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Abstract

An edge in a k-connected graph G is called k-contractible if the graph
G/e obtained from G by contracting e is k-connected. Generalizing earlier
results on 3-contractible edges in spanning trees of 3-connected graphs, we
prove that (except for the graphs Kk+1 if k ∈ {1, 2}) (a) every spanning
tree of a k-connected triangle free graph has two k-contractible edges, (b)
every spanning tree of a k-connected graph of minimum degree at least
3
2 k− 1 has two k-contractible edges, (c) for k > 3, every DFS tree of a k-
connected graph of minimum degree at least 3

2 k− 3
2 has two k-contractible

edges, (d) every spanning tree of a cubic 3-connected graph nonisomorphic
to K4 has at least 1

3 |V (G)| − 1 many 3-contractible edges, and (e) every
DFS tree of a 3-connected graph nonisomorphic to K4, the prism, or the
prism plus a single edge has two 3-contractible edges. We also discuss in
which sense these theorems are best possible.

AMS classification: 05c40, 05c05.
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1 Introduction

All graphs throughout are assumed to be finite, simple, and undirected. For
terminology not defined here we refer to [2] or [1]. A graph is called k-connected
(k ≥ 1) if |V (G)| > k and G − T is connected for all T ⊆ V (G) with |T | < k.
Let κ(G) denote the connectivity of G, that is, the largest k such that G is
k-connected. A set T ⊆ V (G) is called a smallest separating set if |T | = κ(G)
and G−T is disconnected. By T(G) we denote the set of all smallest separating
sets of G. An edge e of a k-connected graph G is called k-contractible if the
graph G/e obtained from G by contracting e, that is, identifying its endvertices
and simplifying the result, is k-connected. No edge in Kk+1 is k-contractible,
whereas all edges in K` are if ` ≥ k+2, and it is well-known and straightforward
to check that, for a noncomplete k-connected graph G, an edge e is not k-
contractible if and only if κ(G) = k and V (e) ⊆ T for some T(G).

There is a rich literature dealing with the distribution of k-contractible edges
in k-connected graphs (see the surveys [6, 5]), with a certain emphasis on the
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case k = 3. In [4], 3-connected graphs that admit a spanning tree without any
3-contractible edge have been introduced; these were called foxes (see Figure 1).
For example, every wheel G is a fox, which is certified by the spanning star Q
that is centered at the hub of the wheel. However, Q is as far from being a DFS
(depth-first search) tree as it can be, and one could ask if the property of being
a fox can be certified by some DFS tree at all. The answer is no, as it has been
shown in [4] that every DFS tree of every 3-connected graph nonisomorphic to
K4 does contain a 3-contractible edge. Here we generalize the latter result as
follows.

Theorem 1 Every DFS tree of every 3-connected graph nonisomorphic to K4,
the prism K3 ×K2, or the unique graph (K3 ×K2)+ obtained from K3 ×K2 by
adding a single edge contains at least two 3-contractible edges.

Theorem 1 is best possible in the sense that there is an infinite class of 3-
connected graphs admitting a DFS tree with only two 3-contractible edges (see
Figure 1c).
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(a) The prism K3 × K2,
which is no fox. Dashed
edges are 3-contractible.
Fat edges depict a DFS
tree that contains ex-
actly one 3-contractible
edge (namely, e).
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(b) The fox (K3 ×
K2)+ and a DFS-tree
of it containing exactly
one 3-contractible edge
(namely, e).
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(c) An infinite family of foxes ob-
tained by enlarging the lower left
part horizontally. Every fox in
this family has a DFS tree (fat
edges) that contains exactly two
3-contractible edges.

Figure 1: The two exceptional graphs of Theorem 1 on six vertices and an
infinite family of foxes showing that Theorem 1 is sharp.

Our proofs are based on methods introduced by Mader in [8], generalizing the
concept of critical connectivity. This approach makes it possible to generalize
some of the earlier results on foxes from 3-connected graphs to certain classes
of k-connected graphs.

