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Abstract
This paper investigates the number of contractible edges in a longest

cycle C of a k-connected graph (k ≥ 3) that is triangle-free or has minimum
degree at least 3

2 k − 1. We prove that, except for two graphs, C contains
at least min{|E(C)|, 6} contractible edges. For triangle-free 3-connected
graphs, we show that C contains at least min{|E(C)|, 7} contractible
edges, and characterize all graphs having a longest cycle containing exactly
six/seven contractible edges. Both results are tight. Lastly, we prove that
every longest cycle C of a 3-connected graph of girth at least 5 contains at
least |E(C)|

12 contractible edges.

AMS classification: 05C40, 05C05.
Keywords: Contractible edge, Longest cycle, k-connected graph,

Triangle-free

1 Introduction
The study of contractible edges began with Tutte [25], who proved that every
3-connected graph non-isomorphic to K4 contains a contractible edge. Since then,
a lot of research has been done on the existence and distribution of contractible
edges in k-connected graphs. The surveys by Kriesell [18] and Ando [4] collect
and summarize many results in this area.

One interesting question to ask is what classes of subgraphs contain a con-
tractible edge and how many. For every 3-connected graph other than K4 and
the prism K2 × K3, Dean et al. [7] proved that every longest cycle contains
at least three contractible edges. Later, Ellingham et al. [11] proved that for
any non-hamiltonian 3-connected graph, every longest cycle contains at least six
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contractible edges. Aldred et al. [1] characterized all 3-connected graphs that
have a longest cycle containing exactly three contractible edges. Fujita [13, 16]
classified all 3-connected graphs that have a longest cycle containing precisely
four contractible edges. Fujita and Kotani [17] classified all 3-connected graphs
of order at least 16 that have a longest cycle containing precisely five contractible
edges. For any 3-connected graph of order at least five, Fujita [14] proved that
there exists a longest cycle C such that C contains at least |V (C)|+9

8 contractible
edges, and later [15] improved the lower bound to |V (C)|+7

7 .
Besides longest cycles, maximum matchings in 3-connected graphs non-

isomorphic to K4 were shown to contain a contractible edge by Aldred et al. [2].
They [3] also characterized all 3-connected graphs with a maximum matching
that contains precisely one contractible edge. Elmasry et al. [12] proved that
every depth-first search (DFS) tree in a 3-connected graph non-isomorphic to
K4 contains a contractible edge. Recently, Kriesell and Schmidt [20] made an
improvement, and proved that every DFS tree of a 3-connected graph non-
isomorphic to K4, the prism or the prism plus an edge has two contractible
edges.

Note that all the above work focuses on 3-connected graphs, as k-connected
graphs may not contain any contractible edge for every k ≥ 4. By imposing
extra conditions, Thomassen [24] proved that every triangle-free k-connected
graph contains a contractible edge (see also Egawa et al. [10]), while Egawa [9]
proved the same for k-connected graphs that have minimum degree at least
⌊5n/4⌋. For k-connected graphs that are triangle-free or have minimum degree
at least 3

2 k − 1, Kriesell and Schmidt [20] proved that except for the graphs
Kk+1 where k = 1, 2, every spanning tree has two contractible edges. For every
k-connected graph (k ≥ 4) of minimum degree at least 3

2 (k − 1), they showed
that every DFS tree has two contractible edges.

Inspired by these results, in this paper, we initiate the investigation of the
number of contractible edges in longest cycles of k-connected graphs (k ≥ 3)
that are triangle-free or have minimum degree at least 3

2 k − 1. More specifically,
we study the largest value f(k) such that every longest cycle C contains at
least min{|E(C)|, f(k)} contractible edges. Section 2 introduces the necessary
terminology and basic tools used throughout the paper. Section 3 gives lower
bounds for f(k). We prove that, except for two graphs, C contains at least
min{|E(C)|, 6} contractible edges. In Section 4, by constructing specific exam-
ples, we find upper bounds for f(k). Section 5 deals with triangle-free 3-connected
graphs exclusively. We show that C contains at least min{|E(C)|, 7} contractible
edges, and characterize all graphs having a longest cycle containing exactly
six/seven contractible edges. In Section 6, we consider 3-connected graphs of
girth at least 5 and prove that every longest cycle C in these graphs contains
at least |E(C)|

12 contractible edges, which is a first dependency result on |E(C)|
applicable to all longest cycles. In Section 7, all the results are summarized and
open problems are raised.
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2 Preliminaries
All graphs throughout the paper are assumed to be finite, simple and undirected.
For terminology not defined here, we refer to [8] or [5]. For a graph G, a set
T ⊆ V (G) is a |T |-separator of G if G − T is disconnected. For k ≥ 1, a
noncomplete graph G is called k-connected if |V (G)| > k and G does not contain
a (k − 1)-separator. Let x be a vertex in G and S be a subset of V (G) such
that x /∈ S and |S| ≥ l. An x-S l-fan is the union of l distinct x-S paths that
pairwise intersect exactly at x. By Menger’s theorem, an x-S k-fan always exists.
Let κ(G) denote the connectivity of G, that is, the largest k such that G is
k-connected. Define T(G) to be the set of all κ(G)-separators of G, or simply
write T if it is clear from the context. For an edge e, let V (e) be the set of
endvertices of e. An edge e of a k-connected graph G is called k-contractible
if the graph G/e obtained from G by contracting e, that is, identifying its
endvertices, and removing loops and multiple edges, is k-connected. No edge in
Kk+1 is k-contractible, but all edges in Kℓ, ℓ ≥ k + 2, are. It is well-known and
straightforward to check that an edge e of a noncomplete k-connected graph G is
not k-contractible if and only if κ(G) = k and V (e) ⊆ T for some T ∈ T. In the
following, we will write k-contractible as contractible if the context is clear. For
two disjoint vertex subsets X and Y of a graph G, let EG(X) be the set of edges
that X induces in G and let EG(X, Y ) := {xy ∈ E(G) : x ∈ X and y ∈ Y }. For
the k-connected graphs that are either triangle-free or have minimum degree at
least 3

2 k − 1, define f(k) to be the largest value such that every longest cycle C
in these graphs contains at least min{|E(C)|, f(k)} contractible edges.

For T ∈ T, a T -fragment is the union of vertex sets of at least one but
not all components of G − T . A fragment A of G is a T -fragment for some
T ∈ T. For any fragment A, we define TA := NG(A) where NG(A) is the set
of neighbors of vertices in A that lie outside A. Obviously, A is a TA-fragment.
Define A := (V (G) − TA) − A, which is another TA-fragment. Given a graph
G and a non-empty set S ⊆ 2V (G) (where 2V (G) is the power set of V (G)), an
S-fragment of G is a T -fragment for some T ∈ T such that there is an S ∈ S
satisfying S ⊆ T . An S-end is an inclusion-wise minimal S-fragment, and an
S-atom is an S-fragment of minimum size.

Not every k-connected graph contains a contractible edge, but every k-
connected graph that is triangle-free or has large minimum degree does. We
will need the following well-known lemmas. The first is a standard argument
in k-connectivity and will therefore often be used without explicit reference
throughout this paper; the other two ensure that all fragments are large.

Lemma 1 (Fundamental Lemma [22, Lemma 1]). Let B and F be fragments
such that B ∩ F ̸= ∅. Then |B ∩ TF | ≥ |F ∩ TB |. If the equality holds, B ∩ F is
an (B ∩ TF ) ∪ (TB ∩ TF ) ∪ (F ∩ TB)-fragment.

Lemma 2 ([24]). Let G be a k-connected triangle-free graph and S be a k-
separator that contains V (e) for an edge e. Then, for every fragment F of G − S,
|F | ≥ k.
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Lemma 3 ([21]). Let G be a graph of connectivity k with minimum degree at
least 3

2 k − 1. Then every fragment F of G satisfies |F | ≥ k
2 .

3 Lower Bounds for f(k)
We first prove that, for a subgraph H of G and S := {V (e) : e ∈ E(H)}, all
edges in H intersecting an S-end are contractible if all S-fragments are large.
This is a sharper version of Lemma 2 in [6].

Lemma 4. Let H be a subgraph of a k-connected graph G, S := {V (e) : e ∈
E(H)} and suppose that every S-fragment has at least k

2 vertices. Let B be an S-
end and e be an edge of H such that |V (e)∩B| ≥ 1. Suppose e is non-contractible
and let T be any k-separator containing V (e). Then B ⊆ T , |B| = |B ∩ T | = k

2 ,
T ∩ TB = ∅ and |V (e) ∩ B| = 2.

Proof. Let F be a T -fragment that is also an S-fragment. Note that B ∩ T ∩
V (e) ̸= ∅ and V (e) ⊆ (B ∩ T ) ∪ (T ∩ TB).

Case 1: F ∩ B ̸= ∅ and F ∩ B ≠ ∅. Since F ∩ B and F ∩ B are not S-
fragments, |F ∩ TB | > |B ∩ T | and |F ∩ TB | > |B ∩ T | by Lemma 1. Then
F ∩ B = ∅ = F ∩ B. Hence, |B ∩ T | = |B| ≥ k

2 . But now, |F ∩ TB | > k
2 and

|F ∩ TB | > k
2 , contradicting |TB | = k.

Case 2: F ∩ B ̸= ∅ and F ∩ B = ∅ (or vice versa by symmetry of F and F ).
Since F ∩ B is not an S-fragment, |F ∩ TB | > |B ∩ T | and |B ∩ T | > |F ∩ TB | by
Lemma 1. Then F ∩ B = ∅ and |F ∩ TB | = |F | ≥ k

2 . This implies |B ∩ T | > k
2

and |B ∩ T | < k
2 . Hence, F ∩ B ̸= ∅. By Lemma 1, |B ∩ T | ≥ |F ∩ TB |, which is

impossible.
Case 3: F ∩ B = ∅ and F ∩ B = ∅. Then B ⊆ T and |B ∩ T | = |B| ≥ k

2
and |B ∩ T | ≤ k

2 . If |B ∩ T | < k
2 , then B ̸⊆ T ; assume without loss of generality

that F ∩ B ̸= ∅. Then by Lemma 1, |F ∩ TB | ≤ |B ∩ T | < k
2 , which implies

F ∩ B ̸= ∅. By Lemma 1, |F ∩ TB | ≥ |B ∩ T |, which is impossible. Hence,
|B ∩ T | = k

2 = |B ∩ T |. We have T ∩ TB = ∅, |V (e) ∩ B| = 2 and |B| = k
2 .

