any fragment A, we define $T_{A}:=N_{G}(A)$ where $N_{G}(A)$ is the set of neighbors of vertices in A that lie outside A. Obviously, A is a T_{A}-fragment. Define $\bar{A}:=\left(V(G)-T_{A}\right)-A$, which is another T_{A}-fragment. Given a graph G and a non-empty set $\mathfrak{S} \subseteq 2^{V(G)}$ (where $2^{V(G)}$ is the power set of $V(G)$), an \mathfrak{S}-fragment of G is a T-fragment for some $T \in \mathfrak{T}$ such that there is an $S \in \mathfrak{S}$ satisfying $S \subseteq T$. An \mathfrak{S}-end is an inclusion-wise minimal \mathfrak{S}-fragment, and an \mathfrak{S}-atom is an \mathfrak{S}-fragment of minimum size.

Not every k-connected graph contains a contractible edge, but every k connected graph that is triangle-free or has large minimum degree does. We will need the following well-known lemmas. The first is a standard argument in k-connectivity and will therefore often be used without explicit reference throughout this paper; the other two ensure that all fragments are large.

Lemma 1 (Fundamental Lemma [22, Lemma 1]). Let B and F be fragments such that $B \cap F \neq \emptyset$. Then $\left|B \cap T_{F}\right| \geq\left|\bar{F} \cap T_{B}\right|$. If the equality holds, $B \cap F$ is an $\left(B \cap T_{F}\right) \cup\left(T_{B} \cap T_{F}\right) \cup\left(F \cap T_{B}\right)$-fragment.

Lemma 2 ([24]). Let G be a k-connected triangle-free graph and S be a k separator that contains $V(e)$ for an edge e. Then, for every fragment F of $G-S$, $|F| \geq k$.

Lemma 3 ([21]). Let G be a graph of connectivity k with minimum degree at least $\frac{3}{2} k-1$. Then every fragment F of G satisfies $|F| \geq \frac{k}{2}$.

3 Lower Bounds for $f(k)$

We first prove that, for a subgraph H of G and $\mathfrak{S}:=\{V(e): e \in E(H)\}$, all edges in H intersecting an \mathfrak{S}-end are contractible if all \mathfrak{S}-fragments are large. This is a sharper version of Lemma 2 in [6].

Lemma 4. Let H be a subgraph of a k-connected graph $G, \mathfrak{S}:=\{V(e): e \in$ $E(H)\}$ and suppose that every \mathfrak{S}-fragment has at least $\frac{k}{2}$ vertices. Let B be an \mathfrak{S} end and e be an edge of H such that $|V(e) \cap B| \geq 1$. Suppose e is non-contractible and let T be any k-separator containing $V(e)$. Then $B \subseteq T,|B|=|\bar{B} \cap T|=\frac{k}{2}$, $T \cap T_{B}=\emptyset$ and $|V(e) \cap B|=2$.

Proof. Let F be a T-fragment that is also an \mathfrak{S}-fragment. Note that $B \cap T \cap$ $V(e) \neq \emptyset$ and $V(e) \subseteq(B \cap T) \cup\left(T \cap T_{B}\right)$.

Case 1: $F \cap B \neq \emptyset$ and $\bar{F} \cap B \neq \emptyset$. Since $F \cap B$ and $\bar{F} \cap B$ are not \mathfrak{S} fragments, $\left|F \cap T_{B}\right|>|\bar{B} \cap T|$ and $\left|\bar{F} \cap T_{B}\right|>|\bar{B} \cap T|$ by Lemma 1. Then $F \cap \bar{B}=\emptyset=\bar{F} \cap \bar{B}$. Hence, $|\bar{B} \cap T|=|\bar{B}| \geq \frac{k}{2}$. But now, $\left|F \cap T_{B}\right|>\frac{k}{2}$ and $\left|\bar{F} \cap T_{B}\right|>\frac{k}{2}$, contradicting $\left|T_{B}\right|=k$.

Case 2: $F \cap B \neq \emptyset$ and $\bar{F} \cap B=\emptyset$ (or vice versa by symmetry of F and \bar{F}). Since $F \cap B$ is not an \mathfrak{S}-fragment, $\left|F \cap T_{B}\right|>|\bar{B} \cap T|$ and $|B \cap T|>\left|\bar{F} \cap T_{B}\right|$ by Lemma 1. Then $\bar{F} \cap \bar{B}=\emptyset$ and $\left|\bar{F} \cap T_{B}\right|=|\bar{F}| \geq \frac{k}{2}$. This implies $|B \cap T|>\frac{k}{2}$ and $|\bar{B} \cap T|<\frac{k}{2}$. Hence, $F \cap \bar{B} \neq \emptyset$. By Lemma $1,|\bar{B} \cap T| \geq\left|\bar{F} \cap T_{B}\right|$, which is impossible.

Case 3: $F \cap B=\emptyset$ and $\bar{F} \cap B=\emptyset$. Then $B \subseteq T$ and $|B \cap T|=|B| \geq \frac{k}{2}$ and $|\bar{B} \cap T| \leq \frac{k}{2}$. If $|\bar{B} \cap T|<\frac{k}{2}$, then $\bar{B} \nsubseteq T$; assume without loss of generality that $F \cap \bar{B} \neq \emptyset$. Then by Lemma $1,\left|\bar{F} \cap T_{B}\right| \leq|\bar{B} \cap T|<\frac{k}{2}$, which implies $\bar{F} \cap \bar{B} \neq \emptyset$. By Lemma $1,\left|\bar{F} \cap T_{B}\right| \geq|B \cap T|$, which is impossible. Hence, $|\bar{B} \cap T|=\frac{k}{2}=|B \cap T|$. We have $T \cap T_{B}=\emptyset,|V(e) \cap B|=2$ and $|B|=\frac{k}{2}$.

The next lemma is a slightly stronger version of the result of Dean, Hemminger and Ota [7] that every longest cycle C intersects every \mathfrak{S}-fragment, where $\mathfrak{S}:=\{V(e): e \in E(C)\}$.

Lemma 5. Let C be a longest cycle in a graph G satisfying $\kappa(G) \geq 3$. Suppose C contains a non-contractible edge. Let $\mathfrak{S}:=\{V(e): e \in E(C)\}$ and F be any \mathfrak{S}-fragment. Then $|V(C) \cap F| \geq 1$ and $\left|E(C) \cap E_{G}\left(F, T_{F}\right)\right| \geq 2$. If $|F|>1$, then $|V(C) \cap F|>1$.

Proof. Let $u v$ be any edge of $C \cap G\left[T_{F}\right]$. Assume to the contrary that F does not intersect C. Let u^{\prime} be a neighbor of u in F, v^{\prime} be a neighbor of v in the same component of F containing u^{\prime}, and P be a $u^{\prime}-v^{\prime}$ path in F. Then we can replace $u v$ by $u u^{\prime} P v^{\prime} v$ to obtain a longer cycle, which contradicts that C is a longest cycle. Therefore, $|V(C) \cap F| \geq 1$ and $\left|E(C) \cap E_{G}\left(F, T_{F}\right)\right| \geq 2$.

For the second statement, assume to the contrary that $|V(C) \cap F|=1$. Let $\{z\}:=V(C) \cap F$ and x, y be the two vertices adjacent to z in C. Note that $x, y \in T_{F}$ and $\{x, y\} \neq\{u, v\}$. Let a be a vertex in F other than z. Consider an $a-\left(T_{F} \cup\{z\}\right) \kappa(G)$-fan H.

Suppose first that $z \notin H$. Let P_{u} be the $a-u$ path in H and P_{v} be the $a-v$ path in H. Then we can replace $u v$ by $u P_{u} a P_{v} v$ to obtain a longer cycle, which is a contradiction. Suppose now $z \in H$ and assume without loss of generality that $x \in H$. Let P_{x} be the $a-x$ path in H and P_{z} be the $a-z$ path in H. Then we can replace $x z$ by $x P_{x} a P_{z} z$ to obtain a longer cycle, which is a contradiction.

The following lemma gives us precise structural information about a fragment when its intersection with a longest cycle is small.

Lemma 6. Let C be a longest cycle in a graph G satisfying $\kappa(G) \geq 3$. Suppose C contains a non-contractible edge. Let $\mathfrak{S}:=\{V(e): e \in E(C)\}$ and F be an \mathfrak{S}-fragment. If $|F| \geq 3,|V(C) \cap F|=2$ and $\left|E(C) \cap E_{G}\left(T_{F}, F\right)\right|=2$, then

1. $E\left(C \cap G\left[T_{F} \cup F\right]\right)=\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}\right\}$, where $x_{1}, x_{2}, x_{5} \in T_{F}$ and $x_{3}, x_{4} \in F$.
2. For each vertex $a \in F \backslash\left\{x_{3}, x_{4}\right\}, a \notin C$.
3. For each vertex $a \in F \backslash\left\{x_{3}, x_{4}\right\}, N_{G}(a)=x_{3} \cup\left(T_{F} \backslash x_{2}\right)$. In particular, a has degree $\kappa(G)$, $a x_{1}, a x_{3}, a x_{5} \in E(G)$, and $a x_{2}, a x_{4} \notin E(G)$.
4. $F-x_{3}-x_{4}$ is independent.
5. $N_{G}\left(x_{4}\right)=x_{3} \cup\left(T_{F} \backslash x_{2}\right)$.
6. $x_{1} x_{2}$ is the only edge of C that is contained in $G\left[T_{F}\right]$.
7. Every vertex in T_{F} lies in C.

Proof. Let $u v$ be an edge in $E\left(C \cap G\left[T_{F}\right]\right)$ and $E(C) \cap E_{G}\left(T_{F}, F\right)=\left\{x x^{\prime}, y y^{\prime}\right\}$, where $x, y \in T_{F}$ and $x^{\prime}, y^{\prime} \in F$. If $x=y$, then $\{u, v\} \cap\{x, y\}=\emptyset$. By considering the edges $x x^{\prime}, y y^{\prime}$ and $u v$ in C, we have $\left|E(C) \cap E_{G}\left(T_{F}, F\right)\right|>2$. Hence, $x \neq y$. If $x^{\prime}=y^{\prime}$, then C contains a vertex in F other than x^{\prime}, which implies $\left|E(C) \cap E_{G}\left(T_{F}, F\right)\right|>2$. Therefore, $x^{\prime} \neq y^{\prime}$ and $V(C) \cap F=\left\{x^{\prime}, y^{\prime}\right\}$. Since $|V(C) \cap F|=2$ and $\left|E(C) \cap E_{G}\left(T_{F}, F\right)\right|=2, x^{\prime} y^{\prime} \in E(C)$. If $\{x, y\}=\{u, v\}$, then $C=x x^{\prime} y^{\prime} y$ and $V(C) \cap \bar{F}=\emptyset$ contradict Lemma 5. Hence, $\{x, y\} \neq\{u, v\}$.

Let a be any vertex in $F \backslash\left\{x^{\prime}, y^{\prime}\right\}$. Note that $a \notin C$, since $|V(C) \cap F|=$ 2. Consider any $a-\left(T_{F} \cup\left\{x^{\prime}, y^{\prime}\right\}\right) \kappa(G)$-fan H. Note that $H \subseteq G\left[F \cup T_{F}\right]$, $V(C) \cap\left(F \cup T_{F}\right) \subseteq T_{F} \cup\left\{x^{\prime}, y^{\prime}\right\}$ and $\left(H \backslash\left(T_{F} \cup\left\{x^{\prime}, y^{\prime}\right\}\right)\right) \cap C=\emptyset$. For any $z \in V(H) \cap\left(T_{F} \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$, denote the path in H joining a to z by P_{z}. Suppose $x^{\prime}, y^{\prime} \in H$. We can replace $x^{\prime} y^{\prime}$ in C by $x^{\prime} P_{x^{\prime}} a P_{y^{\prime}} y^{\prime}$ to construct a longer cycle. Suppose $x^{\prime}, y^{\prime} \notin H$. Then $u, v \in H$. We can replace $u v$ in C by $u P_{u} a P_{v} v$ to construct a longer cycle. Hence, without loss of generality, suppose $x^{\prime} \in H$ and $y^{\prime} \notin H$. If $x \in H$, then we can replace $x x^{\prime}$ in C by $x P_{x} a P_{x^{\prime}} x^{\prime}$ to construct a longer cycle. So $x \notin H$ and $T_{F} \backslash\{x\} \subseteq H$. Since u, v cannot both belong to H, we
have $x \in\{u, v\}$ and thus $y \notin\{u, v\}$. Now, assume $x=v$. Then the path $u x x^{\prime} y^{\prime} y$ lies in C. Since we can replace $u x x^{\prime}$ in C by $u P_{u} a P_{x^{\prime}} x^{\prime}$ and replace $x^{\prime} y^{\prime} y$ in C by $x^{\prime} P_{x^{\prime}} a P_{y} y$, the $a-u, a-x^{\prime}, a-y$ paths in H are edges $a u, a x^{\prime}, a y$ respectively. This implies $a x, a y^{\prime} \notin E(G)$. Suppose $u^{\prime} v^{\prime}$ is an edge in $E\left(C \cap G\left[T_{F}\right]\right)$ other than $u v$. Then we can replace $u^{\prime} v^{\prime}$ by $u^{\prime} P_{u^{\prime}} a P_{v^{\prime}} v^{\prime}$ to construct a longer cycle. Hence, $u v$ is the only edge in C that lies in $G\left[T_{F}\right]$.