Extending the definition above, let us define a k-fox to be a k-connected graph
admitting a spanning tree without k-contractible edges. For k ≥ 4, there are
graphs G without k-contractible edges at all, and every such G is, trivially, a
k-fox; thus, the question is interesting only under additional constraints to G
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which force k-contractible edges. Classic constraints are to forbid triangles or
to bound the vertex degrees from below: In [10] it has been proven that every
triangle free k-connected graph contains a k-contractible edge, and in [3], it
has been shown that every k-connected graph of minimum degree at least 5k−3

4
must contain a k-contractible edge (unless G is isomorphic toKk+1 when k ≤ 3).
These results do have a common root in terms of generalized criticity [8], and
so it is perhaps not surprising that the following new result, Theorem 2, follows
from a statement on special separating sets (Theorem 7 in Section 2).

Theorem 2 Let G be a k-connected graph (except for Kk+1 if k ∈ {1, 2}) that
is triangle free or of minimum degree at least 3

2k− 1. Then every spanning tree
of G contains at least two k-contractible edges.

This implies that k-foxes must contain triangles as well as vertices of “small” de-
gree. In order to show that the bound in Theorem 2 is best possible, we exhibit
k-connected graphs of minimum degree 3

2k −
3
2 (and necessarily containing tri-

angles) that admit a spanning tree with no k-contractible edge. For odd k ≥ 3,
take the lexicographic product of any cycle and K(k−1)/2 and add an additional
vertex plus all edges connecting it to the others. (So for k = 3 we get back the
wheels.) The resulting graph is k-connected and of minimum degree 3

2k−
3
2 , and

the spanning star centered at the additional vertex has no k-contractible edge.
The same construction works, more generally, if instead of a cycle we start with
any critically 2-connected graph, that is, a 2-connected graph G such that for
every vertex x the graph G− x is not 2-connected. However, for DFS trees the
situation changes once more:

Theorem 3 For k > 3, every DFS tree of every k-connected graph of minimum
degree at least 3

2k −
3
2 contains at least two k-contractible edges.

Observe that the statement of Theorem 3 remains true for k = 3 by Theorem 1
unless the graph is one of the three exceptions listed there.

Theorem 2 provides a particularly simple proof that every spanning tree of a
cubic 3-connected graph nonisomorphic to K4 or the prism has at least two 3-
contractible edges (see Corollary 2 in Section 2); however, taking more external
knowledge into account we can improve two to the following sharp linear bound
in terms of |V (G)| (end of Section 2).

Theorem 4 Every spanning tree of every cubic 3-connected graph nonisomor-
phic to K4 contains at least 1

3 |V (G)| − 1 many 3-contractible edges. The bound
is sharp, also when restricted to DFS trees.

We also show sharpness for Theorem 4. Obtain a graph G′ from any cubic
3-connected graph G by replacing every vertex x with a triangle ∆x such that,
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for every incident edge e of x, the end vertex x of e is replaced with a unique
vertex of ∆x. Clearly, G′ is cubic and 3-connected. Let T be a spanning tree of
G, and let T ′ be formed by all edges of T together with the edges of a spanning
path of each ∆x. Then T ′ is a spanning tree of G′ with exactly 1

3 |V (G′)| − 1
many 3-contractible edges, as no edge in a triangle is 3-contractible. When
restricted to DFS trees, assume in addition that G is Hamiltonian and let T be
a Hamiltonian path of G. Then the paths of each ∆x can be chosen such that
T ′ is a Hamiltonian path of G′ and we see that there is no improvement for DFS
trees in general.

2 Contractible edges in spanning trees

Let G be a graph and T(G) be the set of its smallest separating sets. For
T ∈ T(G), the union of the vertex sets of at least one but not of all components
of G − T is called a T -fragment. Obviously, if F is a T -fragment then so is
F

G := V (G) \ (T ∪ F ), where the index G is always omitted as it will be clear
from the context. Moreover, F = F . Fragments have the following fundamental
property.

Lemma 1 [8] Let B be a TB-fragment and F be a T -fragment of a graph G
such that B ∩F 6= ∅. Then |B ∩T | ≥ |F ∩TB |, and if equality holds then B ∩F
is a (B ∩ T ) ∪ (F ∩ TB) ∪ (T ∩ TB)-fragment.