The next lemma is a slightly stronger version of the result of Dean, Hemminger
and Ota [7] that every longest cycle C intersects every S-fragment, where
S := {V (e) : e ∈ E(C)}.

Lemma 5. Let C be a longest cycle in a graph G satisfying κ(G) ≥ 3. Suppose
C contains a non-contractible edge. Let S := {V (e) : e ∈ E(C)} and F be any
S-fragment. Then |V (C) ∩ F | ≥ 1 and |E(C) ∩ EG(F, TF )| ≥ 2. If |F | > 1, then
|V (C) ∩ F | > 1.

Proof. Let uv be any edge of C ∩ G[TF ]. Assume to the contrary that F does
not intersect C. Let u′ be a neighbor of u in F , v′ be a neighbor of v in the
same component of F containing u′, and P be a u′-v′ path in F . Then we can
replace uv by uu′Pv′v to obtain a longer cycle, which contradicts that C is a
longest cycle. Therefore, |V (C) ∩ F | ≥ 1 and |E(C) ∩ EG(F, TF )| ≥ 2.
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For the second statement, assume to the contrary that |V (C) ∩ F | = 1. Let
{z} := V (C) ∩ F and x, y be the two vertices adjacent to z in C. Note that
x, y ∈ TF and {x, y} ≠ {u, v}. Let a be a vertex in F other than z. Consider an
a-(TF ∪ {z}) κ(G)-fan H.

Suppose first that z /∈ H. Let Pu be the a-u path in H and Pv be the a-v
path in H. Then we can replace uv by uPuaPvv to obtain a longer cycle, which
is a contradiction. Suppose now z ∈ H and assume without loss of generality
that x ∈ H. Let Px be the a-x path in H and Pz be the a-z path in H. Then we
can replace xz by xPxaPzz to obtain a longer cycle, which is a contradiction.

The following lemma gives us precise structural information about a fragment
when its intersection with a longest cycle is small.

Lemma 6. Let C be a longest cycle in a graph G satisfying κ(G) ≥ 3. Suppose
C contains a non-contractible edge. Let S := {V (e) : e ∈ E(C)} and F be an
S-fragment. If |F | ≥ 3, |V (C) ∩ F | = 2 and |E(C) ∩ EG(TF , F )| = 2, then

1. E(C ∩ G[TF ∪ F ]) = {x1x2, x2x3, x3x4, x4x5}, where x1, x2, x5 ∈ TF and
x3, x4 ∈ F .

2. For each vertex a ∈ F \ {x3, x4}, a /∈ C.

3. For each vertex a ∈ F \ {x3, x4}, NG(a) = x3 ∪ (TF \ x2). In particular, a
has degree κ(G), ax1, ax3, ax5 ∈ E(G), and ax2, ax4 /∈ E(G).

4. F − x3 − x4 is independent.

5. NG(x4) = x3 ∪ (TF \ x2).

6. x1x2 is the only edge of C that is contained in G[TF ].

7. Every vertex in TF lies in C.

Proof. Let uv be an edge in E(C ∩ G[TF ]) and E(C) ∩ EG(TF , F ) = {xx′, yy′},
where x, y ∈ TF and x′, y′ ∈ F . If x = y, then {u, v}∩{x, y} = ∅. By considering
the edges xx′, yy′ and uv in C, we have |E(C) ∩ EG(TF , F )| > 2. Hence,
x ̸= y. If x′ = y′, then C contains a vertex in F other than x′, which implies
|E(C) ∩ EG(TF , F )| > 2. Therefore, x′ ̸= y′ and V (C) ∩ F = {x′, y′}. Since
|V (C) ∩ F | = 2 and |E(C) ∩ EG(TF , F )| = 2, x′y′ ∈ E(C). If {x, y} = {u, v},
then C = xx′y′y and V (C) ∩ F = ∅ contradict Lemma 5. Hence, {x, y} ≠ {u, v}.

Let a be any vertex in F \ {x′, y′}. Note that a /∈ C, since |V (C) ∩ F | =
2. Consider any a-(TF ∪ {x′, y′}) κ(G)-fan H. Note that H ⊆ G[F ∪ TF ],
V (C) ∩ (F ∪ TF ) ⊆ TF ∪ {x′, y′} and (H \ (TF ∪ {x′, y′})) ∩ C = ∅. For any
z ∈ V (H) ∩ (TF ∪ {x′, y′}), denote the path in H joining a to z by Pz. Suppose
x′, y′ ∈ H. We can replace x′y′ in C by x′Px′aPy′y′ to construct a longer cycle.
Suppose x′, y′ /∈ H. Then u, v ∈ H. We can replace uv in C by uPuaPvv to
construct a longer cycle. Hence, without loss of generality, suppose x′ ∈ H and
y′ /∈ H. If x ∈ H, then we can replace xx′ in C by xPxaPx′x′ to construct a
longer cycle. So x /∈ H and TF \{x} ⊆ H. Since u, v cannot both belong to H, we
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have x ∈ {u, v} and thus y /∈ {u, v}. Now, assume x = v. Then the path uxx′y′y
lies in C. Since we can replace uxx′ in C by uPuaPx′x′ and replace x′y′y in C
by x′Px′aPyy, the a-u, a-x′, a-y paths in H are edges au, ax′, ay respectively.
This implies ax, ay′ /∈ E(G). Suppose u′v′ is an edge in E(C ∩ G[TF ]) other
than uv. Then we can replace u′v′ by u′Pu′aPv′v′ to construct a longer cycle.
Hence, uv is the only edge in C that lies in G[TF ].

Let a′ be any vertex in F \ {x′, y′, a} if exists. Consider any a′-(TF ∪ {x′, y′})
κ(G)-fan H ′. From the previous paragraph, either x′ /∈ H and y′ ∈ H, or
x′ ∈ H and y′ /∈ H. Suppose x′ /∈ H ′ and y′ ∈ H ′. Then y /∈ H ′ implying
u, v ∈ H ′, which is impossible. Hence, x′ ∈ H ′ and y′ /∈ H ′. Arguing as
above, the a′-u, a′-x′, a′-y paths in H ′ are edges a′u, a′x′, a′y respectively, and
a′x, a′y /∈ E(G). If aa′ is an edge, then we can replace uxx′ in C by uaa′x′

to construct a longer cycle. Hence, a and a′ are not adjacent. Therefore,
F − x′ − y′ is independent, and NG(a) = x′ ∪ (TF \ {x}) for all vertices a in
F \ {x′, y′}. If xy′ is an edge, then we can replace uxx′y′y in C by uxy′x′ay
to construct a longer cycle. Hence, NG(y′) = x′ ∪ (TF \ {x}). If there exists a
vertex b in TF that does not lie in C, we can replace uxx′y′y in C by uxx′y′bay
to construct a longer cycle. Therefore, every vertex in TF lies in C. Define
x1 := u, x2 := v = x, x3 := x′, x4 := y′, x5 := y and the results (1)-(7) follow.

For any connected graph non-isomorphic to K2, every edge is contractible.
For any 2-connected graph non-isomorphic to K3, it is obvious that every edge
in a longest cycle is contractible. Results for contractible edges in a longest
cycle of 3-connected graphs were given in the Introduction. For the rest of the
paper, we will consider k-connected graphs (k ≥ 3) that are triangle-free or have
minimum degree at least 3

2 k − 1. As we will see, this leads us naturally to the
following family of graphs.

For every l ≥ 4 and every even k ≥ 4, let Gl,k be the lexicographic graph
product Cl × Kk/2. Clearly, Gl,k is Hamiltonian, has connectivity k and is
( 3

2 k − 1)-regular. Let C be a Hamiltonian cycle of G in which the vertices of
every copy of Kk/2 are consecutive. Since all edges of every copy of Kk/2 are
non-contractible, C contains exactly l contractible edges.

We will prove that with the exception of G4,k and G5,k, the number of
contractible edges in a longest cycle C is at least min{|E(C)|, 6}.

Theorem 7. Let G be a k-connected graph (k ≥ 3) that is triangle-free, or has
minimum degree at least 3

2 k − 1 such that G ≇ G4,k and G ≇ G5,k. For every
longest cycle C of G, either all edges in C are contractible or C contains at least
six contractible edges.

Proof. If all edges in C are contractible, then we are done. Suppose C contains
a non-contractible edge and define S := {V (e) : e ∈ E(C)}. Then G has
connectivity k. Suppose G is triangle-free, or has minimum degree at least 3

2 k −1
such that k is odd. Let B be any S-end. By Lemmas 2 and 3, |B| > k

2 . In
particular, |B| ≥ 2 and thus |V (C) ∩ B| > 1 by Lemma 5. This implies |E(C) ∩
(EG(B, TB) ∪ E(B))| ≥ 3. By Lemma 4, all edges in E(C) ∩ (EG(B, TB) ∪ E(B))
are contractible. Consider an S-end B′ in B. Note that (EG(B′, TB′)∪E(B′)) ⊆

6



(EG(B, TB)∪E(B)) and (EG(B, TB)∪E(B))∩ (EG(B, TB)∪E(B)) = ∅. Hence,
C contains at least six contractible edges.

From now on, assume that G has minimum degree at least 3
2 k − 1 such that

k is even (k ≥ 4). Suppose C contains at most five contractible edges. We will
divide the proof into a number of steps and show that G ∼= G4,k or G5,k.

(1) For every S-end B, |V (C) ∩ B| ≥ 2, |E(C) ∩ E(B)| ≥ 1, and E(C) ∩
EG(B, TB) contains exactly two edges, both of which are contractible.