Let a^{\prime} be any vertex in $F \backslash\left\{x^{\prime}, y^{\prime}, a\right\}$ if exists. Consider any $a^{\prime}-\left(T_{F} \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$ $\kappa(G)$-fan H^{\prime}. From the previous paragraph, either $x^{\prime} \notin H$ and $y^{\prime} \in H$, or $x^{\prime} \in H$ and $y^{\prime} \notin H$. Suppose $x^{\prime} \notin H^{\prime}$ and $y^{\prime} \in H^{\prime}$. Then $y \notin H^{\prime}$ implying $u, v \in H^{\prime}$, which is impossible. Hence, $x^{\prime} \in H^{\prime}$ and $y^{\prime} \notin H^{\prime}$. Arguing as above, the $a^{\prime}-u, a^{\prime}-x^{\prime}, a^{\prime}-y$ paths in H^{\prime} are edges $a^{\prime} u, a^{\prime} x^{\prime}, a^{\prime} y$ respectively, and $a^{\prime} x, a^{\prime} y \notin E(G)$. If $a a^{\prime}$ is an edge, then we can replace $u x x^{\prime}$ in C by $u a a^{\prime} x^{\prime}$ to construct a longer cycle. Hence, a and a^{\prime} are not adjacent. Therefore, $F-x^{\prime}-y^{\prime}$ is independent, and $N_{G}(a)=x^{\prime} \cup\left(T_{F} \backslash\{x\}\right)$ for all vertices a in $F \backslash\left\{x^{\prime}, y^{\prime}\right\}$. If $x y^{\prime}$ is an edge, then we can replace $u x x^{\prime} y^{\prime} y$ in C by $u x y^{\prime} x^{\prime} a y$ to construct a longer cycle. Hence, $N_{G}\left(y^{\prime}\right)=x^{\prime} \cup\left(T_{F} \backslash\{x\}\right)$. If there exists a vertex b in T_{F} that does not lie in C, we can replace $u x x^{\prime} y^{\prime} y$ in C by $u x x^{\prime} y^{\prime} b a y$ to construct a longer cycle. Therefore, every vertex in T_{F} lies in C. Define $x_{1}:=u, x_{2}:=v=x, x_{3}:=x^{\prime}, x_{4}:=y^{\prime}, x_{5}:=y$ and the results (1)-(7) follow.

For any connected graph non-isomorphic to K_{2}, every edge is contractible. For any 2 -connected graph non-isomorphic to K_{3}, it is obvious that every edge in a longest cycle is contractible. Results for contractible edges in a longest cycle of 3 -connected graphs were given in the Introduction. For the rest of the paper, we will consider k-connected graphs $(k \geq 3)$ that are triangle-free or have minimum degree at least $\frac{3}{2} k-1$. As we will see, this leads us naturally to the following family of graphs.

For every $l \geq 4$ and every even $k \geq 4$, let $G_{l, k}$ be the lexicographic graph product $C_{l} \times K_{k / 2}$. Clearly, $G_{l, k}$ is Hamiltonian, has connectivity k and is $\left(\frac{3}{2} k-1\right)$-regular. Let C be a Hamiltonian cycle of G in which the vertices of every copy of $K_{k / 2}$ are consecutive. Since all edges of every copy of $K_{k / 2}$ are non-contractible, C contains exactly l contractible edges.

We will prove that with the exception of $G_{4, k}$ and $G_{5, k}$, the number of contractible edges in a longest cycle C is at least $\min \{|E(C)|, 6\}$.

Theorem 7. Let G be a k-connected graph $(k \geq 3)$ that is triangle-free, or has minimum degree at least $\frac{3}{2} k-1$ such that $G \not \equiv G_{4, k}$ and $G \not \equiv G_{5, k}$. For every longest cycle C of G, either all edges in C are contractible or C contains at least six contractible edges.

Proof. If all edges in C are contractible, then we are done. Suppose C contains a non-contractible edge and define $\mathfrak{S}:=\{V(e): e \in E(C)\}$. Then G has connectivity k. Suppose G is triangle-free, or has minimum degree at least $\frac{3}{2} k-1$ such that k is odd. Let B be any \mathfrak{S}-end. By Lemmas 2 and $3,|B|>\frac{k}{2}$. In particular, $|B| \geq 2$ and thus $|V(C) \cap B|>1$ by Lemma 5 . This implies $\mid E(C) \cap$ $\left(E_{G}\left(B, T_{B}\right) \cup E(B)\right) \mid \geq 3$. By Lemma 4, all edges in $E(C) \cap\left(E_{G}\left(B, T_{B}\right) \cup E(B)\right)$ are contractible. Consider an \mathfrak{S}-end B^{\prime} in \bar{B}. Note that $\left(E_{G}\left(B^{\prime}, T_{B^{\prime}}\right) \cup E\left(B^{\prime}\right)\right) \subseteq$
$\left(E_{G}\left(\bar{B}, T_{B}\right) \cup E(\bar{B})\right)$ and $\left(E_{G}\left(B, T_{B}\right) \cup E(B)\right) \cap\left(E_{G}\left(\bar{B}, T_{B}\right) \cup E(\bar{B})\right)=\emptyset$. Hence, C contains at least six contractible edges.

From now on, assume that G has minimum degree at least $\frac{3}{2} k-1$ such that k is even $(k \geq 4)$. Suppose C contains at most five contractible edges. We will divide the proof into a number of steps and show that $G \cong G_{4, k}$ or $G_{5, k}$.
(1) For every S-end $B,|V(C) \cap B| \geq 2,|E(C) \cap E(B)| \geq 1$, and $E(C) \cap$ $E_{G}\left(B, T_{B}\right)$ contains exactly two edges, both of which are contractible.

Proof. By Lemma 3, B contains at least $\frac{k}{2} \geq 2$ vertices. By Lemma $5, \mid V(C) \cap$ $B \mid \geq 2$ and $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right| \geq 2$. Note that $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right|$ is even, and each edge e in $E(C) \cap E_{G}\left(B, T_{B}\right)$ is contractible by Lemma 4 as $|V(e) \cap B|=1$. Since the same conclusion holds for any \mathfrak{S}-end in \bar{B} and C contains at most five contractible edges, $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right|=2$. Suppose $E(C) \cap E(B)=\emptyset$. Then, for any vertex in $V(C) \cap B$, its two neighbors in C must lie in T_{B}. Since $|V(C) \cap B| \geq 2$, this implies $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right| \geq 4$, which contradicts $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right|=2$. Hence, $|E(C) \cap E(B)| \geq 1$.
(2) If B is an \mathfrak{S}-end such that all edges in $E(C) \cap E(B)$ are contractible, then $|B|=2$ and $k=4$.

Proof. By (1), $|V(C) \cap B| \geq 2$ and the two edges in $E(C) \cap E_{G}\left(B, T_{B}\right)$ are contractible. If $|V(C) \cap B| \geq 3$, then $E(C) \cap E(B)$ has at least two edges, all of which are contractible by assumption. Combining with (1) on an \mathfrak{S}-end in \bar{B}, this implies that C has at least six contractible edges. Hence, $|V(C) \cap B|=2$. If $|B| \geq 3$, then by Lemma $6, B$ contains a vertex of degree k, which is impossible as $\delta(G) \geq \frac{3}{2} k-1$. Therefore, $|B|=2$ and $k=4$ by Lemma 3 .
(3) Suppose B is an \mathfrak{S}-end such that $E(C) \cap E(B)$ contains a non-contractible edge e. Let T be any k-separator containing $V(e)$. Then $B \subseteq T, T \cap T_{B}=\emptyset$, B is an \mathfrak{S}-atom, $G[B] \cong K_{\frac{k}{2}}$, and all edges in $E(B)$ are non-contractible. Also, every vertex in B is adjacent to every vertex in T_{B}, every vertex in B lies in C, and $C \cap G[B]$ is a Hamiltonian path of B.

Proof. By Lemma $4, B \subseteq T,|B|=\frac{k}{2}$ and $T \cap T_{B}=\emptyset$. This implies all edges in $E(B)$ are non-contractible. By Lemma $3, B$ is an \mathfrak{S}-atom. Since $\delta(G) \geq \frac{3}{2} k-1$, every vertex x in B is adjacent to every vertex in $(B \backslash\{x\}) \cup T_{B}$ and $G[B] \cong K_{\frac{k}{2}}$. Suppose there is a vertex x in B not contained in C. Let $e=u v$. We can replace $u v$ in C by $u x v$ to construct a longer cycle. Therefore, every vertex in B lies in C. Since $\left|E(C) \cap E_{G}\left(B, T_{B}\right)\right|=2, C \cap G[B]$ is a Hamiltonian path of B.
(4) Any two distinct \mathfrak{S}-ends are disjoint.

Proof. For $k \geq 6$, let B be any \mathfrak{S}-end. By (1), the two edges in $E(C) \cap E_{G}\left(B, T_{B}\right)$ are contractible and $|E(C) \cap E(B)| \geq 1$. By (2), not all edges in $E(C) \cap E(B)$ are contractible. By $(3), G[B] \cong K_{\frac{k}{2}}$, every vertex of B belongs to C, every edge in $E(C) \cap E(B)$ is non-contractible, and $C \cap G[B]$ is a Hamiltonian path of B. Consider two \mathfrak{S}-ends B_{1} and B_{2} such that $B_{1} \cap B_{2} \neq \emptyset$. For $i=1,2$, since every
edge in $E(C) \cap E\left(B_{i}\right)$ is non-contractible and the two edges in $E(C) \cap E_{G}\left(B_{i}, T_{B_{i}}\right)$ are contractible, the two Hamiltonian paths $C \cap G\left[B_{1}\right]$ and $C \cap G\left[B_{2}\right]$ must coincide implying $B_{1}=B_{2}$.

For $k=4$, by (2) and (3), every \mathfrak{S}-end is composed of either one contractible edge in C or one non-contractible edge in C. Let B and B^{\prime} be two distinct \mathfrak{S}-ends. Denote the edge in $G[B]$ by e and the edge in $G\left[B^{\prime}\right]$ by e^{\prime}. Suppose $B \cap B^{\prime} \neq \emptyset$. Then $e \in E_{G}\left(B^{\prime}, T_{B^{\prime}}\right)$ and $e^{\prime} \in E_{G}\left(B, T_{B}\right)$. By (1), e, e^{\prime} are contractible. Hence, both B and B^{\prime} are composed of one contractible edge with a common vertex. Denote $C \cap G\left[B \cup T_{B}\right]:=x_{1} x_{2} x_{3} x_{4}$ where $B=\left\{x_{2}, x_{3}\right\}$, $C \cap G\left[B^{\prime} \cup T_{B^{\prime}}\right]:=x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4}^{\prime}$ where $B^{\prime}=\left\{x_{2}^{\prime}, x_{3}^{\prime}\right\}$, and $x_{2}^{\prime}=x_{4}, x_{3}^{\prime}=x_{3}, x_{4}^{\prime}=x_{2}$. Note that $x_{3}=x_{3}^{\prime}=V(B) \cap V\left(B^{\prime}\right),\left\{x_{1}, x_{4}\right\} \subseteq T_{B}$ and $\left\{x_{1}^{\prime}, x_{4}^{\prime}\right\} \subseteq T_{B^{\prime}}$. Also, $x_{1} x_{3}, x_{2} x_{4}, x_{1}^{\prime} x_{3}^{\prime}, x_{2}^{\prime} x_{4}^{\prime} \in E(G)$ as $\delta(G) \geq 5$. Since $x_{4} x_{1}^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \in E_{G}\left(B^{\prime}, T_{B^{\prime}}\right)$ is contractible by (1), $x_{1}^{\prime} \notin T_{B}$. Hence, $x_{1}^{\prime} \in \bar{B}$. But this is impossible as $x_{3}^{\prime}=x_{3} \in B$ and $x_{1}^{\prime} x_{3}^{\prime} \in E(G)$. Therefore, $B \cap B^{\prime}=\emptyset$.
(5) If B and B^{\prime} are two distinct \mathfrak{S}-ends not containing any contractible edge in C such that $E_{G}\left(B, B^{\prime}\right) \neq \emptyset$, then $B \subseteq T_{B^{\prime}}$ and $B^{\prime} \subseteq T_{B}$.

Proof. By (3), both $G[B]$ and $G\left[B^{\prime}\right]$ are $K_{\frac{k}{2}}$. By (4), B and B^{\prime} are disjoint. Since $E_{G}\left(B, B^{\prime}\right) \neq \emptyset, B \cap T_{B^{\prime}} \neq \emptyset$ and $B^{\prime} \cap T_{B} \neq \emptyset$. Suppose $B \nsubseteq T_{B^{\prime}}$. Then $B \cap \overline{B^{\prime}} \neq \emptyset$. This implies $\left|B \cap T_{B^{\prime}}\right|<|B|=\frac{k}{2}$ and $\left|B \cap \overline{B^{\prime}}\right|<|B|=\frac{k}{2}$. By Lemma $3, B \cap \overline{B^{\prime}}$ is not a fragment and thus $\frac{k}{2}>\left|B \cap T_{B^{\prime}}\right|>\left|B^{\prime} \cap T_{B}\right|$. This implies $B^{\prime} \cap \bar{B}=\emptyset$ and $B^{\prime}=B^{\prime} \cap T_{B}$. But then $\frac{k}{2}>\left|B \cap T_{B^{\prime}}\right|=\left|B^{\prime}\right|=\frac{k}{2}$, which is impossible. Therefore, $B \subseteq T_{B^{\prime}}$ and by symmetry, $B^{\prime} \subseteq T_{B}$.
(6) Every \mathfrak{S}-end does not contain any contractible edge in C.