Proof. Let k := κ(G) and observe that NG(B ∩F ) separates G and is a subset
of X := (B ∩ T ) ∪ (F ∩ TB) ∪ (T ∩ TB). Therefore, k ≤ |NG(B ∩ F )| ≤ |X| =
|B ∩ T | + |TB | − |TB ∩ F | = |B ∩ T | + k − |TB ∩ F |. Since k cancels on both
sides, rearranging the terms yields the desired inequality, and equality implies
NG(B ∩ F ) = X. �

We will not give explicit references to Lemma 1, but mark estimations or con-
clusions based on it by ?; for example, we write |F ∩ T ′| ≥? |F ′ ∩ T | if F is
a T -fragment and F ′ is a T ′-fragment such that F ∩ F ′ 6= ∅ to indicate that
the inequality is a straightforward application of Lemma 1. This convention
also applies to the following slightly more complex but standard application of
Lemma 1: If both B ∩ F and B ∩ F are nonempty, then, by Lemma 1, they
are both fragments. In many cases, B will be an inclusion minimal fragment
with respect to some property, F will be a T -fragment such that T contains a
vertex from B, and F ∩ B 6= ∅ will have the same property as B (but is no
fragment by minimality): In such a scenario, we infer |B ∩ T | ≥ |F ∩ TB | + 1,
|F ∩ TB | ≥ |B ∩ T |+ 1, and F ∩B = ∅ from Lemma 1, and again refer to it by
?, for example, by writing |B ∩ T | ≥? |F ∩ TB |+ 1, |F ∩ TB | ≥? |B ∩ T |+ 1, or
F ∩B =? ∅, respectively.

Another fact that will be used throughout is the following.
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Lemma 2 Let B be a TB-fragment and F be a T -fragment of a graph G such
that F ⊆ TB. Then none of the sets B ∩ T , B ∩ T and F ∩ TB is empty.

Proof. Since TB is a smallest separating set, every vertex of F ⊆ TB has
a neighbor in B as well as in B. Since these neighbors may only be in T ,
B ∩ T 6= ∅ 6= B ∩ T . The same reasoning for T implies that every component
of F is adjacent to all vertices of T . Since B ∩ T 6= ∅ 6= B ∩ T , every such
component contains a vertex from TB . �

Now let us fix a subset S of the power set P(V (G)). We call a T -fragment
F a T -S-fragment if S ⊆ T for some S ∈ S. In that case, again, F is a T -
S-fragment, too; F is called a T -S-end if there is no T ′-S-fragment properly
contained in it, and F is called a T -S-atom if there does not exist a T ′-S-
fragment with fewer than |F | vertices. Observe that if F is a T -fragment then
necessarily T = NG(F ), so that T can be reconstructed from F ; therefore, one
might omit T in the notion, which defines the terms fragment, S-fragment, S-
end, and S-atom. These definitions and the following theorem are from [8] and
have their roots back in a 1970 paper by Watkins where it was proven that the
degrees of a vertex transitive k-connected graph are at most 3

2k − 1 [11].

Theorem 5 [8] Let G be a graph, S ⊆ P(V (G)), and A be a TA-S-atom of G.
Suppose that there exists an S ∈ S and a T ∈ T(G) such that S ⊆ T \ A and
T ∩A 6= ∅. Then A ⊆ T and |A| ≤ |T \ TA|/2.

A fragment of minimum size is usually called an atom of G. Consequently, for
S := {∅}, we obtain the following specialization of Theorem 5, which appeared
already in [9].

Theorem 6 [9] Let G be a graph and A be a TA-atom of G. Suppose that
A ∩ T 6= ∅ for some T ∈ T(G). Then A ⊆ T and |A| ≤ |T \ TA|/2 ≤ κ(G)/2.

We start our considerations with the following result.

Theorem 7 Let Q be a spanning tree of a graph G of connectivity k, set S :=
{V (e) : e ∈ E(Q)}, suppose that all S-fragments have cardinality at least k−1

2 ,
and let B be an S-end. Then |B| = k−1

2 (in particular, k is odd) or all edges e
from Q with |V (e) ∩B| = 1 are k-contractible.