Proof. By Lemma 3, B contains at least k
2 ≥ 2 vertices. By Lemma 5, |V (C) ∩

B| ≥ 2 and |E(C) ∩ EG(B, TB)| ≥ 2. Note that |E(C) ∩ EG(B, TB)| is even, and
each edge e in E(C) ∩ EG(B, TB) is contractible by Lemma 4 as |V (e) ∩ B| = 1.
Since the same conclusion holds for any S-end in B and C contains at most
five contractible edges, |E(C) ∩ EG(B, TB)| = 2. Suppose E(C) ∩ E(B) = ∅.
Then, for any vertex in V (C) ∩ B, its two neighbors in C must lie in TB.
Since |V (C) ∩ B| ≥ 2, this implies |E(C) ∩ EG(B, TB)| ≥ 4, which contradicts
|E(C) ∩ EG(B, TB)| = 2. Hence, |E(C) ∩ E(B)| ≥ 1.

(2) If B is an S-end such that all edges in E(C) ∩ E(B) are contractible,
then |B| = 2 and k = 4.

Proof. By (1), |V (C) ∩ B| ≥ 2 and the two edges in E(C) ∩ EG(B, TB) are
contractible. If |V (C) ∩ B| ≥ 3, then E(C) ∩ E(B) has at least two edges, all of
which are contractible by assumption. Combining with (1) on an S-end in B,
this implies that C has at least six contractible edges. Hence, |V (C) ∩ B| = 2. If
|B| ≥ 3, then by Lemma 6, B contains a vertex of degree k, which is impossible
as δ(G) ≥ 3

2 k − 1. Therefore, |B| = 2 and k = 4 by Lemma 3.

(3) Suppose B is an S-end such that E(C)∩E(B) contains a non-contractible
edge e. Let T be any k-separator containing V (e). Then B ⊆ T , T ∩ TB = ∅,
B is an S-atom, G[B] ∼= K k

2
, and all edges in E(B) are non-contractible. Also,

every vertex in B is adjacent to every vertex in TB , every vertex in B lies in C,
and C ∩ G[B] is a Hamiltonian path of B.

Proof. By Lemma 4, B ⊆ T , |B| = k
2 and T ∩ TB = ∅. This implies all edges in

E(B) are non-contractible. By Lemma 3, B is an S-atom. Since δ(G) ≥ 3
2 k − 1,

every vertex x in B is adjacent to every vertex in (B \{x})∪TB and G[B] ∼= K k
2
.

Suppose there is a vertex x in B not contained in C. Let e = uv. We can replace
uv in C by uxv to construct a longer cycle. Therefore, every vertex in B lies in
C. Since |E(C) ∩ EG(B, TB)| = 2, C ∩ G[B] is a Hamiltonian path of B.

(4) Any two distinct S-ends are disjoint.

Proof. For k ≥ 6, let B be any S-end. By (1), the two edges in E(C)∩EG(B, TB)
are contractible and |E(C) ∩ E(B)| ≥ 1. By (2), not all edges in E(C) ∩ E(B)
are contractible. By (3), G[B] ∼= K k

2
, every vertex of B belongs to C, every edge

in E(C) ∩ E(B) is non-contractible, and C ∩ G[B] is a Hamiltonian path of B.
Consider two S-ends B1 and B2 such that B1 ∩ B2 ≠ ∅. For i = 1, 2, since every
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edge in E(C)∩E(Bi) is non-contractible and the two edges in E(C)∩EG(Bi, TBi)
are contractible, the two Hamiltonian paths C ∩ G[B1] and C ∩ G[B2] must
coincide implying B1 = B2.

For k = 4, by (2) and (3), every S-end is composed of either one contractible
edge in C or one non-contractible edge in C. Let B and B′ be two distinct
S-ends. Denote the edge in G[B] by e and the edge in G[B′] by e′. Suppose
B ∩ B′ ≠ ∅. Then e ∈ EG(B′, TB′) and e′ ∈ EG(B, TB). By (1), e, e′ are
contractible. Hence, both B and B′ are composed of one contractible edge with
a common vertex. Denote C ∩ G[B ∪ TB] := x1x2x3x4 where B = {x2, x3},
C ∩G[B′ ∪TB′ ] := x′

1x′
2x′

3x′
4 where B′ = {x′

2, x′
3}, and x′

2 = x4, x′
3 = x3, x′

4 = x2.
Note that x3 = x′

3 = V (B) ∩ V (B′), {x1, x4} ⊆ TB and {x′
1, x′

4} ⊆ TB′ . Also,
x1x3, x2x4, x′

1x′
3, x′

2x′
4 ∈ E(G) as δ(G) ≥ 5. Since x4x′

1 = x′
1x′

2 ∈ EG(B′, TB′)
is contractible by (1), x′

1 /∈ TB. Hence, x′
1 ∈ B. But this is impossible as

x′
3 = x3 ∈ B and x′

1x′
3 ∈ E(G). Therefore, B ∩ B′ = ∅.

(5) If B and B′ are two distinct S-ends not containing any contractible edge
in C such that EG(B, B′) ̸= ∅, then B ⊆ TB′ and B′ ⊆ TB .

Proof. By (3), both G[B] and G[B′] are K k
2
. By (4), B and B′ are disjoint.

Since EG(B, B′) ̸= ∅, B ∩ TB′ ̸= ∅ and B′ ∩ TB ̸= ∅. Suppose B ⊈ TB′ . Then
B ∩ B′ ̸= ∅. This implies |B ∩ TB′ | < |B| = k

2 and |B ∩ B′| < |B| = k
2 . By

Lemma 3, B ∩ B′ is not a fragment and thus k
2 > |B ∩ TB′ | > |B′ ∩ TB |. This

implies B′ ∩ B = ∅ and B′ = B′ ∩ TB. But then k
2 > |B ∩ TB′ | = |B′| = k

2 ,
which is impossible. Therefore, B ⊆ TB′ and by symmetry, B′ ⊆ TB .

(6) Every S-end does not contain any contractible edge in C.

Proof. Suppose B is an S-end containing a contractible edge in C. By (3),
all edges in E(C) ∩ E(B) are contractible. By (2), k = 4 and |B| = 2. By
(1), |E(C) ∩ E(B)| = 1. Let A be an S-end in B. Then A = A ∩ B and
A ∩ TB = ∅. By Lemma 1, |A ∩ TB | ≥ |B ∩ TA| implying B ∩ TA = ∅ and
B ⊆ A. Note that (E(B) ∪ EG(B, TB)) ∩ EG(A, TA) = ∅. By (1), the five edges
in E(C) ∩ (EG(A, TA) ∪ EG(B, TB) ∪ E(B)) are contractible. Since C has at
most five contractible edges, all edges in E(C) ∩ E(A) are non-contractible. By
(3), A is an S-atom K2 contained in a 4-separator T such that T ∩ TA = ∅. This
implies A ⊆ B ∩ T .

Since the edge in E(C)∩E(B) is contractible, B ⊈ T . Let F be a T -fragment
such that B ∩ F ̸= ∅ and B′ be an S-end in F . Suppose B ⊆ F . We have
(E(B) ∪ EG(B, TB)) ∩ EG(A, TA) = ∅, (E(B) ∪ EG(B, TB)) ∩ EG(B′, TB′) = ∅
and E(C) ∩ EG(B′, TB′) ̸= E(C) ∩ EG(A, TA). But then E(C) ∩ (EG(B, TB) ∪
E(B)∪EG(B′, TB′)∪EG(A, TA)) contains at least six contractible edges, which is
impossible. Hence, B∩F ̸= ∅ and B∩T ̸= ∅. Since |B| = 2, |B∩F | = 1 = |B∩T |.

Let D be an S-end in F and D′ be an S-end in F . By (4), A, D, B, D′ are
pairwise disjoint. Since (E(B) ∪ EG(B, TB)) ∩ EG(A, TA) = ∅ and C contains at
most five contractible edges, G[D ∪ D′] does not contain any contractible edges
in C. By (1), (3) and k = 4, D, D′ are both S-atoms K2, and E(D), E(D′)
both consist of a non-contractible edge in C. Since C contains at most five
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contractible edges, each of {A, D}, {D, B}, {B, D′} and {D′, A} is connected by
exactly one contractible edge in C. Note that V (C) = V (A ∪ D ∪ B ∪ D′). By
(5), D ⊆ TA and D′ ⊆ TA. Since k = 4, TA = V (D ∪ D′) and T ∩ TA = ∅. Recall
that A ⊆ B ∩ T and |B ∩ T | = 1. Let x be the vertex in T \ (A ∪ B) which lies in
T ∩ A. As V (C) = V (A ∪ D ∪ B ∪ D′), x /∈ C. Define P := C ∩ G[B ∪ D ∪ D′]
which is a path of six vertices in G[A ∪ TA]. Let H be an x-P 4-fan in G[A ∪ TA].
Then there is an edge uv in P such that u, v ∈ H. Let Pu be the path in H
joining x and u, and Pv be the path in H joining x and v. Now, we can replace
uv by uPuxPvv to construct a longer cycle than C, which is impossible.

(7) G ∼= G4,k or G5,k.

Proof. Consider any S-end B. By (6), all edges in E(C) ∩ E(B) are non-
contractible. By (3), B is contained in a k-separator T such that G[B] ∼=
K k

2
and T ∩ TB = ∅. Let F be a T -fragment. Since C contains at most

five contractible edges, there exists an S-end in F or F , say B′, such that
EG(B, TB) ∩ EG(B′, TB′) ∩ E(C) ̸= ∅. By (5), B ⊆ TB′ and B′ ⊆ TB. By
δ(G) ≥ 3k

2 − 1, (6) and (3), G[B′] ∼= K k
2

and G[B ∪ B′] ∼= Kk.
Let D be an S-end in B and D′ be an S-end in B′. Suppose D ̸= D′.