Proof. Suppose B is an \mathfrak{S}-end containing a contractible edge in C. By (3), all edges in $E(C) \cap E(B)$ are contractible. By (2), $k=4$ and $|B|=2$. By (1), $|E(C) \cap E(B)|=1$. Let A be an S-end in \bar{B}. Then $A=A \cap \bar{B}$ and $A \cap T_{B}=\emptyset$. By Lemma $1,\left|A \cap T_{B}\right| \geq\left|B \cap T_{A}\right|$ implying $B \cap T_{A}=\emptyset$ and $B \subseteq \bar{A}$. Note that $\left(E(B) \cup E_{G}\left(B, T_{B}\right)\right) \cap E_{G}\left(A, T_{A}\right)=\emptyset$. By (1), the five edges in $E(C) \cap\left(E_{G}\left(A, T_{A}\right) \cup E_{G}\left(B, T_{B}\right) \cup E(B)\right)$ are contractible. Since C has at most five contractible edges, all edges in $E(C) \cap E(A)$ are non-contractible. By (3), A is an \mathfrak{S}-atom K_{2} contained in a 4 -separator T such that $T \cap T_{A}=\emptyset$. This implies $A \subseteq \bar{B} \cap T$.

Since the edge in $E(C) \cap E(B)$ is contractible, $B \nsubseteq T$. Let F be a T-fragment such that $B \cap F \neq \emptyset$ and B^{\prime} be an \mathfrak{S}-end in \bar{F}. Suppose $B \subseteq F$. We have $\left(E(B) \cup E_{G}\left(B, T_{B}\right)\right) \cap E_{G}\left(A, T_{A}\right)=\emptyset,\left(E(B) \cup E_{G}\left(B, T_{B}\right)\right) \cap E_{G}\left(B^{\prime}, T_{B^{\prime}}\right)=\emptyset$ and $E(C) \cap E_{G}\left(B^{\prime}, T_{B^{\prime}}\right) \neq E(C) \cap E_{G}\left(A, T_{A}\right)$. But then $E(C) \cap\left(E_{G}\left(B, T_{B}\right) \cup\right.$ $\left.E(B) \cup E_{G}\left(B^{\prime}, T_{B^{\prime}}\right) \cup E_{G}\left(A, T_{A}\right)\right)$ contains at least six contractible edges, which is impossible. Hence, $B \cap F \neq \emptyset$ and $B \cap T \neq \emptyset$. Since $|B|=2,|B \cap F|=1=|B \cap T|$.

Let D be an \mathfrak{S}-end in F and D^{\prime} be an \mathfrak{S}-end in \bar{F}. By (4), A, D, B, D^{\prime} are pairwise disjoint. Since $\left(E(B) \cup E_{G}\left(B, T_{B}\right)\right) \cap E_{G}\left(A, T_{A}\right)=\emptyset$ and C contains at most five contractible edges, $G\left[D \cup D^{\prime}\right]$ does not contain any contractible edges in C. By (1), (3) and $k=4, D, D^{\prime}$ are both \mathfrak{S}-atoms K_{2}, and $E(D), E\left(D^{\prime}\right)$ both consist of a non-contractible edge in C. Since C contains at most five
contractible edges, each of $\{A, D\},\{D, B\},\left\{B, D^{\prime}\right\}$ and $\left\{D^{\prime}, A\right\}$ is connected by exactly one contractible edge in C. Note that $V(C)=V\left(A \cup D \cup B \cup D^{\prime}\right)$. By (5), $D \subseteq T_{A}$ and $D^{\prime} \subseteq T_{A}$. Since $k=4, T_{A}=V\left(D \cup D^{\prime}\right)$ and $T \cap T_{A}=\emptyset$. Recall that $A \subseteq \bar{B} \cap T$ and $|B \cap T|=1$. Let x be the vertex in $T \backslash(A \cup B)$ which lies in $T \cap \bar{A}$. As $V(C)=V\left(A \cup D \cup B \cup D^{\prime}\right), x \notin C$. Define $P:=C \cap G\left[B \cup D \cup D^{\prime}\right]$ which is a path of six vertices in $G\left[\bar{A} \cup T_{A}\right]$. Let H be an $x-P 4$-fan in $G\left[\bar{A} \cup T_{A}\right]$. Then there is an edge $u v$ in P such that $u, v \in H$. Let P_{u} be the path in H joining x and u, and P_{v} be the path in H joining x and v. Now, we can replace $u v$ by $u P_{u} x P_{v} v$ to construct a longer cycle than C, which is impossible.
(7) $G \cong G_{4, k}$ or $G_{5, k}$.

Proof. Consider any \mathfrak{S}-end B. By (6), all edges in $E(C) \cap E(B)$ are noncontractible. By (3), B is contained in a k-separator T such that $G[B] \cong$ $K_{\frac{k}{2}}$ and $T \cap T_{B}=\emptyset$. Let F be a T-fragment. Since C contains at most five contractible edges, there exists an \mathfrak{S}-end in F or \bar{F}, say B^{\prime}, such that $E_{G}\left(B, T_{B}\right) \cap E_{G}\left(B^{\prime}, T_{B^{\prime}}\right) \cap E(C) \neq \emptyset$. By $(5), B \subseteq T_{B^{\prime}}$ and $B^{\prime} \subseteq T_{B}$. By $\delta(G) \geq \frac{3 k}{2}-1,(6)$ and (3), $G\left[B^{\prime}\right] \cong K_{\frac{k}{2}}$ and $G\left[B \cup B^{\prime}\right] \cong K_{k}$.

Let D be an \mathfrak{S}-end in \bar{B} and D^{\prime} be an \mathfrak{S}-end in $\overline{B^{\prime}}$. Suppose $D \neq D^{\prime}$. By (4), $B, B^{\prime}, D, D^{\prime}$ are disjoint. Since C contains at most five contractible edges, there exists a set of four pairwise disjoint \mathfrak{S}-ends $A_{1}, A_{2}, A_{3}, A_{4}$ such that $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}=\left\{B, B^{\prime}, D, D^{\prime}\right\}$ and A_{i} is connected to A_{i+1} by a contractible edge in C for $i=1,2,3$. By (6) and (3), all $G\left[A_{i}\right]^{\prime}$ s are $K_{\frac{k}{2}}$, all edges in $E\left(A_{i}\right)$ are non-contractible, and $C \cap G\left[A_{i}\right]$ is a Hamiltonian path of A_{i}. By (5), $A_{1} \subseteq T_{A_{2}}, A_{3} \subseteq T_{A_{2}}, A_{2} \subseteq T_{A_{3}}$ and $A_{4} \subseteq T_{A_{3}}$. Therefore, $T_{A_{2}}=A_{1} \cup A_{3}$ and $T_{A_{3}}=A_{2} \cup A_{4}$. Suppose $D=D^{\prime}$. Then $D \subseteq \bar{B} \cap \overline{B^{\prime}}$ and $B \cup B^{\prime} \subseteq \bar{D}$. By applying (6) and (3) to D, let S be a k-separator containing D such that $S \cap T_{D}=\emptyset$. Recall that $G\left[B \cup B^{\prime}\right] \cong K_{k}$. Let X be an S-fragment such that $B \cup B^{\prime} \subseteq \bar{D} \cap(X \cup S)$. Then \bar{X} contains an \mathfrak{S}-end D^{\prime} different from D, B, B^{\prime}. Again, we have the same conclusion as the case $D \neq D^{\prime}$.

If $\overline{A_{2}} \cap \overline{A_{3}}=\emptyset$, then $G \cong G_{4, k}$. If $\overline{A_{2}} \cap \overline{A_{3}} \neq \emptyset$, then $\overline{A_{2}} \cap \overline{A_{3}}$ is an \mathfrak{S}-fragment and contains an \mathfrak{S}-end, say A. By (6) and (3), $G[A]$ is $K_{\frac{k}{2}}$, all edges in $E(A)$ are non-contractible, and $C \cap G[A]$ is a Hamiltonian path of A. Since C contains at most five contractible edges, A is connected to A_{1} by a contractible edge in C and A is connected to A_{4} by a contractible edge in C. Denote $Z:=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A$. Then $V(C)=Z$. Suppose x is a vertex in $G \backslash Z \subseteq \overline{A_{2}} \cap \overline{A_{3}}$. Consider an $x-\left(A_{1} \cup A_{4} \cup A\right) k$-fan H. Since $k \geq 4$, two of the $x-\left(A_{1} \cup A_{4} \cup A\right)$ paths in H end in the same \mathfrak{S}-end and we can use them to construct a longer cycle. Therefore, $G \backslash Z=\emptyset$ and $G \cong G_{5, k}$.

This completes the proof of the theorem.

4 Upper Bounds for $f(k)$

In the previous section, we proved $f(k) \geq 6$ with the only exception that the graph is $G_{4, k}$ or $G_{5, k}$. To find an upper bound for $f(k)$, we just need to examine a particular k-connected graph and see if there is a longest cycle containing a noncontractible edge. If such longest cycle C exists and the number of contractible edges in C is l, then $f(k) \leq l \leq|C|-1$. Here, we exhibit an infinite family of triangle-free 3 -connected graphs in which there is a longest cycle containing exactly seven contractible edges (in fact, $f(3)=7$ for triangle-free graphs as demonstrated in the next section), generalize this family to every odd $k \geq 3$ showing that $2 k+1$ is an upper bound for $f(k)$, and then generalize this family to arbitrary k.

We will use a construction that is similar to the one given in [10]. For $k \geq 2, l \geq 3$ and $p, q \geq 0$, let $A_{1}, \ldots, A_{l}, B_{1}, \ldots, B_{l}$ be pairwise disjoint sets such that $A_{1}:=\left\{a_{1}^{1}, a_{2}^{1}, \ldots, a_{\lceil k / 2\rceil}^{1}, v_{1}, v_{2}, \ldots, v_{p}\right\}$ where $a_{\lceil k / 2\rceil+i}^{1}=v_{i}$ for $1 \leq i \leq p$, $A_{l}:=\left\{a_{1}^{l}, a_{2}^{l}, \ldots, a_{\lceil k / 2\rceil}^{l}, w_{1}, w_{2}, \ldots, w_{q}\right\}$ where $a_{\lceil k / 2\rceil+i}^{l}=w_{i}$ for $1 \leq i \leq q$, $A_{h}:=\left\{a_{1}^{h}, a_{2}^{h}, \ldots, a_{\lceil k / 2\rceil}^{h}\right\}$ for every $1<h<l$, and $B_{h}:=\left\{b_{1}^{h}, b_{2}^{h}, \ldots, b_{\lfloor k / 2\rfloor}^{h}\right\}$ for every $1 \leq h \leq l$. Let $G_{k, l, p, q}$ be the graph (see Figure 1) with vertex set $\bigcup_{h=1}^{l}\left(A_{h} \cup B_{h}\right)$ and edge set

$$
\begin{aligned}
E\left(G_{k, l, p, q}\right):= & \left\{a_{i}^{h} b_{j}^{h}: 1 \leq h \leq l, 1 \leq i \leq\left|A_{h}\right|, 1 \leq j \leq\left|B_{h}\right|\right\} \cup \\
& \left\{a_{i}^{1} a_{j}^{2}: 1 \leq i \leq\left|A_{1}\right|, 1 \leq j \leq\left|A_{2}\right|\right\} \cup \\
& \left\{b_{i}^{1} b_{j}^{2}: 1 \leq i \leq\left|B_{1}\right|, 1 \leq j \leq\left|B_{2}\right|\right\} \cup \\
& \left\{a_{i}^{l-1} a_{j}^{l}: 1 \leq i \leq\left|A_{l-1}\right|, 1 \leq j \leq\left|A_{l}\right|\right\} \cup \\
& \left\{b_{i}^{l-1} b_{j}^{l}: 1 \leq i \leq\left|B_{l-1}\right|, 1 \leq j \leq\left|B_{l}\right|\right\} \cup \\
& \left\{a_{i}^{h} a_{j}^{h+1}: 2 \leq h \leq l-2,1 \leq i \leq j \leq\left|A_{h}\right|\right\} \cup \\
& \left\{b_{i}^{h} b_{j}^{h+1}: 2 \leq h \leq l-2,1 \leq i \leq j \leq\left|B_{h}\right|\right\} .
\end{aligned}
$$

Thus, the vertices of $G_{k, l, p, q}$ are partitioned into l levels, of which the first two contain the complete bipartite subgraphs $K_{\left|A_{1}\right|,\left|A_{2}\right|}$ and $K_{\left|B_{1}\right|,\left|B_{2}\right|}$ (induced by the vertex sets $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2}$, respectively), and the last two contain the complete bipartite subgraphs $K_{\left|A_{l-1}\right|,\left|A_{l}\right|}$ and $K_{\left|B_{l-1}\right|,\left|B_{l}\right|}$. Note that the remaining pairs of consecutive levels induce proper subgraphs of these complete bipartite graphs. By construction, $G_{k, l, p, q}$ is bipartite, and it is not hard to verify that $G_{k, l, p, q}$ is k-connected, and that the non-contractible edges of $G_{k, l, p, q}$ are exactly the edges in

$$
\begin{aligned}
& \left\{a_{i}^{h} b_{j}^{h}: 2 \leq h \leq l-1,1 \leq i \leq\left|A_{h}\right|, 1 \leq j \leq\left|B_{h}\right|\right\} \cup \\
& \left\{a_{i}^{h} a_{j}^{h+1}: 2 \leq h \leq l-2,1 \leq i<j \leq\left|A_{h}\right|\right\} \cup \\
& \left\{b_{i}^{h} b_{j}^{h+1}: 2 \leq h \leq l-2,1 \leq i<j \leq\left|B_{h}\right|\right\}
\end{aligned}
$$

Lemma 8. Let $k \geq 3$ be odd and $p, q \geq 0$. Then $G_{k, 3, p, q}$ is k-connected, bipartite and non-Hamiltonian, and has a longest cycle that contains exactly $2 k+1$ contractible edges.