Proof. Let a := k−1
2 and TB := NG(B). Observe that the existence of B implies

k > 1. Since Q is a spanning tree, there exists an edge e with |V (e)∩B| = 1. If
all such edges e are k-contractible then we are done. Otherwise, one such edge
e is not k-contractible; there exists a T ∈ T(G) with V (e) ⊆ T , and we consider
a T -fragment F . Now B and F are S-fragments, so that |B|, |F |, |B|, |F | ≥ a,
and it suffices to prove that |B| ≤ a.
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Observe that V (e) ∩ TB 6= ∅, so |T ∩ TB | ≥ 1. If B ∩ F 6= ∅ 6= B ∩ F , we infer
B ⊆? T and 2|B| = 2|B∩T | ≤? |F ∩TB |−1+ |F ∩TB |−1 = |TB \T |−2 ≤ k−3,
and, hence, |B| ≤ (k − 3)/2 < a, which is a contradiction. Suppose that
B ∩ F 6= ∅. Then B ∩ F = ∅, which implies F ⊆? TB . If B ∩ F 6= ∅, then
|B ∩ T | ≥? |F ∩ TB | = |F | ≥ a, and otherwise |B ∩ T | = |B| ≥ a, too. Hence,
k = |T | = |B∩T |+ |B∩T |+ |TB ∩T | ≥? (|F ∩TB |+1)+a+1 ≥ 2a+2 = k+1,
which is a contradiction. Consequently, B∩F = ∅, and, by the same argument,
B ∩F = ∅. If B ∩F 6= ∅, we infer |F ∩TB | ≥? |B ∩T | = |B| ≥ a, and otherwise
|F ∩ TB | = |F | ≥ a, too. Symmetrically, we get |F ∩ TB | ≥ a and conclude
|T ∩ TB | = 1. Now B ∩ F 6= ∅ implies |B ∩ T | ≥? |F ∩ TB | ≥ a, B ∩ F 6= ∅
implies |B ∩ T | ≥? |F ∩ TB | ≥ a, and otherwise B ∩ F = ∅ = B ∩ F implies
|B ∩ T | = |B| ≥ a, too. It follows |B| = |B ∩ T | = |T | − |T ∩ TB | − |B ∩ T | ≤
k − 1− a = a, which proves the theorem. �

Corollary 1 Let G 6∼= Kk+1 be a k-connected graph in which every fragment
has cardinality at least k

2 . Then every spanning tree of G admits at least two
k-contractible edges.

Proof. Let Q be a spanning tree of G. Then |E(Q)| ≥ 2, since |V (G)| ≥ k+2 ≥
3. Hence, we may assume that at least one edge in Q is not k-contractible.
Therefore, κ(G) = k, and there exists an S-fragment C, where we define S :=
{V (e) : e ∈ E(Q)} as before. In particular, k > 1. Consider an S-end B ⊆ C.
By Theorem 7, Q contains a k-contractible edge e that has precisely one end
vertex in C. Likewise, consider an S-end B ⊆ C. By applying Theorem 7 once
more, Q contains a k-contractible edge f that has precisely one end vertex in
C. Clearly, e 6= f , which proves the statement. �

For k ≤ 2, the fragment size condition of Corollary 1 is trivially true, and so
every spanning tree of every k-connected graph nonisomorphic to Kk+1, k ≤ 2,
admits at least two 2-contractible edges. For general k, Corollary 1 implies
Theorem 2 as follows, and the examples beneath the latter in the introduction
show also that the bound on the fragment size in Corollary 1 cannot be improved.

Proof of Theorem 2. As argued above, the statement holds for k ≤ 2, so
let k ≥ 3. Then G 6∼= Kk+1, since G is triangle free or of minimum degree
at least 3

2k − 1. If the minimum degree condition is satisfied, every fragment
has cardinality at least k

2 , and applying Corollary 1 gives the claim. If G is
triangle free, let Q be a spanning tree of G and let S := {V (e) : e ∈ E(Q)}.
As in the proof of Corollary 1, we may assume that at least one edge in Q is
not k-contractible, which implies κ(G) = k and the existence of a S-fragment
C. Since G is triangle free, every S-fragment contains two adjacent vertices,
and considering the neighborhood of the two vertices of degree at least k each
implies that every S-fragment has in fact cardinality at least k. By applying
Theorem 7 twice, as in the previous proof, we find two k-contractible edges
e 6= f in Q with end vertices in C and C, respectively. �

As promised in the introduction we derive the following result from Theorem 2.
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Corollary 2 Every spanning tree of every cubic 3-connected graph nonisomor-
phic to K4 or the prism K3 ×K2 contains at least two 3-contractible edges.