By (4), B, B′, D, D′ are disjoint. Since C contains at most five contractible
edges, there exists a set of four pairwise disjoint S-ends A1, A2, A3, A4 such that
{A1, A2, A3, A4} = {B, B′, D, D′} and Ai is connected to Ai+1 by a contractible
edge in C for i = 1, 2, 3. By (6) and (3), all G[Ai]’s are K k

2
, all edges in

E(Ai) are non-contractible, and C ∩ G[Ai] is a Hamiltonian path of Ai. By
(5), A1 ⊆ TA2 , A3 ⊆ TA2 , A2 ⊆ TA3 and A4 ⊆ TA3 . Therefore, TA2 = A1 ∪ A3
and TA3 = A2 ∪ A4. Suppose D = D′. Then D ⊆ B ∩ B′ and B ∪ B′ ⊆ D.
By applying (6) and (3) to D, let S be a k-separator containing D such that
S ∩ TD = ∅. Recall that G[B ∪ B′] ∼= Kk. Let X be an S-fragment such that
B ∪ B′ ⊆ D ∩ (X ∪ S). Then X contains an S-end D′ different from D, B, B′.
Again, we have the same conclusion as the case D ̸= D′.

If A2 ∩ A3 = ∅, then G ∼= G4,k. If A2 ∩ A3 ̸= ∅, then A2 ∩ A3 is an
S-fragment and contains an S-end, say A. By (6) and (3), G[A] is K k

2
, all

edges in E(A) are non-contractible, and C ∩ G[A] is a Hamiltonian path of A.
Since C contains at most five contractible edges, A is connected to A1 by a
contractible edge in C and A is connected to A4 by a contractible edge in C.
Denote Z := A1 ∪ A2 ∪ A3 ∪ A4 ∪ A. Then V (C) = Z. Suppose x is a vertex in
G \ Z ⊆ A2 ∩ A3. Consider an x-(A1 ∪ A4 ∪ A) k-fan H. Since k ≥ 4, two of
the x-(A1 ∪ A4 ∪ A) paths in H end in the same S-end and we can use them to
construct a longer cycle. Therefore, G \ Z = ∅ and G ∼= G5,k.

This completes the proof of the theorem.
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4 Upper Bounds for f(k)
In the previous section, we proved f(k) ≥ 6 with the only exception that the
graph is G4,k or G5,k. To find an upper bound for f(k), we just need to examine
a particular k-connected graph and see if there is a longest cycle containing a non-
contractible edge. If such longest cycle C exists and the number of contractible
edges in C is l, then f(k) ≤ l ≤ |C| − 1. Here, we exhibit an infinite family
of triangle-free 3-connected graphs in which there is a longest cycle containing
exactly seven contractible edges (in fact, f(3) = 7 for triangle-free graphs as
demonstrated in the next section), generalize this family to every odd k ≥ 3
showing that 2k + 1 is an upper bound for f(k), and then generalize this family
to arbitrary k.

We will use a construction that is similar to the one given in [10]. For
k ≥ 2, l ≥ 3 and p, q ≥ 0, let A1, . . . , Al, B1, . . . , Bl be pairwise disjoint sets such
that A1 := {a1

1, a1
2, . . . , a1

⌈k/2⌉, v1, v2, . . . , vp} where a1
⌈k/2⌉+i = vi for 1 ≤ i ≤ p,

Al := {al
1, al

2, . . . , al
⌈k/2⌉, w1, w2, . . . , wq} where al

⌈k/2⌉+i = wi for 1 ≤ i ≤ q,
Ah := {ah

1 , ah
2 , . . . , ah

⌈k/2⌉} for every 1 < h < l, and Bh := {bh
1 , bh

2 , . . . , bh
⌊k/2⌋}

for every 1 ≤ h ≤ l. Let Gk,l,p,q be the graph (see Figure 1) with vertex set⋃l
h=1(Ah ∪ Bh) and edge set

E(Gk,l,p,q) :={ah
i bh

j : 1 ≤ h ≤ l, 1 ≤ i ≤ |Ah|, 1 ≤ j ≤ |Bh|} ∪
{a1

i a2
j : 1 ≤ i ≤ |A1|, 1 ≤ j ≤ |A2|} ∪

{b1
i b2

j : 1 ≤ i ≤ |B1|, 1 ≤ j ≤ |B2|} ∪
{al−1

i al
j : 1 ≤ i ≤ |Al−1|, 1 ≤ j ≤ |Al|} ∪

{bl−1
i bl

j : 1 ≤ i ≤ |Bl−1|, 1 ≤ j ≤ |Bl|} ∪
{ah

i ah+1
j : 2 ≤ h ≤ l − 2, 1 ≤ i ≤ j ≤ |Ah|} ∪

{bh
i bh+1

j : 2 ≤ h ≤ l − 2, 1 ≤ i ≤ j ≤ |Bh|}.

Thus, the vertices of Gk,l,p,q are partitioned into l levels, of which the first
two contain the complete bipartite subgraphs K|A1|,|A2| and K|B1|,|B2| (induced
by the vertex sets A1 ∪ A2 and B1 ∪ B2, respectively), and the last two contain
the complete bipartite subgraphs K|Al−1|,|Al| and K|Bl−1|,|Bl|. Note that the
remaining pairs of consecutive levels induce proper subgraphs of these complete
bipartite graphs. By construction, Gk,l,p,q is bipartite, and it is not hard to
verify that Gk,l,p,q is k-connected, and that the non-contractible edges of Gk,l,p,q

are exactly the edges in

{ah
i bh

j : 2 ≤ h ≤ l − 1, 1 ≤ i ≤ |Ah|, 1 ≤ j ≤ |Bh|} ∪
{ah

i ah+1
j : 2 ≤ h ≤ l − 2, 1 ≤ i < j ≤ |Ah|} ∪

{bh
i bh+1

j : 2 ≤ h ≤ l − 2, 1 ≤ i < j ≤ |Bh|}.

Lemma 8. Let k ≥ 3 be odd and p, q ≥ 0. Then Gk,3,p,q is k-connected,
bipartite and non-Hamiltonian, and has a longest cycle that contains exactly
2k + 1 contractible edges.
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(a) The family of graphs G3,3,p,q

on 9 + p + q vertices, in which
every longest cycle has length 8.
Red dotted edges depict the non-
contractible edges of G3,3,p,q,
and fat edges depict a longest cy-
cle that contains exactly 2k+1 =
7 contractible edges.
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(b) The Hamiltonian graph G5,6,0,0 on 30 vertices; fat
edges depict a Hamiltonian cycle that contains exactly
2k + 2 = 12 contractible edges. There are non-Hamiltonian
5-connected graphs and longest cycles of these graphs that
contain exactly 2k + 1 = 11 contractible edges, for example
the graph G5,3,0,0.

Figure 1: Two examples of the graphs Gk,l,p,q for k = 3 and k = 5.

Proof. The graph Gk,3,p,q is bipartite and has 3k + p + q vertices, so that
the smaller color class, say black, consists of exactly k + ⌊k/2⌋ = (3k − 1)/2
vertices. Hence, any longest cycle of Gk,3,p,q has length at most 3k − 1. The
cycle a1

1, b1
1, . . . , a1

|A2|, a2
|A2|, a3

|A2|, . . . , b3
1, b2

|B2|, . . . , a2
1, a1

1 (see Figure 1a) of length
3k − 1 is therefore a longest cycle, and contains exactly 3k − 1 − (k − 2) = 2k + 1
contractible edges.

Since p, q ≥ 0 are arbitrary, Lemma 8 gives an infinite graph family that
attains the upper bound 2k +1 for every odd k ≥ 3 and is triangle-free. While we
will show in section 6 that restricting the cycle spectrum of 3-connected graphs
further to girth 5 gives an increase of the constant lower bound on the number
of contractible edges to a linear function depending on |E(C)|, this cannot be
expected from avoiding all odd cycles, as all graphs for our upper bounds are
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bipartite (the same holds for k > 3).
For even k ≥ 3, we now provide infinite families of k-connected triangle-free

graphs that prove the slightly weaker upper bound 2k + 2.

Lemma 9. Let k ≥ 4 and l ≥ 3 such that l is even if k is odd. Then Gk,l,0,0 is
k-connected, bipartite and Hamiltonian, and has a longest cycle that contains
exactly 2k + 2 contractible edges.

Proof. The graph Gk,l,0,0 is bipartite and has lk vertices. If k is even, the cycle
C consisting of the path a2

1, a1
1, b1

1, . . . , b1
|B1|, b2

|B2|, . . . , b2
1, the path

bl−1
2 , . . . , bl−1

|Bl−1|, bl
|Bl|, . . . , al

1al−1
1 bl−1

1 al−1
2 on the last two levels, and the two

paths ah
1 , ah+1

2 , bh+1
1 and bh

1 , bh+1
2 , . . . , bh+1

|Bh+1|, ah+1
1 for every two consecutive

levels 1 < h < h + 1 < l is Hamiltonian. Since the contractible edges of C are
exactly the ones that intersect the first or the last level, C contains exactly 2k +2
contractible edges.

If k is odd, it is not possible to construct a longest cycle such that every
two consecutive mid-levels induce the same pattern. However, since l is even
in this case (otherwise, Gk,l,0,0 would not be Hamiltonian), we may use two
patterns for the mid-levels. Let C be the cycle (see Figure 1b) that consists of
the path a2

1, a1
1, b1

1, . . . , a1
|A1|, a2

|A2|, . . . , b2
1, the path al−1

2 , al
|Al|, . . . , al

1, al−1
1 , the

paths ah
1 , ah+1

2 and bh
1 , bh+1

2 , . . . , ah+1
|Ah+1|, bh+1

1 , ah+1
1 for every even 1 < h < l, and

the paths ah
1 , ah+1

2 , bh+1
1 and ah

2 , ah+1
|Ah+1|, . . . , bh+1

2 , ah+1
1 for every odd 1 < h < l.

Clearly, C is Hamiltonian and contains exactly 2k + 2 contractible edges.

For Hamiltonian triangle-free k-connected graphs (k is odd), suppose a longest
cycle C contains a non-contractible edge. Then the intersection of C with any
S-end (S := {V (e) : e ∈ E(C)}) has at least k + 1 edges by Lemma 2, each of
which is contractible by Lemma 4. This gives a lower bound of 2k + 2 for f(k)
that matches the upper bound of Lemma 9, and hence the following theorem.

Theorem 10. Let G be a Hamiltonian triangle-free k-connected graph such that
k is odd. Then every longest cycle C of G contains at least min{|E(C)|, 2k + 2}
contractible edges, and the graphs Gk,l,0,0 show that this bound is best possible.