Figure 1: Two examples of the graphs $G_{k, l, p, q}$ for $k=3$ and $k=5$.

Proof. The graph $G_{k, 3, p, q}$ is bipartite and has $3 k+p+q$ vertices, so that the smaller color class, say black, consists of exactly $k+\lfloor k / 2\rfloor=(3 k-1) / 2$ vertices. Hence, any longest cycle of $G_{k, 3, p, q}$ has length at most $3 k-1$. The cycle $a_{1}^{1}, b_{1}^{1}, \ldots, a_{\left|A_{2}\right|}^{1}, a_{\left|A_{2}\right|}^{2}, a_{\left|A_{2}\right|}^{3}, \ldots, b_{1}^{3}, b_{\left|B_{2}\right|}^{2}, \ldots, a_{1}^{2}, a_{1}^{1}$ (see Figure 1a) of length $3 k-1$ is therefore a longest cycle, and contains exactly $3 k-1-(k-2)=2 k+1$ contractible edges.

Since $p, q \geq 0$ are arbitrary, Lemma 8 gives an infinite graph family that attains the upper bound $2 k+1$ for every odd $k \geq 3$ and is triangle-free. While we will show in section 6 that restricting the cycle spectrum of 3-connected graphs further to girth 5 gives an increase of the constant lower bound on the number of contractible edges to a linear function depending on $|E(C)|$, this cannot be expected from avoiding all odd cycles, as all graphs for our upper bounds are
bipartite (the same holds for $k>3$).
For even $k \geq 3$, we now provide infinite families of k-connected triangle-free graphs that prove the slightly weaker upper bound $2 k+2$.

Lemma 9. Let $k \geq 4$ and $l \geq 3$ such that l is even if k is odd. Then $G_{k, l, 0,0}$ is k-connected, bipartite and Hamiltonian, and has a longest cycle that contains exactly $2 k+2$ contractible edges.

Proof. The graph $G_{k, l, 0,0}$ is bipartite and has $l k$ vertices. If k is even, the cycle C consisting of the path $a_{1}^{2}, a_{1}^{1}, b_{1}^{1}, \ldots, b_{\left|B_{1}\right|}^{1}, b_{\left|B_{2}\right|}^{2}, \ldots, b_{1}^{2}$, the path $b_{2}^{l-1}, \ldots, b_{\left|B_{l-1}\right|}^{l-1}, b_{\left|B_{l}\right|}^{l}, \ldots, a_{1}^{l} a_{1}^{l-1} b_{1}^{l-1} a_{2}^{l-1}$ on the last two levels, and the two paths $a_{1}^{h}, a_{2}^{h+1}, b_{1}^{h+1}$ and $b_{1}^{h}, b_{2}^{h+1}, \ldots, b_{\left|B_{h+1}\right|}^{h+1}, a_{1}^{h+1}$ for every two consecutive levels $1<h<h+1<l$ is Hamiltonian. Since the contractible edges of C are exactly the ones that intersect the first or the last level, C contains exactly $2 k+2$ contractible edges.

If k is odd, it is not possible to construct a longest cycle such that every two consecutive mid-levels induce the same pattern. However, since l is even in this case (otherwise, $G_{k, l, 0,0}$ would not be Hamiltonian), we may use two patterns for the mid-levels. Let C be the cycle (see Figure 1b) that consists of the path $a_{1}^{2}, a_{1}^{1}, b_{1}^{1}, \ldots, a_{\left|A_{1}\right|}^{1}, a_{\left|A_{2}\right|}^{2}, \ldots, b_{1}^{2}$, the path $a_{2}^{l-1}, a_{\left|A_{l}\right|}^{l}, \ldots, a_{1}^{l}, a_{1}^{l-1}$, the paths a_{1}^{h}, a_{2}^{h+1} and $b_{1}^{h}, b_{2}^{h+1}, \ldots, a_{\left|A_{h+1}\right|}^{h+1}, b_{1}^{h+1}, a_{1}^{h+1}$ for every even $1<h<l$, and the paths $a_{1}^{h}, a_{2}^{h+1}, b_{1}^{h+1}$ and $a_{2}^{h}, a_{\left|A_{h+1}\right|}^{h+1}, \ldots, b_{2}^{h+1}, a_{1}^{h+1}$ for every odd $1<h<l$. Clearly, C is Hamiltonian and contains exactly $2 k+2$ contractible edges.

For Hamiltonian triangle-free k-connected graphs (k is odd), suppose a longest cycle C contains a non-contractible edge. Then the intersection of C with any \mathfrak{S}-end $(\mathfrak{S}:=\{V(e): e \in E(C)\})$ has at least $k+1$ edges by Lemma 2, each of which is contractible by Lemma 4 . This gives a lower bound of $2 k+2$ for $f(k)$ that matches the upper bound of Lemma 9, and hence the following theorem.

Theorem 10. Let G be a Hamiltonian triangle-free k-connected graph such that k is odd. Then every longest cycle C of G contains at least $\min \{|E(C)|, 2 k+2\}$ contractible edges, and the graphs $G_{k, l, 0,0}$ show that this bound is best possible.

The following lemma gives upper bounds for $f(k)$ for graphs with minimum degree $\lfloor 3 k / 2\rfloor-1$. Let $H_{k, l, p, q}$ be the graph obtained from $G_{k, l, p, q}$ by adding an edge between every two non-adjacent vertices in $A_{h} \cup B_{h}$ for every level $1 \leq h \leq l$. Clearly, $H_{k, l, p, q}$ is not bipartite.

Lemma 11. Let $k \geq 4$ and $l \geq 3$ such that l is even if k is odd. Then $H_{k, l, 0,0}$ is k-connected, Hamiltonian and has minimum degree $\lfloor 3 k / 2\rfloor-1$ and a longest cycle that contains exactly $2 k+2$ contractible edges.

Proof. We show that $H_{k, l, 0,0}$ has minimum degree $\lfloor 3 k / 2\rfloor-1$. The other claims follow directly from noting that the contractability and non-contractability of the edges in $G_{k, l, 0,0}$ is preserved in $H_{k, l, 0,0}$, that the only new contractible edges
are the ones intersecting the first or the last level, and from taking exactly the same cycles as in the proof of Lemma 9.

Consider $H_{k, l, 0,0}$. Every vertex in $A_{1} \cup B_{1} \cup A_{l} \cup B_{l}$ has degree at least $k-1+\lfloor k / 2\rfloor=\lfloor 3 k / 2\rfloor-1$, and the vertices of $B_{1} \cup B_{l}$ attain this degree. By symmetry and $l \geq 3$, every vertex of $A_{2} \cup B_{2} \cup A_{l-1} \cup B_{l-1}$ has degree at least $\lfloor 3 k / 2\rfloor$. For every $3 \leq h \leq l$ and every $1 \leq i \leq\left|A_{h}\right|, a_{i}^{h}$ has at least i neighbors in A_{h-1}, exactly $k-1$ neighbors in $A_{h} \cup B_{h}$, and at least $\lceil k / 2\rceil-i+1$ neighbors in A_{h+1}. Hence, a_{i}^{h} has degree at least $\lceil 3 k / 2\rceil$. Similarly, for every $3 \leq h \leq l$ and every $1 \leq i \leq\left|B_{h}\right|, b_{i}^{h}$ has at least i neighbors in B_{h-1}, exactly $k-1$ neighbors in $A_{h} \cup B_{h}$, and at least $\lfloor k / 2\rfloor-i+1$ neighbors in B_{h+1}. Hence, b_{i}^{h} has degree at least $\lfloor 3 k / 2\rfloor$, which gives the claim.

5 Triangle-free 3-Connected Graphs

This section investigates the number of contractible edges in a longest cycle C of a triangle-free 3 -connected graph. Theorem 7 tells us that the lower bound is $\min \{|E(C)|, 6\}$. With a little extra effort, we can improve the bound to $\min \{|E(C)|, 7\}$. Also, we will characterize all triangle-free 3 -connected graphs having a longest cycle containing exactly six/seven contractible edges.

Theorem 12. Let G be a triangle-free 3-connected graph and C be a longest cycle in G. If C contains a non-contractible edge, then C has at least seven contractible edges. If C contains more than one non-contractible edges, then C has at least eight contractible edges.

Proof. Suppose C contains a non-contractible edge. Define $\mathfrak{S}:=\{V(e): e \in$ $E(C)\}$ and let B be an \mathfrak{S}-end. Define $R_{B}:=E(C) \cap\left(E_{G}\left(B, T_{B}\right) \cup E(B)\right)$. By Lemmas 2 and $5, R_{B}$ contains at least three edges, all of which are contractible by Lemma 4 . Since \bar{B} contains an \mathfrak{S}-end, C has at least six contractible edges. Suppose for every \mathfrak{S}-end $B,\left|R_{B}\right| \geq 4$. Then C has at least eight contractible edges. Therefore, assume that there is an \mathfrak{S}-end B such that $\left|R_{B}\right|=3$. By Lemma $6, B \cup T_{B}$ has the following properties.

1. $E\left(C \cap G\left[T_{B} \cup B\right]\right):=\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}\right\}$, where $x_{1}, x_{2}, x_{5} \in T_{B}$ and $x_{3}, x_{4} \in B$. In fact, $T_{B}=\left\{x_{1}, x_{2}, x_{5}\right\}$.
2. For each vertex $a \in B \backslash\left\{x_{3}, x_{4}\right\}, a \notin C$.
3. For each vertex $a \in B \backslash\left\{x_{3}, x_{4}\right\}, N_{G}(a)=x_{3} \cup\left(T_{B} \backslash x_{2}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}$. In particular, a has degree $3, a x_{1}, a x_{3}, a x_{5} \in E(G)$, and $a x_{2}, a x_{4} \notin E(G)$.
4. $B-x_{3}-x_{4}$ is independent.
5. $N_{G}\left(x_{4}\right)=x_{3} \cup\left(T_{B} \backslash x_{2}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}$.
6. $x_{1} x_{2}$ is the only edge of C that is contained in $G\left[T_{B}\right]$.
7. Every vertex in T_{B} lies in C.

Let x_{0} be the neighbor of x_{1} in C other than x_{2}, and x_{6} be the neighbor of x_{5} in C other than x_{4}. By Lemma $5, x_{0} \neq x_{6}$. For later use, denote x_{-1} to be the neighbor of x_{0} in C other than x_{1}.

Claim 1. Suppose $x_{0} x_{1}$ is non-contractible and let S be any 3 -separator containing $x_{0} x_{1}$. Then $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ lie in the same S-fragment D such that $B \subseteq D, \bar{D} \subseteq \bar{B}, x_{3}, x_{4} \in D \cap B, x_{2}, x_{5} \in D \cap T_{B}$ and $x_{6} \in D \cap \bar{B}$.

Proof. Recall that $T_{B}=\left\{x_{1}, x_{2}, x_{5}\right\}, x_{3}, x_{4} \in B, x_{0}, x_{6} \in \bar{B}$, and a is any vertex in $B \backslash\left\{x_{3}, x_{4}\right\}$. Suppose $x_{2} \in S$. Let D be an S-fragment containing x_{5}. Then $B \cap S=\bar{D} \cap T_{B}=\emptyset$. This implies $B \subseteq D$ and $\bar{D} \subseteq \bar{B}$. But then $C \cap \bar{D}=\emptyset$, which contradicts Lemma 5 . Therefore, $x_{2} \notin S$.