Proof. We use induction on the number of vertices. The induction starts for
K4, so suppose that G is a cubic 3-connected graph on at least six vertices,
and Q is a spanning tree of G. We may assume that G contains a triangle
∆, for otherwise the statement follows from Theorem 2, and we may assume
that G is not the prism. The edge neighborhood of any such triangle forms a
matching of three 3-contractible edges, at least one of which belongs to Q; in
fact, we may assume that exactly one edge of the edge neighborhood belongs
to Q, for otherwise the statement is proven. So suppose that e is the only edge
from Q in the edge neighborhood of ∆. If there was another triangle ∆′ then,
consequently, e is the only edge from Q in the edge neighborhood of ∆′, too,
implying that V (G) = V (∆)∪ V (∆′), so that G is the prism K3 ×K2, which is
a contradiction. So we may assume that ∆ is the only triangle in G. The graph
G/∆ obtained from G by identifying the three vertices of ∆ and simplifying
is not K4, as G is not the prism, and G/∆ is not the prism, as ∆ is the only
triangle in G and the prism has two vertex-disjoint triangles. Clearly, G/∆ is
cubic and Q/∆ is a spanning tree of G. Since no smallest separating set of G
contains two vertices of ∆, G/∆ is also 3-connected. Hence, by induction, Q/∆
contains two 3-contractible edges of G/∆, and the two edges corresponding to
these in G are 3-contractible in G as one checks readily. �

By using a powerful result on 3-contractible edges in 3-connected graphs from
the literature we can improve Corollary 2 to Theorem 4 (where the lower bound
to the number of 3-contractible edges is sharp).

Proof of Theorem 4. From Lemma 3 and Lemma 4 in [7], we get Theorem 3
in [6], which implies, together with Theorem 12 from [6], that every vertex
in a 3-connected graph is either contained in a triangle or on at least two 3-
contractible edges. We first show that this implies for any 3-connected cubic
graph G that its subgraph H on V (G) formed by the non-3-contractible edges
of G is a clique factor (that is, all components of H are isolated vertices, or
single edges, or triangles — or K4 in case that G is K4): Suppose that G is
not K4. If x has degree at least 2 in H, then x is on a triangle ∆ in G by the
result mentioned above and this triangle is also in H, whereas the edges from
its edge neighborhood are not (so x is in a triangle component of H). Now
every spanning tree Q contains at most 2 edges from every triangle in H, so
that it contains at most 2

3 |V (G)| edges from H. Therefore, Q contains at least
|V (G)| − 1− 2

3 |V (G)| = 1
3 |V (G)| − 1 3-contractible edges (unless G is K4). �

3 Contractible edges in DFS trees

Again, we observe that the spanning tree in the sharpness example of Corol-
lary 1 and Theorem 2 is far from being a DFS tree. The following theorem will
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provide more insight into the distribution of k-contractible edges in spanning
trees of graphs where the fragment lower bound k−1

2 from Theorem 7 is sharp
(as opposed to the bound k

2 that is sharp in Corollary 1), and leads to a proof
of Theorem 3 and, in the next section, of Theorem 1.

Theorem 8 Let Q be a spanning tree of a graph G of connectivity k, set S :=
{V (e) : e ∈ E(Q)}, suppose that all S-fragments have cardinality at least k−1

2 ,
set R := {V (e) : e ∈ E(Q), |V (e)∩A| = 1 for some S-end A}, and let B be an
R-end. Then |B| = k−1

2 , or Q contains a k-contractible edge e with at least one
endvertex in B, or NG(B) contains an R-fragment of cardinality k−1

2 such that
all edges from Q having exactly one vertex in common with it are k-contractible.

Proof. Let a := k−1
2 . Let us call an edge from Q green if it is not k-contractible.

Claim 1. Suppose that e is a green edge and A is an S-end with |V (e)∩A| = 1.
Then |A| = a (so that A is an S-atom, and a is an integer), and A ⊆ T for
every T ∈ T(G) with V (e) ⊆ T (and there exists such a T ).

We get |A| = a immediately from Theorem 7. Since e is green, there exists a
T ∈ T(G) such that V (e) ⊆ T , and for every such T we know V (e) ⊆ T \A and
A ∩ T 6= ∅, so that A ⊆ T follows from Theorem 5, proving Claim 1.

Now let us call a green edge e red if |V (e) ∩ A| = 1 for some S-end A (see
Figure 1c for an example of this coloring in the special case k = 3). Let TB :=
NG(B). By definition of R and Claim 1, there exists a red edge e′ and an S-end
A′ with |V (e′)∩A′| = 1 and A′ ∪ V (e′) ⊆ TB . Since B is an S-fragment (every
R-fragment is an S-fragment by definition), it must contain an S-end A. There
exists an edge e from Q with |V (e)∩A| = 1. If e is k-contractible, we are done;
thus we may assume that e is green, so that e is even red.