The following lemma gives upper bounds for f(k) for graphs with minimum
degree ⌊3k/2⌋ − 1. Let Hk,l,p,q be the graph obtained from Gk,l,p,q by adding
an edge between every two non-adjacent vertices in Ah ∪ Bh for every level
1 ≤ h ≤ l. Clearly, Hk,l,p,q is not bipartite.

Lemma 11. Let k ≥ 4 and l ≥ 3 such that l is even if k is odd. Then Hk,l,0,0
is k-connected, Hamiltonian and has minimum degree ⌊3k/2⌋ − 1 and a longest
cycle that contains exactly 2k + 2 contractible edges.

Proof. We show that Hk,l,0,0 has minimum degree ⌊3k/2⌋ − 1. The other claims
follow directly from noting that the contractability and non-contractability of
the edges in Gk,l,0,0 is preserved in Hk,l,0,0, that the only new contractible edges
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are the ones intersecting the first or the last level, and from taking exactly the
same cycles as in the proof of Lemma 9.

Consider Hk,l,0,0. Every vertex in A1 ∪ B1 ∪ Al ∪ Bl has degree at least
k − 1 + ⌊k/2⌋ = ⌊3k/2⌋ − 1, and the vertices of B1 ∪ Bl attain this degree. By
symmetry and l ≥ 3, every vertex of A2 ∪ B2 ∪ Al−1 ∪ Bl−1 has degree at least
⌊3k/2⌋. For every 3 ≤ h ≤ l and every 1 ≤ i ≤ |Ah|, ah

i has at least i neighbors
in Ah−1, exactly k − 1 neighbors in Ah ∪ Bh, and at least ⌈k/2⌉ − i + 1 neighbors
in Ah+1. Hence, ah

i has degree at least ⌈3k/2⌉. Similarly, for every 3 ≤ h ≤ l and
every 1 ≤ i ≤ |Bh|, bh

i has at least i neighbors in Bh−1, exactly k − 1 neighbors
in Ah ∪ Bh, and at least ⌊k/2⌋ − i + 1 neighbors in Bh+1. Hence, bh

i has degree
at least ⌊3k/2⌋, which gives the claim.

5 Triangle-free 3-Connected Graphs
This section investigates the number of contractible edges in a longest cycle C
of a triangle-free 3-connected graph. Theorem 7 tells us that the lower bound
is min{|E(C)|, 6}. With a little extra effort, we can improve the bound to
min{|E(C)|, 7}. Also, we will characterize all triangle-free 3-connected graphs
having a longest cycle containing exactly six/seven contractible edges.

Theorem 12. Let G be a triangle-free 3-connected graph and C be a longest
cycle in G. If C contains a non-contractible edge, then C has at least seven
contractible edges. If C contains more than one non-contractible edges, then C
has at least eight contractible edges.

Proof. Suppose C contains a non-contractible edge. Define S := {V (e) : e ∈
E(C)} and let B be an S-end. Define RB := E(C) ∩ (EG(B, TB) ∪ E(B)). By
Lemmas 2 and 5, RB contains at least three edges, all of which are contractible
by Lemma 4. Since B contains an S-end, C has at least six contractible edges.
Suppose for every S-end B, |RB | ≥ 4. Then C has at least eight contractible
edges. Therefore, assume that there is an S-end B such that |RB | = 3. By
Lemma 6, B ∪ TB has the following properties.

1. E(C ∩ G[TB ∪ B]) := {x1x2, x2x3, x3x4, x4x5}, where x1, x2, x5 ∈ TB and
x3, x4 ∈ B. In fact, TB = {x1, x2, x5}.

2. For each vertex a ∈ B \ {x3, x4}, a /∈ C.

3. For each vertex a ∈ B \ {x3, x4}, NG(a) = x3 ∪ (TB \ x2) = {x1, x3, x5}.
In particular, a has degree 3, ax1, ax3, ax5 ∈ E(G), and ax2, ax4 /∈ E(G).

4. B − x3 − x4 is independent.

5. NG(x4) = x3 ∪ (TB \ x2) = {x1, x3, x5}.

6. x1x2 is the only edge of C that is contained in G[TB ].

7. Every vertex in TB lies in C.
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Let x0 be the neighbor of x1 in C other than x2, and x6 be the neighbor of
x5 in C other than x4. By Lemma 5, x0 ̸= x6. For later use, denote x−1 to be
the neighbor of x0 in C other than x1.

Claim 1. Suppose x0x1 is non-contractible and let S be any 3-separator
containing x0x1. Then x2, x3, x4, x5, x6 lie in the same S-fragment D such that
B ⊆ D, D ⊆ B, x3, x4 ∈ D ∩ B, x2, x5 ∈ D ∩ TB and x6 ∈ D ∩ B.

Proof. Recall that TB = {x1, x2, x5}, x3, x4 ∈ B, x0, x6 ∈ B, and a is any vertex
in B \ {x3, x4}. Suppose x2 ∈ S. Let D be an S-fragment containing x5. Then
B ∩ S = D ∩ TB = ∅. This implies B ⊆ D and D ⊆ B. But then C ∩ D = ∅,
which contradicts Lemma 5. Therefore, x2 /∈ S.

Let D be an S-fragment containing x2. Suppose x5 ∈ S. Then B ∩ S =
D ∩ TB = ∅. This implies B ⊆ D and D ⊆ B. We must have x6 ∈ D ∩ B and
C ∩D ∩B = ∅. Since x0x2 is not an edge, D ∩B ̸= ∅. Let u be a vertex in D ∩B.
Consider a u-{x0, x1, x2, x5} 3-fan H. Then x1 /∈ H for otherwise we can use H
to construct a longer cycle. Denote the u-x0 path and the u-x2 path in H by P0
and P2 respectively. Now, x0P0uP2x2x3ax1x4x5x6Cx0 is a longer cycle, which
is a contradiction. Suppose x5 ∈ D. If x3 ∈ B ∩ D, then x4 ∈ B ∩ S. But this
is impossible, since a is adjacent to x1, x3, x5. So, x3 ∈ B ∩ S and x4 ∈ B ∩ D.
Now, B ∩ D = ∅ and C ∩ D ∩ B = ∅. Since x0x2 is not an edge, D ∩ B ̸= ∅. Let
u be a vertex in D ∩ B. Then we can use a u-{x0, x1, x2} 3-fan to construct a
longer cycle. Therefore, x5 ∈ D. If B ∩ S ̸= ∅, then D = ∅, which is impossible.
Hence, B ∩ S = ∅. This implies B ⊆ D and D ⊆ B. We have x3, x4 ∈ D ∩ B.

Let y be the vertex in S \ {x1, x0}. Then y ∈ B ∩ S. We have C ∩ D ̸= ∅,
y ∈ C and x6 ∈ (D ∩ B) ∪ {y}. Suppose x6 = y. If D ∩ B = ∅, then since G
is triangle-free and 3-connected, x2x6 ∈ E(G). But, x0x1ax5x4x3x2x6Cx0 is a
longer cycle. Let u ∈ D ∩B. Consider a u-{x0, x1, x2, x5, x6} 3-fan H. Note that
exactly one vertex of {x0, x1}, one of {x1, x2} and one of {x5, x6} is contained
in H. This implies that x0 ∈ H and x2 ∈ H. Denote the u-x0 path in H by
P0 and the u-x2 path in H by P2. But, x0P0uP2x2x3ax1x4x5x6Cx0 is a longer
cycle. Therefore, x6 ∈ D ∩ B.

Claim 2. Suppose x5x6 is non-contractible and let T be any 3-separator
containing x5x6. Then x0, x1, x2, x3, x4 lie in the same T -fragment F such that
B ⊆ F , F ⊆ B, x3, x4 ∈ F ∩ B, x1, x2 ∈ F ∩ TB and x0 ∈ F ∩ B.

Proof. Recall that TB = {x1, x2, x5}, x3, x4 ∈ B, x0, x6 ∈ B, and a is any
vertex in B \ {x3, x4}. Let F be a T -fragment intersecting x1x2. Suppose
|F ∩ {x1, x2}| = 1. Then |T ∩ {x1, x2}| = 1. We have x0 /∈ T and B ∩ T =
F ∩ TB = ∅. Hence, B ⊆ F and F ⊆ B. If x0 ∈ F ∩ B, then C ∩ F = ∅
which contradicts Lemma 5. Therefore, x0 ∈ F . This implies x1 ∈ T ∩ TB and
x2 ∈ F ∩ TB . Note that C ∩ (F ∩ B) = ∅. If F ∩ B contains a vertex u, then we
can use a u-{x1, x2, x5, x6} 3-fan to construct a longer cycle. Hence, F ∩ B = ∅.
Since G is 3-connected, x2x6 ∈ E(G). But x0x1ax5x4x3x2x6Cx0 is a longer
cycle.
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Therefore, x1, x2 ∈ F . If B ∩ T ̸= ∅, then F = ∅, which is impossible. Hence,
B ∩ T = ∅. This implies B ⊆ F and F ⊆ B. We have x3, x4 ∈ F ∩ B. Let x be
the vertex in B ∩ T other than x6. By Lemma 5, C ∩ F ̸= ∅. We have x ∈ C
and x0 ∈ (F ∩ B) ∪ {x}. Suppose x0 = x. If F ∩ B = ∅, then x2x6 ∈ E(G) since
G is triangle-free and 3-connected. But x0x1ax5x4x3x2x6Cx0 is a longer cycle.
Let u ∈ F ∩ B and consider a u-{x0, x1, x2, x5, x6} 3-fan H. Then exactly one
vertex of {x0, x1}, one of {x1, x2} and one of {x5, x6} is contained in H. This
implies that x0 ∈ H and x2 ∈ H. Denote the u-x0 path in H by P0 and the u-x2
path in H by P2. Then x0P0uP2x2x3ax1x4x5x6Cx0 is a longer cycle. Therefore,
x0 ∈ F ∩ B.

Now, we will consider the following four cases.