Let D be an S-fragment containing x_{2}. Suppose $x_{5} \in S$. Then $B \cap S=$ $\bar{D} \cap T_{B}=\emptyset$. This implies $B \subseteq D$ and $\bar{D} \subseteq \bar{B}$. We must have $x_{6} \in \bar{D} \cap \bar{B}$ and $C \cap D \cap \bar{B}=\emptyset$. Since $x_{0} x_{2}$ is not an edge, $\bar{D} \cap \bar{B} \neq \emptyset$. Let u be a vertex in $D \cap \bar{B}$. Consider a u - $\left\{x_{0}, x_{1}, x_{2}, x_{5}\right\}$ 3-fan H. Then $x_{1} \notin H$ for otherwise we can use H to construct a longer cycle. Denote the $u-x_{0}$ path and the $u-x_{2}$ path in H by P_{0} and P_{2} respectively. Now, $x_{0} P_{0} u P_{2} x_{2} x_{3} a x_{1} x_{4} x_{5} x_{6} C x_{0}$ is a longer cycle, which is a contradiction. Suppose $x_{5} \in \bar{D}$. If $x_{3} \in B \cap D$, then $x_{4} \in B \cap S$. But this is impossible, since a is adjacent to x_{1}, x_{3}, x_{5}. So, $x_{3} \in B \cap S$ and $x_{4} \in B \cap \bar{D}$. Now, $B \cap D=\emptyset$ and $C \cap D \cap \bar{B}=\emptyset$. Since $x_{0} x_{2}$ is not an edge, $D \cap \bar{B} \neq \emptyset$. Let u be a vertex in $D \cap \bar{B}$. Then we can use a u - $\left\{x_{0}, x_{1}, x_{2}\right\} 3$-fan to construct a longer cycle. Therefore, $x_{5} \in D$. If $B \cap S \neq \emptyset$, then $\bar{D}=\emptyset$, which is impossible. Hence, $B \cap S=\emptyset$. This implies $B \subseteq D$ and $\bar{D} \subseteq \bar{B}$. We have $x_{3}, x_{4} \in D \cap B$.

Let y be the vertex in $S \backslash\left\{x_{1}, x_{0}\right\}$. Then $y \in \bar{B} \cap S$. We have $C \cap \bar{D} \neq \emptyset$, $y \in C$ and $x_{6} \in(D \cap \bar{B}) \cup\{y\}$. Suppose $x_{6}=y$. If $D \cap \bar{B}=\emptyset$, then since G is triangle-free and 3 -connected, $x_{2} x_{6} \in E(G)$. But, $x_{0} x_{1} a x_{5} x_{4} x_{3} x_{2} x_{6} C x_{0}$ is a longer cycle. Let $u \in D \cap \bar{B}$. Consider a u - $\left\{x_{0}, x_{1}, x_{2}, x_{5}, x_{6}\right\} 3$-fan H. Note that exactly one vertex of $\left\{x_{0}, x_{1}\right\}$, one of $\left\{x_{1}, x_{2}\right\}$ and one of $\left\{x_{5}, x_{6}\right\}$ is contained in H. This implies that $x_{0} \in H$ and $x_{2} \in H$. Denote the $u-x_{0}$ path in H by P_{0} and the $u-x_{2}$ path in H by P_{2}. But, $x_{0} P_{0} u P_{2} x_{2} x_{3} a x_{1} x_{4} x_{5} x_{6} C x_{0}$ is a longer cycle. Therefore, $x_{6} \in D \cap \bar{B}$.

Claim 2. Suppose $x_{5} x_{6}$ is non-contractible and let T be any 3 -separator containing $x_{5} x_{6}$. Then $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ lie in the same T-fragment F such that $B \subseteq F, \bar{F} \subseteq \bar{B}, x_{3}, x_{4} \in F \cap B, x_{1}, x_{2} \in F \cap T_{B}$ and $x_{0} \in F \cap \bar{B}$.

Proof. Recall that $T_{B}=\left\{x_{1}, x_{2}, x_{5}\right\}, x_{3}, x_{4} \in B, x_{0}, x_{6} \in \bar{B}$, and a is any vertex in $B \backslash\left\{x_{3}, x_{4}\right\}$. Let F be a T-fragment intersecting $x_{1} x_{2}$. Suppose $\left|F \cap\left\{x_{1}, x_{2}\right\}\right|=1$. Then $\left|T \cap\left\{x_{1}, x_{2}\right\}\right|=1$. We have $x_{0} \notin T$ and $B \cap T=$ $\bar{F} \cap T_{B}=\emptyset$. Hence, $B \subseteq F$ and $\bar{F} \subseteq \bar{B}$. If $x_{0} \in F \cap \bar{B}$, then $C \cap \bar{F}=\emptyset$ which contradicts Lemma 5 . Therefore, $x_{0} \in \bar{F}$. This implies $x_{1} \in T \cap T_{B}$ and $x_{2} \in F \cap T_{B}$. Note that $C \cap(F \cap \bar{B})=\emptyset$. If $F \cap \bar{B}$ contains a vertex u, then we can use a u - $\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$ 3-fan to construct a longer cycle. Hence, $F \cap \bar{B}=\emptyset$. Since G is 3 -connected, $x_{2} x_{6} \in E(G)$. But $x_{0} x_{1} a x_{5} x_{4} x_{3} x_{2} x_{6} C x_{0}$ is a longer cycle.

Therefore, $x_{1}, x_{2} \in F$. If $B \cap T \neq \emptyset$, then $\bar{F}=\emptyset$, which is impossible. Hence, $B \cap T=\emptyset$. This implies $B \subseteq F$ and $\bar{F} \subseteq \bar{B}$. We have $x_{3}, x_{4} \in F \cap B$. Let x be the vertex in $\bar{B} \cap T$ other than x_{6}. By Lemma $5, C \cap \bar{F} \neq \emptyset$. We have $x \in C$ and $x_{0} \in(F \cap \bar{B}) \cup\{x\}$. Suppose $x_{0}=x$. If $F \cap \bar{B}=\emptyset$, then $x_{2} x_{6} \in E(G)$ since G is triangle-free and 3 -connected. But $x_{0} x_{1} a x_{5} x_{4} x_{3} x_{2} x_{6} C x_{0}$ is a longer cycle. Let $u \in F \cap \bar{B}$ and consider a u - $\left\{x_{0}, x_{1}, x_{2}, x_{5}, x_{6}\right\} 3$-fan H. Then exactly one vertex of $\left\{x_{0}, x_{1}\right\}$, one of $\left\{x_{1}, x_{2}\right\}$ and one of $\left\{x_{5}, x_{6}\right\}$ is contained in H. This implies that $x_{0} \in H$ and $x_{2} \in H$. Denote the $u-x_{0}$ path in H by P_{0} and the $u-x_{2}$ path in H by P_{2}. Then $x_{0} P_{0} u P_{2} x_{2} x_{3} a x_{1} x_{4} x_{5} x_{6} C x_{0}$ is a longer cycle. Therefore, $x_{0} \in F \cap \bar{B}$.

Now, we will consider the following four cases.
(I) Both $x_{0} x_{1}$ and $x_{5} x_{6}$ are non-contractible.

Let $S:=\left\{y, x_{0}, x_{1}\right\}$ be a 3 -separator containing $x_{0} x_{1}$ and $T:=\left\{x, x_{5}, x_{6}\right\}$ be a 3 -separator containing $x_{5} x_{6}$. By Claims 1 and 2 , let D be an S-fragment containing $\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ and F be a T-fragment containing $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
(a) $y \in F \cap S$ and $x \in D \cap T$.

We have $\bar{D} \subseteq F$ and $\bar{F} \subseteq D$. By considering an \mathfrak{S}-end in \bar{D} and an \mathfrak{S}-end in \bar{F}, C has at least nine contractible edges.
(b) $y=x \in S \cap T$.

We have $\bar{D} \subseteq F$ and $\bar{F} \subseteq D$. By considering an \mathfrak{S}-end in \bar{D} and an \mathfrak{S}-end in \bar{F}, C has at least nine contractible edges.
(c) $y \in \bar{F} \cap S$ and $x \in \bar{D} \cap T$.

We have $S \cap T=\emptyset$ which implies $\bar{D} \cap \bar{F}=\emptyset$. By considering an \mathfrak{S}-end in \bar{D} and an \mathfrak{S}-end in \bar{F}, C has at least eight contractible edges.
(II) $x_{0} x_{1}$ is non-contractible and $x_{5} x_{6}$ is contractible.

Let $S:=\left\{x_{0}, x_{1}, y\right\}$ be a 3 -separator containing $x_{0} x_{1}$. By Claim 1, let D be a S-fragment containing $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ such that $x_{3}, x_{4} \in D \cap B, x_{2}, x_{5} \in D \cap T_{B}$ and $x_{6} \in D \cap \bar{B}$. Note that $B \cap S=\bar{D} \cap T_{B}=B \cap \bar{D}=\emptyset$ and $y \in \bar{B} \cap S$. Consider an \mathfrak{S}-end B^{\prime} in \bar{D}. If $\left|R_{B^{\prime}}\right| \geq 4$, then C has at least eight contractible edges. Hence, assume $\left|R_{B^{\prime}}\right|=3$. By Lemma 6, denote $R_{B^{\prime}}:=\left\{x_{2}^{\prime} x_{3}^{\prime}, x_{3}^{\prime} x_{4}^{\prime}, x_{4}^{\prime} x_{5}^{\prime}\right\}$ where $x_{1}^{\prime}, x_{2}^{\prime}, x_{5}^{\prime} \in T_{B^{\prime}}, x_{3}^{\prime}, x_{4}^{\prime} \in B^{\prime}$ and $x_{1}^{\prime} x_{2}^{\prime} \in E(C)$. Let a^{\prime} be a vertex in $B^{\prime} \backslash\left\{x_{3}^{\prime}, x_{4}^{\prime}\right\}$. We will use the same notation for B^{\prime} below whenever applicable. If there exists a contractible edge in $C \backslash\left(R_{B} \cup x_{5} x_{6} \cup R_{B^{\prime}}\right)$, then C has at least eight contractible edges. Otherwise, by considering B^{\prime}, we have the case (I) unless $x_{1}^{\prime}=x_{6}, x_{2}^{\prime}=y$ and $x_{3}^{\prime}, x_{4}^{\prime} \in \bar{D}$. Since $N_{G}\left(a^{\prime}\right)=\left\{x_{1}^{\prime}, x_{3}^{\prime}, x_{5}^{\prime}\right\}, a^{\prime}$ must be x_{0} or x_{1} contradicting (2) of Lemma 6.
(III) $x_{0} x_{1}$ is contractible and $x_{5} x_{6}$ is non-contractible.

Let $T:=\left\{x_{5}, x_{6}, x\right\}$ be a 3 -separator containing $x_{5} x_{6}$. By Claim 2, let F be a T-fragment containing $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ such that $x_{3}, x_{4} \in F \cap B, x_{1}, x_{2} \in F \cap T_{B}$
and $x_{0} \in F \cap \bar{B}$. Note that $B \cap T=\bar{F} \cap T_{B}=B \cap \bar{F}=\emptyset$ and $x \in \bar{B} \cap T$. Consider an \mathfrak{S}-end B^{\prime} in \bar{F}. If $\left|R_{B^{\prime}}\right| \geq 4$, then C has at least eight contractible edges. Hence, assume $\left|R_{B^{\prime}}\right|=3$. If there exists a contractible edge in $C \backslash\left(R_{B} \cup x_{0} x_{1} \cup R_{B^{\prime}}\right)$, then C has at least eight contractible edges (in particular, this includes the case when $x_{0} x_{-1}$ is contractible). Otherwise, by considering B^{\prime}, we have the case (I) unless (a) $x_{1}^{\prime}=x_{0}, x_{2}^{\prime}=x$ and $x_{3}^{\prime}, x_{4}^{\prime} \in \bar{F}$, or (b) $x_{1}^{\prime}=x_{5}$, $x_{2}^{\prime}=x_{6}$ and $x_{3}^{\prime}, x_{4}^{\prime} \in \bar{F}$. For (a), since $N_{G}\left(a^{\prime}\right)=\left\{x_{1}^{\prime}, x_{3}^{\prime}, x_{5}^{\prime}\right\}, a^{\prime}$ must be x_{5} or x_{6} contradicting (2) of Lemma 6. For (b), C has at least eight contractible edges since $x_{0}^{\prime} x_{-1}^{\prime}=x_{4} x_{3}$ is contractible.
(IV) Both $x_{0} x_{1}$ and $x_{5} x_{6}$ are contractible.

Let B^{\prime} be an \mathfrak{S}-end in \bar{B}. Suppose C has exactly six contractible edges. Then $\left|R_{B^{\prime}}\right|=3$, and both $x_{0} x_{1}$ and $x_{5} x_{6}$ belong to $R_{B^{\prime}}$. Therefore, $x_{1}^{\prime}=$ $x_{2}, x_{2}^{\prime}=x_{1}, x_{3}^{\prime}=x_{0}, x_{4}^{\prime}=x_{6}, x_{5}^{\prime}=x_{5}$ and $C=x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{0}$. But then $x_{1} a x_{3} x_{4} x_{5} a^{\prime} x_{0} x_{6} x_{2} x_{1}$ is a longer cycle. We can conclude that C has at least seven contractible edges.

Suppose C has more than one non-contractible edges. If the cases (I), (II), (III) occur, then C has at least eight contractible edges. Therefore, we can assume that both $x_{0} x_{1}$ and $x_{5} x_{6}$ are contractible.
(a) $x_{0} x_{1} \in R_{B^{\prime}}$ and $x_{5} x_{6} \in R_{B^{\prime}}$.

Then C has exactly one non-contractible edge contradicting the above assumption.
(b) $x_{0} x_{1} \notin R_{B^{\prime}}$ and $x_{5} x_{6} \notin R_{B^{\prime}}$.

Then C has at least eight contractible edges.
(c) $x_{0} x_{1} \in R_{B^{\prime}}$ and $x_{5} x_{6} \notin R_{B^{\prime}}$.

If $\left|R_{B^{\prime}}\right| \geq 4$, then C has at least eight contractible edges. Hence, assume $\left|R_{B^{\prime}}\right|=3$. Since $x_{3}^{\prime}, x_{4}^{\prime} \in \bar{B}, x_{1}^{\prime} x_{2}^{\prime}$ is non-contractible and $x_{0} x_{1}$ is contractible, only the following two cases are possible.
(i) $x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{1}, x_{3}^{\prime}=x_{0}$. Since C has more than one non-contractible edges, $x_{4}^{\prime} \neq x_{6}$ and $x_{5}^{\prime} \neq x_{6}$. If $x_{5}^{\prime} x_{6}^{\prime}$ is contractible, then C has at least eight contractible edges. If $x_{5}^{\prime} x_{6}^{\prime}$ is non-contractible, then we have the case (III) for B^{\prime}.
(ii) $x_{5}^{\prime}=x_{1}, x_{4}^{\prime}=x_{0}, x_{6}^{\prime}=x_{2}$. If $x_{1}^{\prime} x_{0}^{\prime}$ is contractible, then we have the case (III) for B^{\prime}. If $x_{1}^{\prime} x_{0}^{\prime}$ is non-contractible, then we have the case (I) for B^{\prime}.
(d) $x_{0} x_{1} \notin R_{B^{\prime}}$ and $x_{5} x_{6} \in R_{B^{\prime}}$.

If $\left|R_{B^{\prime}}\right| \geq 4$, then C has at least eight contractible edges. Hence, assume $\left|R_{B^{\prime}}\right|=3$. Since $x_{3}^{\prime}, x_{4}^{\prime} \in \bar{B}, x_{1}^{\prime} x_{2}^{\prime}$ is non-contractible and $x_{5} x_{6}$ is contractible, we must have $x_{5}^{\prime}=x_{5}, x_{4}^{\prime}=x_{6}$. Since C has more than one non-contractible edges, $x_{3}^{\prime} \neq x_{0}$ and $x_{2}^{\prime} \neq x_{0}$. We divide into two cases.
(i) $x_{1}^{\prime} \neq x_{0}$. If $x_{1}^{\prime} x_{0}^{\prime}$ is contractible, then C has at least eight contractible edges. If $x_{1}^{\prime} x_{0}^{\prime}$ is non-contractible, then we have the case (II) for B^{\prime}.
(ii) $x_{1}^{\prime}=x_{0}$. Let Q be an $x_{2}^{\prime}-\left\{x_{1}, x_{2}\right\}$ path in $G-x_{1}^{\prime}-x_{5}^{\prime}$. Note that $Q \cap B=Q \cap B^{\prime}=\emptyset$. If $x_{1} \in Q$, then $x_{2} \notin Q$ and $x_{1} x_{2} x_{3} x_{4} x_{5} x_{4}^{\prime} x_{3}^{\prime} a^{\prime} x_{1}^{\prime} x_{2}^{\prime} Q x_{1}$ is a longer cycle. If $x_{2} \in Q$, then $x_{1} \notin Q$ and $x_{2} x_{1} x_{4} x_{3} a x_{5} a^{\prime} x_{3}^{\prime} x_{4}^{\prime} x_{1}^{\prime} x_{2}^{\prime} Q x_{2}$ is a longer cycle.

This completes the proof of the theorem.
The lower bound of seven in Theorem 12 is best possible, as demonstrated by the family of graphs in Figure 1a. Now, we are ready to characterize all triangle-free 3 -connected graphs having a longest cycle that contains exactly six/seven contractible edges.

Theorem 13. Let G be a triangle-free 3-connected graph and C be a longest cycle in G. Then $|E(C)| \neq 3,4,5,7$, and $|E(C)|=6$ if and only if $G \cong K_{3, k}$ ($k \geq 3$).

Proof. Obviously, $|E(C)| \neq 3$ as G is triangle-free, and $|E(C)|=6$ if $G \cong K_{3, k}$ ($k \geq 3$).

Suppose $|E(C)|=4$. Let $C:=x_{1} x_{2} x_{3} x_{4} x_{1}$. Since G is 3 -connected and triangle-free, there exists a vertex x in $V(G) \backslash V(C)$. Consider any x - C 3-fan F. Then we can use F to construct a longer cycle, which is a contradiction.

Suppose $|E(C)|=5$. Let $C:=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$. Since G is 3 -connected and triangle-free, there exists a vertex x in $V(G) \backslash V(C)$. Consider any x - C 3-fan F. Then we can use F to construct a longer cycle, which is a contradiction.

Suppose $|E(C)|=6$. Let $C:=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$. Suppose $V(G)=V(C)$. Since G is 3 -connected and triangle-free, $x_{1} x_{4}, x_{2} x_{5}, x_{3} x_{6} \in E(G)$ and $G \cong$ $K_{3,3}$. Now, let $x \in V(G) \backslash V(C)$. Consider an $x-C$-fan F_{x}. Since C is a longest cycle, either F_{x} consists of three edges $x x_{1}, x x_{3}, x x_{5}$ or F_{x} consists of three edges $x x_{2}, x x_{4}, x x_{6}$. Without loss of generality, assume the former. If $V(G)=V(C) \cup x$, then $x_{1} x_{4}, x_{2} x_{5}, x_{3} x_{6} \in E(G)$ and $G \cong K_{3,4}$. Now, let y be any vertex in $V(G) \backslash(V(C) \cup x)$. Consider a y - $(C \cup x) 3$-fan F_{y}. If $x \in F_{y}$, then $x_{1}, x_{2}, x_{3}, x_{5}, x_{6} \notin F_{y}$ for otherwise we can construct a longer cycle. This is impossible. Therefore, $x \notin F_{y}$ and F_{y} is a y - $C 3$-fan. Suppose F_{y} consists of the three edges $y x_{2}, y x_{4}, y x_{6}$. Then $x_{1} x x_{3} x_{2} y x_{4} x_{5} x_{6} x_{1}$ is a longer cycle, which is a contradiction. Hence, F_{y} consists of the three edges $y x_{1}, y x_{3}, y x_{5}$. Note that $G-V(C)$ is independent and $x_{1} x_{4}, x_{2} x_{5}, x_{3} x_{6} \in E(G)$. Therefore, $G \cong K_{3, k}$ $(k \geq 5)$.

Suppose $|E(C)|=7$. Let $C:=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{1}$. Suppose $V(G)=V(C)$. Without loss of generality, assume $x_{1} x_{4} \in E(G)$. Then $x_{1} x_{5}, x_{4} x_{7} \notin E(G)$. Now, $x_{5} x_{2}, x_{7} x_{3} \in E(G)$. Since G is triangle-free, this implies x_{6} has degree two, which is impossible. Now, let $x \in V(G) \backslash V(C)$. Consider a x - C 3-fan F_{x}. Since C is a longest cycle, without loss of generality, assume F_{x} consists of three edges $x x_{1}, x x_{3}, x x_{6}$. If $x_{2} x_{5} \in E(G)$, then $x_{1} x_{2} x_{5} x_{4} x_{3} x x_{6} x_{7} x_{1}$ is a longer cycle. Therefore, $x_{5} x_{2} \notin E(G)$ and by symmetry $x_{4} x_{7} \notin E(G)$. Suppose $V(G)=V(C) \cup x$. Since G is 3-connected, $x_{5} x_{1}, x_{4} x_{1} \in E(G)$. But then, $x_{1} x_{4} x_{5}$ is a triangle, which is impossible. Now, let y be any vertex in $V(G) \backslash(V(C) \cup x)$ and F_{y} be a y - $(C \cup x) 3$-fan. If $x \in F_{y}$, then $x_{2}, x_{3}, x_{6}, x_{7} \notin F_{y}$ for otherwise we can construct a longer cycle. Hence, $x_{4}, x_{5} \in F_{y}$. Since C is a longest
cycle, F_{y} consists of three edges $y x, y x_{4}, y x_{5}$. This is impossible as $y x_{4} x_{5}$ is a triangle. Therefore, $x \notin F_{y}$ and F_{y} is a y - C-fan consisting of three y - C edges. Suppose $x_{2} \in F_{y}$. Then $x_{1}, x_{3} \notin F_{y}$. If $x_{4} \in F_{y}$, then $x_{1} x x_{3} x_{2} y x_{4} x_{5} x_{6} x_{7} x_{1}$ is a longer cycle. If $x_{5} \in F_{y}$, then $x_{1} x_{2} y x_{5} x_{4} x_{3} x x_{6} x_{7} x_{1}$ is a longer cycle. We have $x_{6}, x_{7} \in F_{y}$, which is impossible, since $y x_{6} x_{7}$ is a triangle. Therefore, $x_{2} \notin F_{y}$ and by symmetry, $x_{7} \notin F_{y}$. We must have $x_{1} \in F_{y}$ for otherwise we can form a longer cycle using F_{y}. If $x_{4} \in F_{y}$, then $x_{1} x_{2} x_{3} x x_{6} x_{5} x_{4} y x_{1}$ is a longer cycle. Hence, $x_{4} \notin F_{y}$ and by symmetry, $x_{5} \notin F_{y}$. Therefore, F_{y} consists of three edges $y x_{1}, y x_{3}, y x_{6}$. Note that $G-C$ is independent. If $x_{5} x_{2} \in E(G)$, then $x_{1} x_{2} x_{5} x_{4} x_{3} x x_{6} x_{7} x_{1}$ is a longer cycle. Therefore, $x_{5} x_{2} \notin E(G)$ and by symmetry, $x_{4} x_{7} \notin E(G)$. Since G is 3 -connected, $x_{5} x_{1}, x_{4} x_{1} \in E(G)$. But then, $x_{1} x_{4} x_{5}$ is a triangle, which is impossible.

Theorem 14. Let G be a triangle-free 3-connected graph. Then G has a longest cycle containing exactly six contractible edges if and only if $G \cong K_{3, k}(k \geq 3)$.

Proof. If $G \cong K_{3, k}$, then all edges are contractible and every longest cycle contains exactly six edges. Suppose G has a longest cycle C containing exactly six contractible edges. By Theorem $12, C$ does not contain any non-contractible edges. Therefore, $|E(C)|=6$ and $G \cong K_{3, k}$ by Theorem 13 .

Theorem 15. Let G be a triangle-free 3-connected graph. Then G has a longest cycle containing exactly seven contractible edges if and only if $G \cong G_{3,3, p, q}$ or $G \cong G_{3,3, p, q}-b_{1}^{2} a_{2}^{2}$ (see Figure 1a).
Proof. As shown in Lemma 8, both $G_{3,3, p, q}$ and $G_{3,3, p, q}-b_{1}^{2} a_{2}^{2}$ have a longest cycle containing exactly seven contractible edges.

Suppose G has a longest cycle C containing exactly seven contractible edges. By Theorem $13,|E(C)| \geq 8$ and thus C contains at least one non-contractible edge. By Theorem 12, C has exactly one non-contractible edge. Therefore, $|E(C)|=8$.

Let $C:=x_{1} x_{2} \ldots x_{8} x_{1}$ and define $\mathfrak{S}:=\{V(e): e \in E(C)\}$. For any \mathfrak{S}-end B, define $R_{B}:=E(C) \cap\left(E_{G}\left(B, T_{B}\right) \cup E(B)\right)$. By Lemmas 2 and $5, R_{B}$ contains at least three edges, all of which are contractible by Lemma 4.

Suppose for every \mathfrak{S}-end $B,\left|R_{B}\right| \geq 4$. Then C has at least eight contractible edges. Therefore, assume that there is an \mathfrak{S}-end B such that $\left|R_{B}\right|=3$. Let B^{\prime} be an \mathfrak{S}-end in \bar{B}. We will use the notation described in Lemma 6 except x_{8} instead of x_{0} (see also the proof of Theorem 12).
(I) $\left|R_{B^{\prime}}\right|=3$. Then $x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{1}, x_{3}^{\prime}=x_{8}, x_{4}^{\prime}=x_{7}, x_{5}^{\prime}=x_{6}$. But $x_{1} x_{2} a^{\prime} x_{8} x_{7} x_{6} x_{5} x_{4} x_{3} a x_{1}$ is a longer cycle.
(II) $\left|R_{B^{\prime}}\right|=4$. Note that $V\left(B^{\prime}\right)=\left\{x_{6}, x_{7}, x_{8}\right\}$.
(a) $\bar{B} \backslash B^{\prime}=\emptyset$. Since G is 3 -connected and triangle-free, $x_{7} x_{2}, x_{8} x_{5} \in E(G)$. This implies $x_{6} x_{1} \in E(G)$, and $G \cong G_{3,3,0, q}$ or $G \cong G_{3,3,0, q}-b_{1}^{2} a_{2}^{2}$.
(b) $\bar{B} \backslash B^{\prime} \neq \emptyset$. Consider any vertex $b \in \bar{B} \backslash B^{\prime}$. Let F be any b $\left\{x_{2}, x_{1}, x_{8}, x_{7}, x_{6}, x_{5}\right\}$ 3-fan. Since C is a longest cycle, there are four possibilities: (i) $x_{2}, x_{8}, x_{6} \in F$, (ii) $x_{2}, x_{8}, x_{5} \in F$, (iii) $x_{2}, x_{7}, x_{5} \in F$ and (iv) $x_{1}, x_{7}, x_{5} \in F$. For (i) and (ii), denote the $b-x_{2}$ path in F by P_{2} and the $b-x_{8}$ path in F by P_{8}.