(I) Both x0x1 and x5x6 are non-contractible.
Let S := {y, x0, x1} be a 3-separator containing x0x1 and T := {x, x5, x6} be

a 3-separator containing x5x6. By Claims 1 and 2, let D be an S-fragment con-
taining {x2, x3, x4, x5, x6} and F be a T -fragment containing {x0, x1, x2, x3, x4}.

(a) y ∈ F ∩ S and x ∈ D ∩ T .
We have D ⊆ F and F ⊆ D. By considering an S-end in D and an S-end

in F , C has at least nine contractible edges.

(b) y = x ∈ S ∩ T .
We have D ⊆ F and F ⊆ D. By considering an S-end in D and an S-end

in F , C has at least nine contractible edges.

(c) y ∈ F ∩ S and x ∈ D ∩ T .
We have S ∩ T = ∅ which implies D ∩ F = ∅. By considering an S-end in D

and an S-end in F , C has at least eight contractible edges.

(II) x0x1 is non-contractible and x5x6 is contractible.
Let S := {x0, x1, y} be a 3-separator containing x0x1. By Claim 1, let D be a

S-fragment containing x2, x3, x4, x5, x6 such that x3, x4 ∈ D∩B, x2, x5 ∈ D∩TB

and x6 ∈ D∩B. Note that B∩S = D∩TB = B∩D = ∅ and y ∈ B∩S. Consider
an S-end B′ in D. If |RB′ | ≥ 4, then C has at least eight contractible edges.
Hence, assume |RB′ | = 3. By Lemma 6, denote RB′ := {x′

2x′
3, x′

3x′
4, x′

4x′
5} where

x′
1, x′

2, x′
5 ∈ TB′ , x′

3, x′
4 ∈ B′ and x′

1x′
2 ∈ E(C). Let a′ be a vertex in B′ \{x′

3, x′
4}.

We will use the same notation for B′ below whenever applicable. If there exists a
contractible edge in C \ (RB ∪ x5x6 ∪ RB′), then C has at least eight contractible
edges. Otherwise, by considering B′, we have the case (I) unless x′

1 = x6, x′
2 = y

and x′
3, x′

4 ∈ D. Since NG(a′) = {x′
1, x′

3, x′
5}, a′ must be x0 or x1 contradicting

(2) of Lemma 6.

(III) x0x1 is contractible and x5x6 is non-contractible.
Let T := {x5, x6, x} be a 3-separator containing x5x6. By Claim 2, let F be a

T -fragment containing x0, x1, x2, x3, x4 such that x3, x4 ∈ F ∩B, x1, x2 ∈ F ∩TB
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and x0 ∈ F ∩ B. Note that B ∩ T = F ∩ TB = B ∩ F = ∅ and x ∈ B ∩ T .
Consider an S-end B′ in F . If |RB′ | ≥ 4, then C has at least eight con-
tractible edges. Hence, assume |RB′ | = 3. If there exists a contractible edge in
C \ (RB ∪x0x1 ∪RB′), then C has at least eight contractible edges (in particular,
this includes the case when x0x−1 is contractible). Otherwise, by considering B′,
we have the case (I) unless (a) x′

1 = x0, x′
2 = x and x′

3, x′
4 ∈ F , or (b) x′

1 = x5,
x′

2 = x6 and x′
3, x′

4 ∈ F . For (a), since NG(a′) = {x′
1, x′

3, x′
5}, a′ must be x5 or

x6 contradicting (2) of Lemma 6. For (b), C has at least eight contractible edges
since x′

0x′
−1 = x4x3 is contractible.

(IV) Both x0x1 and x5x6 are contractible.
Let B′ be an S-end in B. Suppose C has exactly six contractible edges.

Then |RB′ | = 3, and both x0x1 and x5x6 belong to RB′ . Therefore, x′
1 =

x2, x′
2 = x1, x′

3 = x0, x′
4 = x6, x′

5 = x5 and C = x0x1x2x3x4x5x6x0. But then
x1ax3x4x5a′x0x6x2x1 is a longer cycle. We can conclude that C has at least
seven contractible edges.

Suppose C has more than one non-contractible edges. If the cases (I), (II),
(III) occur, then C has at least eight contractible edges. Therefore, we can
assume that both x0x1 and x5x6 are contractible.

(a) x0x1 ∈ RB′ and x5x6 ∈ RB′ .
Then C has exactly one non-contractible edge contradicting the above as-

sumption.

(b) x0x1 /∈ RB′ and x5x6 /∈ RB′ .
Then C has at least eight contractible edges.

(c) x0x1 ∈ RB′ and x5x6 /∈ RB′ .
If |RB′ | ≥ 4, then C has at least eight contractible edges. Hence, assume

|RB′ | = 3. Since x′
3, x′

4 ∈ B, x′
1x′

2 is non-contractible and x0x1 is contractible,
only the following two cases are possible.

(i) x′
1 = x2, x′

2 = x1, x′
3 = x0. Since C has more than one non-contractible

edges, x′
4 ̸= x6 and x′

5 ̸= x6. If x′
5x′

6 is contractible, then C has at least eight
contractible edges. If x′

5x′
6 is non-contractible, then we have the case (III) for

B′.
(ii) x′

5 = x1, x′
4 = x0, x′

6 = x2. If x′
1x′

0 is contractible, then we have the case
(III) for B′. If x′

1x′
0 is non-contractible, then we have the case (I) for B′.

(d) x0x1 /∈ RB′ and x5x6 ∈ RB′ .
If |RB′ | ≥ 4, then C has at least eight contractible edges. Hence, assume

|RB′ | = 3. Since x′
3, x′

4 ∈ B, x′
1x′

2 is non-contractible and x5x6 is contractible,
we must have x′

5 = x5, x′
4 = x6. Since C has more than one non-contractible

edges, x′
3 ̸= x0 and x′

2 ̸= x0. We divide into two cases.
(i) x′

1 ≠ x0. If x′
1x′

0 is contractible, then C has at least eight contractible
edges. If x′

1x′
0 is non-contractible, then we have the case (II) for B′.
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(ii) x′
1 = x0. Let Q be an x′

2-{x1, x2} path in G − x′
1 − x′

5. Note that
Q ∩ B = Q ∩ B′ = ∅. If x1 ∈ Q, then x2 /∈ Q and x1x2x3x4x5x′

4x′
3a′x′

1x′
2Qx1

is a longer cycle. If x2 ∈ Q, then x1 /∈ Q and x2x1x4x3ax5a′x′
3x′

4x′
1x′

2Qx2 is a
longer cycle.

This completes the proof of the theorem.

The lower bound of seven in Theorem 12 is best possible, as demonstrated
by the family of graphs in Figure 1a. Now, we are ready to characterize all
triangle-free 3-connected graphs having a longest cycle that contains exactly
six/seven contractible edges.

Theorem 13. Let G be a triangle-free 3-connected graph and C be a longest
cycle in G. Then |E(C)| ̸= 3, 4, 5, 7, and |E(C)| = 6 if and only if G ∼= K3,k

(k ≥ 3).

Proof. Obviously, |E(C)| ̸= 3 as G is triangle-free, and |E(C)| = 6 if G ∼= K3,k

(k ≥ 3).
Suppose |E(C)| = 4. Let C := x1x2x3x4x1. Since G is 3-connected and

triangle-free, there exists a vertex x in V (G) \ V (C). Consider any x-C 3-fan F .
Then we can use F to construct a longer cycle, which is a contradiction.

Suppose |E(C)| = 5. Let C := x1x2x3x4x5x1. Since G is 3-connected and
triangle-free, there exists a vertex x in V (G) \ V (C). Consider any x-C 3-fan F .
Then we can use F to construct a longer cycle, which is a contradiction.

Suppose |E(C)| = 6. Let C := x1x2x3x4x5x6x1. Suppose V (G) = V (C).
Since G is 3-connected and triangle-free, x1x4, x2x5, x3x6 ∈ E(G) and G ∼=
K3,3. Now, let x ∈ V (G) \ V (C). Consider an x-C 3-fan Fx. Since C is a
longest cycle, either Fx consists of three edges xx1, xx3, xx5 or Fx consists of
three edges xx2, xx4, xx6. Without loss of generality, assume the former. If
V (G) = V (C) ∪ x, then x1x4, x2x5, x3x6 ∈ E(G) and G ∼= K3,4. Now, let y be
any vertex in V (G) \ (V (C) ∪ x). Consider a y-(C ∪ x) 3-fan Fy. If x ∈ Fy,
then x1, x2, x3, x5, x6 /∈ Fy for otherwise we can construct a longer cycle. This
is impossible. Therefore, x /∈ Fy and Fy is a y-C 3-fan. Suppose Fy consists of
the three edges yx2, yx4, yx6. Then x1xx3x2yx4x5x6x1 is a longer cycle, which
is a contradiction. Hence, Fy consists of the three edges yx1, yx3, yx5. Note that
G − V (C) is independent and x1x4, x2x5, x3x6 ∈ E(G). Therefore, G ∼= K3,k

(k ≥ 5).
Suppose |E(C)| = 7. Let C := x1x2x3x4x5x6x7x1. Suppose V (G) = V (C).