Then $x_{1} x_{2} P_{2} b P_{8} x_{8} x_{7} x_{6} x_{5} x_{4} x_{3} a x_{1}$ is a longer cycle. For (iii), denote the $b-x_{2}$ path in F by P_{2} and the $b-x_{7}$ path in F by P_{7}. Then $x_{1} x_{2} P_{2} b P_{7} x_{7} x_{6} x_{5} x_{4} x_{3} a x_{1}$ is a longer cycle. Therefore, only (iv) is possible, and since C is a longest cycle, F consists of the three edges $b x_{1}, b x_{7}, b x_{5}$. Since G is triangle-free, $\bar{B}-B^{\prime}$ is independent. Now, $x_{8} x_{5} \in E(G)$. If $x_{6} x_{2} \in E(G)$, then $x_{1} a x_{3} x_{4} x_{5} x_{8} x_{7} x_{6} x_{2} x_{1}$ is a longer cycle. Hence, $x_{6} x_{1} \in E(G)$. Since $G-x_{1}-x_{5}$ is connected, $x_{7} x_{2} \in E(G)$. Therefore, $G \cong G_{3,3, p, q}$ or $G \cong G_{3,3, p, q}-b_{1}^{2} a_{2}^{2}$ where $p \geq 1$.

6 3-Connected Graphs of Girth at least 5

The previous section gives us a lower bound of $\min \{|E(C)|, 7\}$ for the number of contractible edges in a longest cycle C of any triangle-free 3 -connected graph. Surprisingly, if the girth increases from 4 to 5 , for any longest cycle, at least $\frac{1}{12}$ of its edges are contractible as shown by Theorem 18 below.

First, we introduce the concept of cross-free and closed separators studied by Kriesell [19]. Let $S, T \in \mathfrak{T}$. We say S crosses T if S intersects at least two components of $G-T$. It is easy to see that if S crosses T, then T intersects every component of $G-S$. This implies that S crosses T if and only if T crosses S, and that S crosses T if and only if S intersects every component of $G-T$. We call a subset \mathfrak{S} of \mathfrak{T} cross-free if S does not cross T for all $S, T \in \mathfrak{S}$. We say that \mathfrak{S} is closed if, for all $S, T \in \mathfrak{S}$, there exists a component C of $G-S$ and a component D of $G-T$ such that $C \cap D \neq \emptyset$ and $\bar{C} \cap \bar{D} \neq \emptyset$.

Consider a set \mathfrak{U} of subsets of $V(G)$. We say that a subset \mathfrak{S} of \mathfrak{T} covers \mathfrak{U} if, for every $A \in \mathfrak{U}$, there exists an $S \in \mathfrak{S}$ such that $A \subseteq S$. \mathfrak{S} exclusively covers \mathfrak{U} if \mathfrak{S} covers \mathfrak{U} and $A \nsubseteq S$ for every $A \in \mathfrak{U}$ and every $S \in \mathfrak{T} \backslash \mathfrak{S}$. Under certain conditions on \mathfrak{U}, a closed exclusive cover contains a cross-free cover.

Lemma 16. (Lemma 3 of [19]) Let G be a graph and let \mathfrak{U} be a set of subsets of $V(G)$ such that $G[A]$ is complete for every $A \in \mathfrak{U}$. Suppose that $\mathfrak{S} \subseteq \mathfrak{T}$ is closed and exclusively covers \mathfrak{U}. Then there exists a cross-free subset $\mathfrak{R} \subseteq \mathfrak{S}$ such that \mathfrak{R} covers \mathfrak{U}.

A poset (partially ordered set) (X, \leq) is called a tree order if it has a smallest element and two elements have a common upper bound if and only if they are comparable in X. The following theorem shows that we can construct a tree order on a cross-free subset of \mathfrak{T}.

Theorem 17. (Theorem 1 of [19]) Let G be a graph and let $\mathfrak{S} \subseteq \mathfrak{T}$ be cross-free. Suppose that A is an \mathfrak{S}-end. Then for every $T \in \mathfrak{T}$ there exists a (unique) component $C(T)$ of $G-T$ containing A, and $S \leq T: \Leftrightarrow C(S) \subseteq C(T)$ for $S, T \in \mathfrak{S}$ defines a tree order (\mathfrak{S}, \leq) with smallest element $N_{G}(A)$.

Finally, we are ready for the main result of this section.
Theorem 18. Every longest cycle C of a 3-connected graph of girth at least 5 contains at least $\frac{|E(C)|}{12}$ contractible edges.

Proof. Let G be a 3 -connected graph of girth at least 5 and Z be a longest cycle in G. Let X be the set of non-contractible edges in $E(Z)$ and let $Y:=E(Z) \backslash X$. Denote $\mathfrak{U}=\{V(e): e \in X\}$ and \mathfrak{S} to be the set of all 3-separators containing an edge in X. Note that \mathfrak{S} is closed by Lemma 1 of [19]. Since Z is a longest cycle, each 3-separator of G induces at most one edge in X. By Lemma 16 and by keeping exactly one 3 -separator which contains e for all $e \in X$, there exists a cross-free set of 3 -separators $\mathfrak{R} \subseteq \mathfrak{S}$ such that every edge e of X is covered by exactly one member of \mathfrak{R}, denoted by T_{e}.

Fix an \mathfrak{R}-end B and denote by C_{e} the component of $G-T_{e}$ that contains B. By applying Theorem 17 to \mathfrak{R} and B, let \leq be the tree order on \mathfrak{R} defined by $T_{e} \leq T_{f}: \Leftrightarrow C_{e} \subseteq C_{f}$. Let Z_{e} be the set of edges of Z with at least one endvertex in $\overline{C_{e}}$. Denote by f_{e} the (end-)edge of Z_{e} incident with $V(e)$ and by g_{e} the edge of Z_{e} incident with the vertex in $T_{e} \backslash V(e)$. We observe that $T_{e}<T_{f}$ for all $f \in Z_{e} \cap X$. More specifically, we define the vertices $a_{e}, b_{e}, c_{e}, p_{e}, q_{e}$ by $a_{e} b_{e}=e, a_{e} p_{e}=f_{e}, c_{e} q_{e}=g_{e}$ and $c_{e} \in T_{e}$. As the edges of Z incident with a vertex of some \mathfrak{R}-end are contractible by Lemma 4 and $\overline{C_{e}}$ always contains an \mathfrak{R}-end, we see that Z_{e} contains a non-trivial subpath of contractible edges.

Claim 1. For $e, f, g \in X$ with $T_{e} \leq T_{f} \leq T_{g}$, we have $T_{e} \cap T_{g} \subseteq T_{f}$.
Proof. If $T_{e} \cap T_{g}=\emptyset$, then the result follows. Let $x \in T_{e} \cap T_{g}$. Since x has a neighbor in $C_{e} \subseteq C_{f}$ and a neighbor in $\overline{C_{g}} \subseteq \overline{C_{f}}, x \in T_{f}$.

Claim 2. For $e \in X$ with $f:=f_{e} \in X$ and $g \in Z_{e} \cap X$ such that $c_{e} \in T_{g}$, consider an $h \in X$ with $T_{e} \leq T_{h} \leq T_{f}, T_{g}$. Then $h \in\left\{e, f, g_{e}\right\}$.

Proof. By Claim 1, $a_{e} \in T_{e} \cap T_{f} \subseteq T_{h}$ and $c_{e} \in T_{e} \cap T_{g} \subseteq T_{h}$. If $b_{e} \in T_{h}$, then $h=e$. Otherwise, h must be an edge such that one endvertex is one of a_{e}, c_{e} and the other one is in $\overline{C_{e}}$; that is, $h \in\left\{f_{e}, g_{e}\right\}$.

Claim 3. Suppose $f:=f_{e} \in X$. Then $T_{f} \neq\left\{a_{e}, p_{e}, c_{e}\right\}$.
Proof. Suppose $T_{f}=\left\{a_{e}, p_{e}, c_{e}\right\}$. Note that $T_{e} \cap T_{f}=\left\{a_{e}, c_{e}\right\}, T_{e} \cap C_{f}=\left\{b_{e}\right\}$, $T_{f} \cap \overline{C_{e}}=\left\{p_{e}\right\}$ and $T_{e} \cap \overline{C_{f}}=T_{f} \cap C_{e}=\emptyset$. Suppose $D:=\overline{C_{e}} \cap C_{f}=\emptyset$. Since b_{e} is adjacent to a vertex in $\overline{C_{e}}, b_{e} p_{e}$ is an edge. But a_{e}, p_{e}, b_{e} form a triangle, a contradiction. Hence, $D \neq \emptyset$. Since Z is a longest cycle, $Z \cap\left(C_{e} \cap C_{f}\right) \neq \emptyset$ and $Z \cap\left(\overline{C_{e}} \cap \overline{C_{f}}\right) \neq \emptyset$. Therefore, $Z \cap D=\emptyset$. Take any $x \in D$. Consider an x - $\left\{a_{e}, b_{e}, c_{e}, p_{e}\right\}$ 3-fan F. We have $F \cap\left\{a_{e}, b_{e}, c_{e}, p_{e}\right\}=\left\{b_{e}, c_{e}, p_{e}\right\}$, for otherwise, we can use F to construct a longer cycle than Z. Since Z is a longest cycle, the $x-b_{e}$ path and $x-p_{e}$ path in F are both edges. But then $x b_{e} a_{e} p_{e}$ is a 4-cycle, a contradiction.

Claim 4. Suppose that $e, f:=f_{e}$ and $g:=g_{e}$ are contained in X, and T_{f} and T_{g} are comparable according to \leq. Then $T_{g} \leq T_{f}, T_{g}=\left\{c_{e}, q_{e}, a_{e}\right\}, \overline{C_{g}}=\overline{C_{e}} \backslash\left\{q_{e}\right\}$, $b_{e} q_{e} \in E(G)$ and $a_{e} c_{e} \notin E(G)$.

Proof. Suppose, on the contrary, that $T_{f} \leq T_{g}$. Since $T_{e} \leq T_{f}$, by Claim 1, $c_{e} \in T_{e} \cap T_{g} \subseteq T_{f}$. Therefore, $T_{f}=\left\{a_{e}, p_{e}, c_{e}\right\}$, which is impossible by Claim 3. This proves $T_{g} \leq T_{f}$. By Claim 1, $a_{e} \in T_{e} \cap T_{f} \subseteq T_{g}$. Therefore, $T_{g}=\left\{c_{e}, q_{e}, a_{e}\right\}$. Note that $T_{e} \cap T_{g}=\left\{a_{e}, c_{e}\right\}, T_{e} \cap C_{g}=\left\{b_{e}\right\}$ and $\overline{C_{e}} \cap T_{g}=\left\{q_{e}\right\}$. Denote $D:=\overline{C_{e}} \cap C_{g}$. Since Z is a longest cycle, $Z \cap\left(C_{e} \cap C_{g}\right) \neq \emptyset$ and $Z \cap\left(\overline{C_{e}} \cap \overline{C_{g}}\right) \neq \emptyset$. Hence, $Z \cap D=\emptyset$. Suppose $D \neq \emptyset$ and take any $x \in D$. Consider an x $\left\{a_{e}, b_{e}, c_{e}, q_{e}\right\} 3$-fan F. Then we can use F to construct a longer cycle than Z, a contradiction. Therefore, $D=\emptyset$ which implies $\overline{C_{g}}=\overline{C_{e}} \backslash\left\{q_{e}\right\}, b_{e} q_{e} \in E(G)$ and $a_{e} c_{e} \notin E(G)$.

Denote W to be the set of edges e in X for which T_{e} branches, that is, T_{e} has more than one upper neighbor in the tree order. Observe that a member of a tree order branches if (and only if) it is the infimum of two incomparable
 $|W|+1$, there exists an injection α from W to these ends. For every $e \in W$, we choose an edge $\beta(e)$ from Z with at least one endvertex in $\alpha(e)$, and as any such edge is contractible by Lemma 4, this produces an injection $\beta: W \rightarrow Y$.

Claim 5. Consider two distinct $e, e^{\prime} \in X$ such that $g_{e}=g_{e^{\prime}}$ with $f:=f_{e} \in X$ and $T_{e^{\prime}} \not \leq T_{e}$. Then $T_{e} \leq T_{e^{\prime}}$ and T_{e} branches.

Proof. Since $q_{e}=q_{e^{\prime}} \in \overline{C_{e}} \cap \overline{C_{e^{\prime}}}$, we have $T_{e} \cap \overline{C_{e^{\prime}}} \neq \emptyset$ or $T_{e^{\prime}} \cap \overline{C_{e}} \neq \emptyset$. As T_{e} and $T_{e^{\prime}}$ are cross-free, $T_{e} \cap C_{e^{\prime}}=\emptyset$ or $T_{e^{\prime}} \cap C_{e}=\emptyset$ implying that $C_{e^{\prime}} \subseteq C_{e}$ or $C_{e} \subseteq C_{e^{\prime}}$ as C_{e} and $C_{e^{\prime}}$ are connected. Hence, T_{e} and $T_{e^{\prime}}$ are comparable, and $T_{e} \leq T_{e^{\prime}}$. This implies $e^{\prime} \in Z_{e} \cap X$. By applying Claim 2 with $g=e^{\prime}$, we see that for all $h \in X$ with $T_{e} \leq T_{h} \leq T_{f}, T_{e^{\prime}}, h$ is one of e, f, g_{e}. Now, h cannot be g_{e} for otherwise $T_{g_{e}}=T_{g_{e^{\prime}}}>T_{e^{\prime}}$. So, h is one of e, f. Suppose T_{f} and $T_{e^{\prime}}$ are comparable. If $T_{e^{\prime}} \leq T_{f}$, then by taking $h=e^{\prime}$, we have $e^{\prime}=f$. We conclude that $T_{f} \leq T_{e^{\prime}}$. By Claim $1, c_{e}=c_{e^{\prime}} \in T_{e} \cap T_{e^{\prime}} \subseteq T_{f}$. But then $T_{f}=\left\{a_{e}, p_{e}, c_{e}\right\}$, which is impossible by Claim 3. Therefore, T_{f} and $T_{e^{\prime}}$ are incomparable. The infimum T_{h} of T_{f} and $T_{e^{\prime}}$ (which is at least T_{e}) is in fact equal to T_{e}. Hence, T_{e} branches.

We now describe a set of conditions on the edges around some T_{e}, which implies the existence of a short cycle. Let $e \in X$ such that $f:=f_{e}, g:=g_{e} \in X$ and T_{e} does not branch. By Claim 2, the infimum of T_{f}, T_{g} is one of T_{e}, T_{f}, T_{g}, and thus T_{f}, T_{g} are comparable. By Claim $4, T_{g} \leq T_{f}, T_{g}=\left\{c_{e}, q_{e}, a_{e}\right\}$, $\overline{C_{g}}=\overline{C_{e}} \backslash\left\{q_{e}\right\}$, and $b_{e} q_{e} \in E(G)$. We then advance by considering g instead of e. A new edge $h:=f_{g}$ comes into play, whereas g_{g} equals to f.

Let us assume that $h \in X$ and T_{g} does not branch. By Claim 2, the infimum of T_{h}, T_{f} is one of T_{g}, T_{h}, T_{f}, and thus T_{h}, T_{f} are comparable. By Claim 4, $T_{f} \leq T_{h}, T_{f}=\left\{a_{e}, p_{e}, q_{e}\right\}, \overline{C_{f}}=\overline{C_{g}} \backslash\left\{q_{g}=p_{e}\right\}$, and $b_{g} q_{g}=c_{e} p_{e} \in E(G)$. This produces a short cycle, $c_{e} p_{e} a_{e} b_{e} q_{e}$, unfortunately not short enough. But we can try to advance once more by considering f instead of g, e. A new edge $i:=f_{f}$ shows up, whereas $\underline{g_{f}}=\underline{h}$. Let us assume that $i \in X$ and T_{f} does not branch. As above, we have $\overline{C_{h}}=\overline{C_{f}} \backslash\left\{q_{f}\right\}$, and $b_{f} q_{f}=a_{e} q_{f} \in E(G)$. Now, we obtain a short cycle $b_{e} a_{e} q_{f} q_{e}$, contradicting the girth assumption.

What are the assumptions that lead to this contradiction? We have assumed that e and its two successors f, i in Z_{e} belong to X, and g and its successor h in Z_{e} belong to X. We also assumed that T_{e}, T_{f}, T_{g} do not branch. Therefore, one of these assumptions must fail. The idea is to map the non-contractible edge e to a contractible edge among the four edges f, g, h, i named above (if any), and to map it to a contractible edge with endvertices in $\alpha(e), \alpha(f), \alpha(g)$ if T_{e}, T_{f}, T_{g}, respectively, branch. The problem is to keep the preimages of this mapping φ small.

First, we order the edges of X linearly by an order \leq^{\prime} such that we get a depth first search order for the corresponding separators in the tree order \leq (i.e. all predecessors of some T_{e} in the tree order are predecessors of e with respect to \leq^{\prime}). Then we assign $\varphi(e)$ step by step according to \leq^{\prime} and ensure that when assigning e to $\varphi(e)$, all e^{\prime} with $T_{e^{\prime}} \leq T_{e}$ have been assigned before. Here comes the assignment rules. The objects are defined as before. In every step, we list the preconditions where earlier subrules (of higher priority) are not applicable.
(i) $e \in X$; if $f \in Y$, set $\varphi(e):=f$.
(ii) $e, f \in X$; if $e \in W$, set $\varphi(e):=\beta(e)$.
(iii) $e, f \in X ; T_{e}$ does not branch; if $g \in Y$, set $\varphi(e):=g$.
(iv) $e, f, g \in X ; T_{e}$ does not branch; if $g \in W$, set $\varphi(e):=\beta(g)$.
(v) $e, f, g \in X ; T_{e}, T_{g}$ do not branch; if $h \in Y$, set $\varphi(e):=h$.
(vi) $e, f, g, h \in X ; T_{e}, T_{g}$ do not branch; if $f \in W$, set $\varphi(e):=\beta(f)$.
(vii) $e, f, g, h \in X ; T_{e}, T_{g}, T_{f}$ do not branch. Then $i \in Y$, set $\varphi(e):=i$.

The type of e is the subrule among (i) to (vii) that actually applies to e. Obviously, φ maps from X to Y. We carry out a moderately simple analysis to show that the cardinalities of the preimages of φ are bounded above by a constant.

Let us call $e \in X$ dependent on $j \in Z$ if $j=g_{e}$ and e is of type (iii), (iv) or (v). If $g_{e}=g_{e^{\prime}}$ for some $T_{e^{\prime}}<T_{e}$ and $f_{e^{\prime}} \in X$, then $T_{e^{\prime}}$ branches by Claim 5 (with swapped roles of e, e^{\prime}). This implies that e^{\prime} is of type (i) or (ii), and $\varphi\left(e^{\prime}\right)$ is one of $f_{e^{\prime}}, \beta\left(e^{\prime}\right)$. Hence, for every $j \in Z$, there is at most one edge $e \in X$ dependent on j.

Now, fix an arbitrary $k \in Y$ and look at an $e \in X$ with $\varphi(e)=k$. If e is of type (i) or (vii), then e is within distance one from k (which applies to only four edges e on Z). If e is of type (iii) or (v), then k is equal or adjacent to an edge j where e is the unique edge dependent on j, which is possible for at most three edges e on Z. If e is of type (ii) or (vi), then the unique preimage of $\varphi(e)$ under β is either equal or adjacent to e (which applies to only three edges e on Z). Finally, if e is of type (iv), then the unique preimage of $\varphi(e)$ under β is equal to j where e is the unique edge dependent on j, which is possible for at most one edge e on Z. Thus, $\left|\varphi^{-1}(k)\right| \leq 4+3+3+1=11$ implying $|X| \leq 11|Y|$. Therefore, $|Y| \geq \frac{|Z|}{12}$ and the proof of the theorem is complete.

7 Summary

We gather all the results of this paper on $f(k)$ and conclude with some open problems.

For all $n \geq 5$, consider the family of graphs D_{n}, which is constructed from the square of paths together with an extra vertex x.

$$
\begin{aligned}
V\left(D_{n}\right):= & \left\{x, x_{1}, x_{2}, \ldots, x_{n}\right\} \\
E\left(D_{n}\right):= & \left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup \\
& \left\{x_{i} x_{i+2}: 1 \leq i \leq n-2\right\} \cup \\
& \left\{x_{1} x_{4}, x_{n-3} x_{n}, x x_{1}, x x_{2}, x x_{n-1}, x x_{n}\right\}
\end{aligned}
$$

It is easy to see that $x x_{1} x_{2} \ldots x_{n} x$ is a Hamiltonian cycle that contains exactly six contractible edges $x x_{1}, x_{1} x_{2}, x_{2} x_{3}, x_{n-2} x_{n-1}, x_{n-1} x_{n}, x_{n} x$. The bound in Theorem 7 is therefore tight for 3 -connected graphs that have minimum degree at least 4.

Table 1: Results on $f(k)$.

Problem 1. Characterize all 3-connected graphs with minimum degree at least 4 that contain a longest cycle with exactly six contractible edges.

Problem 2. For every $k \geq 4$, find all k-connected graphs with minimum degree at least $\frac{3}{2} k-1$ that contain a longest cycle with less than eight contractible edges.

Problem 3. Improve the lower and upper bounds for $f(k)$.
Problem 4. For 3-connected graphs of girth at least 5, determine the supremum for $k \in \mathbb{R}$ such that every longest cycle C contains at least $k|E(C)|$ contractible edges.

References

[1] R. E. L. Aldred, R. L. Hemminger, and K. Ota, "The 3-connected graphs having a longest cycle containing only three contractible edges", J. Graph Theory $17(3)(1993), 361-371$.
[2] R. E. L. Aldred, R. L. Hemminger, and X. Yu, "Maximum matchings in 3-connected graphs contain contractible edges", Austral. J. Comb. 6 (1992), 23-34.
[3] R. E. L. Aldred, R. L. Hemminger, and X. Yu, "The 3-connected graphs with a maximum matching containing precisely one contractible edge", J. Graph Theory 18(1) (1994), 37-50.
[4] K. Ando, "Contractions of k-connected graphs", in Topics in Structural Graph Theory, edited by L. Beineke and R. Wilson, Cambridge University Press (2013), 100-113.
[5] A. Bondy and U. S. R. Murty, "Graph Theory", Graduate Texts in Mathematics 244 (2007), Springer London.
[6] N. Dean, "Distribution of contractible edges in k-connected graphs", J. Combin. Theory Ser. B 48 (1990), 1-5.
[7] N. Dean, R. L. Hemminger, and K. Ota, "Longest cycles in 3-connected graphs contain three contractible edges", J. Graph Theory 13(1) (1989), 17-21.
[8] R. Diestel, "Graph Theory", 4th edition, Graduate Texts in Mathematics 173 (2010), Springer Heidelberg.
[9] Y. Egawa, "Contractible edges in n-connected graphs with minimum degree greater than or equal to [5n/4]", Graphs and Combinatorics 7 (1991), 15-21.
[10] Y. Egawa, H. Enomoto and A. Saito, "Contractible edges in trianglefree graphs", Combinatorica 6(3) (1986), 269-274.
[11] M. N. Ellingham, R. L. Hemminger, and K. E. Johnson, "Contractible edges in longest cycles in non-hamiltonian graphs", Discrete Math. 133(1-3) (1994), 89-98.
[12] A. Elmasry, K. Mehlhorn, and J. M. Schmidt, "Every DFS tree of a 3-connected graph contains a contractible edge", J. Graph Theory 72(1) (2013), 112-121.
[13] K. Fujita, "Longest cycles C in a 3-connected graph G such that C contains precisely four contractible edges of $G^{\prime \prime}$, Math. Japon. 43(1) (1996), 99-116.
[14] K. Fujita, "Maximum number of contractible edges on longest cycles of a 3-connected graph", Ars Comb. 74 (2005), 129-149.
[15] K. Fujita, "Lower bound on the maximum number of contractible edges on longest cycles of a 3-connected graph", Far East J. Applied Math. 22 (2006), 55-86.
[16] K. Fujita, "Longest cycles of a 3-connected graph which contain four contractible edges", SUT J. Math. 43(2) (2007), 287-303.
[17] K. Fujita, and K. Kotani, "Classification of Hamiltonian cycles of a 3 -connected graph which contain five contractible edges", SUT J. Math. $36(2)$ (2000), 287-350.
[18] M. Kriesell, "A survey on contractible edges in graphs of a given vertex connectivity", Graphs and Combinatorics 18 (2002), 1-30.
[19] M. Kriesell, "Average degree and contractability", J. Graph Theory 51(3) (2006), 205-224.
[20] M. Kriesell and J. M. Schmidt, "More on foxes", J. Graph Theory 89(2) (2018), 101-114.
[21] D. R. Lick, In "The Many Facets of Graph Theory" (Proc. Conf., Western Mich. Univ., Kalamazoo, 1968), Springer, 1969.
[22] W. Mader, "Ecken vom Grad n in minimalen n-zusammenhängenden Graphen", Arch. Math. (Basel) 23(1) (1972), 219-224.
[23] W. Mader, "Generalizations of critical connectivity of graphs", Discrete Math. 72 (1988), 267-283.
[24] C. Thomassen, "Nonseparating cycles in k-connected graphs", J. Graph Theory 5 (1981), 351-354.
[25] W. T. Tutte, "A theory of 3-connected graphs", Nederl. Akad. Wet., Proc., Ser A 64 (1961), 441-455.