Without loss of generality, assume x1x4 ∈ E(G). Then x1x5, x4x7 /∈ E(G).
Now, x5x2, x7x3 ∈ E(G). Since G is triangle-free, this implies x6 has degree
two, which is impossible. Now, let x ∈ V (G) \ V (C). Consider a x-C 3-fan
Fx. Since C is a longest cycle, without loss of generality, assume Fx consists
of three edges xx1, xx3, xx6. If x2x5 ∈ E(G), then x1x2x5x4x3xx6x7x1 is a
longer cycle. Therefore, x5x2 /∈ E(G) and by symmetry x4x7 /∈ E(G). Suppose
V (G) = V (C)∪x. Since G is 3-connected, x5x1, x4x1 ∈ E(G). But then, x1x4x5
is a triangle, which is impossible. Now, let y be any vertex in V (G) \ (V (C) ∪ x)
and Fy be a y-(C ∪ x) 3-fan. If x ∈ Fy, then x2, x3, x6, x7 /∈ Fy for otherwise
we can construct a longer cycle. Hence, x4, x5 ∈ Fy. Since C is a longest

17



cycle, Fy consists of three edges yx, yx4, yx5. This is impossible as yx4x5 is a
triangle. Therefore, x /∈ Fy and Fy is a y-C 3-fan consisting of three y-C edges.
Suppose x2 ∈ Fy. Then x1, x3 /∈ Fy. If x4 ∈ Fy, then x1xx3x2yx4x5x6x7x1 is a
longer cycle. If x5 ∈ Fy, then x1x2yx5x4x3xx6x7x1 is a longer cycle. We have
x6, x7 ∈ Fy, which is impossible, since yx6x7 is a triangle. Therefore, x2 /∈ Fy

and by symmetry, x7 /∈ Fy. We must have x1 ∈ Fy for otherwise we can form
a longer cycle using Fy. If x4 ∈ Fy, then x1x2x3xx6x5x4yx1 is a longer cycle.
Hence, x4 /∈ Fy and by symmetry, x5 /∈ Fy. Therefore, Fy consists of three
edges yx1, yx3, yx6. Note that G − C is independent. If x5x2 ∈ E(G), then
x1x2x5x4x3xx6x7x1 is a longer cycle. Therefore, x5x2 /∈ E(G) and by symmetry,
x4x7 /∈ E(G). Since G is 3-connected, x5x1, x4x1 ∈ E(G). But then, x1x4x5 is
a triangle, which is impossible.

Theorem 14. Let G be a triangle-free 3-connected graph. Then G has a longest
cycle containing exactly six contractible edges if and only if G ∼= K3,k (k ≥ 3).

Proof. If G ∼= K3,k, then all edges are contractible and every longest cycle
contains exactly six edges. Suppose G has a longest cycle C containing exactly
six contractible edges. By Theorem 12, C does not contain any non-contractible
edges. Therefore, |E(C)| = 6 and G ∼= K3,k by Theorem 13.

Theorem 15. Let G be a triangle-free 3-connected graph. Then G has a longest
cycle containing exactly seven contractible edges if and only if G ∼= G3,3,p,q or
G ∼= G3,3,p,q − b2

1a2
2 (see Figure 1a).

Proof. As shown in Lemma 8, both G3,3,p,q and G3,3,p,q − b2
1a2

2 have a longest
cycle containing exactly seven contractible edges.

Suppose G has a longest cycle C containing exactly seven contractible edges.
By Theorem 13, |E(C)| ≥ 8 and thus C contains at least one non-contractible
edge. By Theorem 12, C has exactly one non-contractible edge. Therefore,
|E(C)| = 8.

Let C := x1x2 . . . x8x1 and define S := {V (e) : e ∈ E(C)}. For any S-end
B, define RB := E(C) ∩ (EG(B, TB) ∪ E(B)). By Lemmas 2 and 5, RB contains
at least three edges, all of which are contractible by Lemma 4.

Suppose for every S-end B, |RB | ≥ 4. Then C has at least eight contractible
edges. Therefore, assume that there is an S-end B such that |RB | = 3. Let B′

be an S-end in B. We will use the notation described in Lemma 6 except x8
instead of x0 (see also the proof of Theorem 12) .

(I) |RB′ | = 3. Then x′
1 = x2, x′

2 = x1, x′
3 = x8, x′

4 = x7, x′
5 = x6. But

x1x2a′x8x7x6x5x4x3ax1 is a longer cycle.
(II) |RB′ | = 4. Note that V (B′) = {x6, x7, x8}.
(a) B \ B′ = ∅. Since G is 3-connected and triangle-free, x7x2, x8x5 ∈ E(G).

This implies x6x1 ∈ E(G), and G ∼= G3,3,0,q or G ∼= G3,3,0,q − b2
1a2

2.
(b) B \ B′ ≠ ∅. Consider any vertex b ∈ B \ B′. Let F be any b-

{x2, x1, x8, x7, x6, x5} 3-fan. Since C is a longest cycle, there are four possibilities:
(i) x2, x8, x6 ∈ F , (ii) x2, x8, x5 ∈ F , (iii) x2, x7, x5 ∈ F and (iv) x1, x7, x5 ∈ F .
For (i) and (ii), denote the b-x2 path in F by P2 and the b-x8 path in F by P8.
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Then x1x2P2bP8x8x7x6x5x4x3ax1 is a longer cycle. For (iii), denote the b-x2
path in F by P2 and the b-x7 path in F by P7. Then x1x2P2bP7x7x6x5x4x3ax1
is a longer cycle. Therefore, only (iv) is possible, and since C is a longest cycle, F
consists of the three edges bx1, bx7, bx5. Since G is triangle-free, B − B′ is inde-
pendent. Now, x8x5 ∈ E(G). If x6x2 ∈ E(G), then x1ax3x4x5x8x7x6x2x1 is a
longer cycle. Hence, x6x1 ∈ E(G). Since G − x1 − x5 is connected, x7x2 ∈ E(G).
Therefore, G ∼= G3,3,p,q or G ∼= G3,3,p,q − b2

1a2
2 where p ≥ 1.

6 3-Connected Graphs of Girth at least 5
The previous section gives us a lower bound of min{|E(C)|, 7} for the number
of contractible edges in a longest cycle C of any triangle-free 3-connected graph.
Surprisingly, if the girth increases from 4 to 5, for any longest cycle, at least 1

12
of its edges are contractible as shown by Theorem 18 below.

First, we introduce the concept of cross-free and closed separators studied
by Kriesell [19]. Let S, T ∈ T. We say S crosses T if S intersects at least two
components of G − T . It is easy to see that if S crosses T , then T intersects
every component of G − S. This implies that S crosses T if and only if T crosses
S, and that S crosses T if and only if S intersects every component of G − T .
We call a subset S of T cross-free if S does not cross T for all S, T ∈ S. We say
that S is closed if, for all S, T ∈ S, there exists a component C of G − S and a
component D of G − T such that C ∩ D ̸= ∅ and C ∩ D ̸= ∅.

Consider a set U of subsets of V (G). We say that a subset S of T covers U
if, for every A ∈ U, there exists an S ∈ S such that A ⊆ S. S exclusively covers
U if S covers U and A ⊈ S for every A ∈ U and every S ∈ T \ S. Under certain
conditions on U, a closed exclusive cover contains a cross-free cover.

Lemma 16. (Lemma 3 of [19]) Let G be a graph and let U be a set of subsets of
V (G) such that G[A] is complete for every A ∈ U. Suppose that S ⊆ T is closed
and exclusively covers U. Then there exists a cross-free subset R ⊆ S such that
R covers U.

A poset (partially ordered set) (X, ≤) is called a tree order if it has a smallest
element and two elements have a common upper bound if and only if they are
comparable in X. The following theorem shows that we can construct a tree
order on a cross-free subset of T.

Theorem 17. (Theorem 1 of [19]) Let G be a graph and let S ⊆ T be cross-free.
Suppose that A is an S-end. Then for every T ∈ T there exists a (unique)
component C(T ) of G − T containing A, and S ≤ T :⇔ C(S) ⊆ C(T ) for
S, T ∈ S defines a tree order (S, ≤) with smallest element NG(A).

Finally, we are ready for the main result of this section.

Theorem 18. Every longest cycle C of a 3-connected graph of girth at least 5
contains at least |E(C)|

12 contractible edges.
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Proof. Let G be a 3-connected graph of girth at least 5 and Z be a longest cycle
in G. Let X be the set of non-contractible edges in E(Z) and let Y := E(Z) \ X.
Denote U = {V (e) : e ∈ X} and S to be the set of all 3-separators containing
an edge in X. Note that S is closed by Lemma 1 of [19]. Since Z is a longest
cycle, each 3-separator of G induces at most one edge in X. By Lemma 16 and
by keeping exactly one 3-separator which contains e for all e ∈ X, there exists a
cross-free set of 3-separators R ⊆ S such that every edge e of X is covered by
exactly one member of R, denoted by Te.

Fix an R-end B and denote by Ce the component of G − Te that contains
B. By applying Theorem 17 to R and B, let ≤ be the tree order on R defined
by Te ≤ Tf :⇔ Ce ⊆ Cf . Let Ze be the set of edges of Z with at least one
endvertex in Ce. Denote by fe the (end-)edge of Ze incident with V (e) and by
ge the edge of Ze incident with the vertex in Te \ V (e). We observe that Te < Tf

for all f ∈ Ze ∩ X. More specifically, we define the vertices ae, be, ce, pe, qe by
aebe = e, aepe = fe, ceqe = ge and ce ∈ Te. As the edges of Z incident with a
vertex of some R-end are contractible by Lemma 4 and Ce always contains an
R-end, we see that Ze contains a non-trivial subpath of contractible edges.

Claim 1. For e, f, g ∈ X with Te ≤ Tf ≤ Tg, we have Te ∩ Tg ⊆ Tf .

Proof. If Te ∩ Tg = ∅, then the result follows. Let x ∈ Te ∩ Tg. Since x has a
neighbor in Ce ⊆ Cf and a neighbor in Cg ⊆ Cf , x ∈ Tf .

Claim 2. For e ∈ X with f := fe ∈ X and g ∈ Ze ∩ X such that ce ∈ Tg,
consider an h ∈ X with Te ≤ Th ≤ Tf , Tg. Then h ∈ {e, f, ge}.

Proof. By Claim 1, ae ∈ Te ∩ Tf ⊆ Th and ce ∈ Te ∩ Tg ⊆ Th. If be ∈ Th, then
h = e. Otherwise, h must be an edge such that one endvertex is one of ae, ce

and the other one is in Ce; that is, h ∈ {fe, ge}.

Claim 3. Suppose f := fe ∈ X. Then Tf ̸= {ae, pe, ce}.

Proof. Suppose Tf = {ae, pe, ce}. Note that Te ∩ Tf = {ae, ce}, Te ∩ Cf = {be},
Tf ∩ Ce = {pe} and Te ∩ Cf = Tf ∩ Ce = ∅. Suppose D := Ce ∩ Cf = ∅. Since
be is adjacent to a vertex in Ce, bepe is an edge. But ae, pe, be form a triangle,
a contradiction. Hence, D ̸= ∅. Since Z is a longest cycle, Z ∩ (Ce ∩ Cf ) ̸= ∅
and Z ∩ (Ce ∩ Cf ) ̸= ∅. Therefore, Z ∩ D = ∅. Take any x ∈ D. Consider an
x-{ae, be, ce, pe} 3-fan F . We have F ∩{ae, be, ce, pe} = {be, ce, pe}, for otherwise,
we can use F to construct a longer cycle than Z. Since Z is a longest cycle, the
x-be path and x-pe path in F are both edges. But then xbeaepe is a 4-cycle, a
contradiction.

Claim 4. Suppose that e, f := fe and g := ge are contained in X, and Tf and Tg

are comparable according to ≤. Then Tg ≤ Tf , Tg = {ce, qe, ae}, Cg = Ce \ {qe},
beqe ∈ E(G) and aece /∈ E(G).

20



Proof. Suppose, on the contrary, that Tf ≤ Tg. Since Te ≤ Tf , by Claim 1,
ce ∈ Te ∩ Tg ⊆ Tf . Therefore, Tf = {ae, pe, ce}, which is impossible by Claim 3.
This proves Tg ≤ Tf . By Claim 1, ae ∈ Te ∩Tf ⊆ Tg. Therefore, Tg = {ce, qe, ae}.
Note that Te ∩ Tg = {ae, ce}, Te ∩ Cg = {be} and Ce ∩ Tg = {qe}. Denote
D := Ce ∩Cg. Since Z is a longest cycle, Z ∩(Ce ∩Cg) ̸= ∅ and Z ∩(Ce ∩Cg) ̸= ∅.
Hence, Z ∩ D = ∅. Suppose D ̸= ∅ and take any x ∈ D. Consider an x-
{ae, be, ce, qe} 3-fan F . Then we can use F to construct a longer cycle than Z, a
contradiction. Therefore, D = ∅ which implies Cg = Ce \ {qe}, beqe ∈ E(G) and
aece /∈ E(G).

Denote W to be the set of edges e in X for which Te branches, that is, Te

has more than one upper neighbor in the tree order. Observe that a member
of a tree order branches if (and only if) it is the infimum of two incomparable
members. Since the number of R-ends distinct from the fixed end B is at least
|W | + 1, there exists an injection α from W to these ends. For every e ∈ W , we
choose an edge β(e) from Z with at least one endvertex in α(e), and as any such
edge is contractible by Lemma 4, this produces an injection β : W → Y .

Claim 5. Consider two distinct e, e′ ∈ X such that ge = ge′ with f := fe ∈ X
and Te′ ≰ Te. Then Te ≤ Te′ and Te branches.

Proof. Since qe = qe′ ∈ Ce ∩ Ce′ , we have Te ∩ Ce′ ̸= ∅ or Te′ ∩ Ce ̸= ∅. As Te

and Te′ are cross-free, Te ∩ Ce′ = ∅ or Te′ ∩ Ce = ∅ implying that Ce′ ⊆ Ce or
Ce ⊆ Ce′ as Ce and Ce′ are connected. Hence, Te and Te′ are comparable, and
Te ≤ Te′ . This implies e′ ∈ Ze ∩ X. By applying Claim 2 with g = e′, we see
that for all h ∈ X with Te ≤ Th ≤ Tf , Te′ , h is one of e, f, ge. Now, h cannot be
ge for otherwise Tge

= Tge′ > Te′ . So, h is one of e, f . Suppose Tf and Te′ are
comparable. If Te′ ≤ Tf , then by taking h = e′, we have e′ = f . We conclude
that Tf ≤ Te′ . By Claim 1, ce = ce′ ∈ Te ∩ Te′ ⊆ Tf . But then Tf = {ae, pe, ce},
which is impossible by Claim 3. Therefore, Tf and Te′ are incomparable. The
infimum Th of Tf and Te′ (which is at least Te) is in fact equal to Te. Hence, Te

branches.

We now describe a set of conditions on the edges around some Te, which
implies the existence of a short cycle. Let e ∈ X such that f := fe, g := ge ∈ X
and Te does not branch. By Claim 2, the infimum of Tf , Tg is one of Te, Tf , Tg,
and thus Tf , Tg are comparable. By Claim 4, Tg ≤ Tf , Tg = {ce, qe, ae},
Cg = Ce \ {qe}, and beqe ∈ E(G). We then advance by considering g instead of
e. A new edge h := fg comes into play, whereas gg equals to f .

Let us assume that h ∈ X and Tg does not branch. By Claim 2, the infimum
of Th, Tf is one of Tg, Th, Tf , and thus Th, Tf are comparable. By Claim 4,
Tf ≤ Th, Tf = {ae, pe, qe}, Cf = Cg \ {qg = pe}, and bgqg = cepe ∈ E(G). This
produces a short cycle, cepeaebeqe, unfortunately not short enough. But we can
try to advance once more by considering f instead of g, e. A new edge i := ff

shows up, whereas gf = h. Let us assume that i ∈ X and Tf does not branch.
As above, we have Ch = Cf \ {qf }, and bf qf = aeqf ∈ E(G). Now, we obtain a
short cycle beaeqf qe, contradicting the girth assumption.
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What are the assumptions that lead to this contradiction? We have assumed
that e and its two successors f, i in Ze belong to X, and g and its successor h in
Ze belong to X. We also assumed that Te, Tf , Tg do not branch. Therefore, one
of these assumptions must fail. The idea is to map the non-contractible edge e
to a contractible edge among the four edges f, g, h, i named above (if any), and
to map it to a contractible edge with endvertices in α(e), α(f), α(g) if Te, Tf , Tg,
respectively, branch. The problem is to keep the preimages of this mapping φ
small.

First, we order the edges of X linearly by an order ≤′ such that we get a
depth first search order for the corresponding separators in the tree order ≤ (i.e.
all predecessors of some Te in the tree order are predecessors of e with respect
to ≤′). Then we assign φ(e) step by step according to ≤′ and ensure that when
assigning e to φ(e), all e′ with Te′ ≤ Te have been assigned before. Here comes
the assignment rules. The objects are defined as before. In every step, we list
the preconditions where earlier subrules (of higher priority) are not applicable.

(i) e ∈ X; if f ∈ Y , set φ(e) := f .

(ii) e, f ∈ X; if e ∈ W , set φ(e) := β(e).

(iii) e, f ∈ X; Te does not branch; if g ∈ Y , set φ(e) := g.

(iv) e, f, g ∈ X; Te does not branch; if g ∈ W , set φ(e) := β(g).

(v) e, f, g ∈ X; Te, Tg do not branch; if h ∈ Y , set φ(e) := h.

(vi) e, f, g, h ∈ X; Te, Tg do not branch; if f ∈ W , set φ(e) := β(f).

(vii) e, f, g, h ∈ X; Te, Tg, Tf do not branch. Then i ∈ Y , set φ(e) := i.

The type of e is the subrule among (i) to (vii) that actually applies to e.
Obviously, φ maps from X to Y . We carry out a moderately simple analysis
to show that the cardinalities of the preimages of φ are bounded above by a
constant.

Let us call e ∈ X dependent on j ∈ Z if j = ge and e is of type (iii), (iv) or
(v). If ge = ge′ for some Te′ < Te and fe′ ∈ X, then Te′ branches by Claim 5
(with swapped roles of e, e′). This implies that e′ is of type (i) or (ii), and φ(e′)
is one of fe′ , β(e′). Hence, for every j ∈ Z, there is at most one edge e ∈ X
dependent on j.

Now, fix an arbitrary k ∈ Y and look at an e ∈ X with φ(e) = k. If e is of
type (i) or (vii), then e is within distance one from k (which applies to only four
edges e on Z). If e is of type (iii) or (v), then k is equal or adjacent to an edge j
where e is the unique edge dependent on j, which is possible for at most three
edges e on Z. If e is of type (ii) or (vi), then the unique preimage of φ(e) under
β is either equal or adjacent to e (which applies to only three edges e on Z).
Finally, if e is of type (iv), then the unique preimage of φ(e) under β is equal
to j where e is the unique edge dependent on j, which is possible for at most
one edge e on Z. Thus, |φ−1(k)| ≤ 4 + 3 + 3 + 1 = 11 implying |X| ≤ 11|Y |.
Therefore, |Y | ≥ |Z|

12 and the proof of the theorem is complete.
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7 Summary
We gather all the results of this paper on f(k) and conclude with some open
problems.

For all n ≥ 5, consider the family of graphs Dn, which is constructed from
the square of paths together with an extra vertex x.

V (Dn) :={x, x1, x2, . . . , xn}
E(Dn) :={xixi+1 : 1 ≤ i ≤ n − 1} ∪

{xixi+2 : 1 ≤ i ≤ n − 2} ∪
{x1x4, xn−3xn, xx1, xx2, xxn−1, xxn}

It is easy to see that xx1x2 . . . xnx is a Hamiltonian cycle that contains exactly
six contractible edges xx1, x1x2, x2x3, xn−2xn−1, xn−1xn, xnx. The bound in
Theorem 7 is therefore tight for 3-connected graphs that have minimum degree
at least 4.

triangle-free δ(G) ≥ 3
2 k − 1

k = 3 f(k) = 7 ▷ Thms. 12 and 15 f(k) = 6 ▷ Thm. 7 and Dn

k ≥ 4 f(k) ≥ 6 ▷ Thm. 7 f(k) ≥ 6 ▷ Thm. 7
except G4,k and G5,k

f(k) ≤ 2k + 2 ▷ Lem. 9 f(k) ≤ 2k + 2 ▷ Lem. 11

Table 1: Results on f(k).

Problem 1. Characterize all 3-connected graphs with minimum degree at least
4 that contain a longest cycle with exactly six contractible edges.

Problem 2. For every k ≥ 4, find all k-connected graphs with minimum degree
at least 3

2 k − 1 that contain a longest cycle with less than eight contractible
edges.

Problem 3. Improve the lower and upper bounds for f(k).

Problem 4. For 3-connected graphs of girth at least 5, determine the supremum
for k ∈ R such that every longest cycle C contains at least k|E(C)| contractible
edges.
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