By definition and Claim 1, there exists a T ∈ T(G) such that A ∪ V (e) ⊆ T .
We now consider a T -fragment F , which is, in fact, an R-fragment, and analyze
the possible ways F, F meet B,B (for example, B = A = {v}, e′ = ya and F =
A′ = {a} in Figure 1c). We will show that regardless of whether B∩F is empty
or not, T ∩TB = ∅, B∩T = A∪V (e) with cardinality a+1, F ∩TB = A′∪V (e′)
with cardinality a + 1, and F = F ∩ TB is an R-atom with cardinality a and
thus also an S-atom.

Again we may rule out that B∩F 6= ∅ 6= B∩F , as this would imply B ⊆? T and
2|B| = 2|B∩T | ≤? |F ∩TB |−1+ |F ∩TB |−1 ≤ k−2, and hence |B| ≤ k−2

2 < a,
which gives a contradiction.

Now assume that exactly one of B∩F and B∩F is nonempty, say, by symmetry
of F and F , B ∩ F 6= ∅ (see Figure 2). It follows B ∩ F = ∅ =? B ∩ F .
Consequently, |F ∩ TB | = |F | ≥ a and, hence, |B ∩ T | ≥? |F ∩ TB |+ 1 ≥ a+ 1.
If B ∩ F 6= ∅, then |B ∩ T | ≥? |F ∩ TB | ≥ a, and if otherwise B ∩ F = ∅,
then |B ∩ T | = |B| ≥ a, too. Now k = |T | = |B ∩ T | + |B ∩ T | + |TB ∩ T | ≥
(a+ 1) + a+ 0 = k, so we get equality summand-wise, that is, |B ∩ T | = a+ 1,
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|B ∩ T | = a, and T ∩ TB = ∅. This implies a ≤ |F | ≤? |B ∩ T | − 1 = a, so that
|F | = a (in particular, F is an R-atom) and B ∩T = A∪V (e). Moreover, since
A′∪V (e′) ⊆ TB and |A′∪V (e′)| ≥ a+1 > |F |, we conclude F ∩TB = A′∪V (e′),
as G[A′ ∪ V (e′)] is connected.

A‘

A

e‘

F

F

T

BB TB

e
a+1a

a+1

a

Figure 2: The structure of the R-fragments B and F .

In the remaining case B ∩F = ∅ = B ∩F , i.e. B ⊆ T , we essentially obtain the
same picture (Figure 2): If F ∩ B 6= ∅, then |F ∩ TB | ≥? |B ∩ T | = |B| ≥ a,
and if otherwise F ∩ B = ∅, then |F ∩ TB | = |F | ≥ a, too; symmetrically,
|F ∩ TB | ≥ a. Then F ∩ B 6= ∅ implies |B ∩ T | ≥? |F ∩ TB | ≥ a, F ∩ B 6= ∅
implies |B∩T | ≥ |F∩TB | ≥ a, and the remaining case F∩B = ∅ = F∩B implies
|B ∩ T | = |B| ≥ a, too. Now if |B| = a, the theorem is proved, so let |B| > a.
Then k = |T | = |B|+|T∩TB |+|B∩T | ≥ (a+1)+0+a = k, so that equality holds
summand-wise, implying T ∩ TB = ∅, B = B ∩ T = A ∪ V (e), |B| = a+ 1, and
|B∩T | = a. By symmetry of F and F , we may assume that A′∪V (e′) ⊆ F and
hence |F ∩ TB | = a+ 1 and |F ∩ TB | = a. This implies B ∩ F = ∅, as otherwise
k = |F ∩ TB |+ |F ∩ TB | ≥? |A′ ∪ V (e′)|+ |B ∩ T | = (a+ 1) + (a+ 1) > k gives
a contradiction.

Regardless of whether B ∩F is empty or not, we conclude T ∩TB = ∅, B ∩T =
A ∪ V (e) with cardinality a + 1, F ∩ TB = A′ ∪ V (e′) with cardinality a + 1,
and F = F ∩ TB is an R-atom with cardinality a and thus also an S-atom. We
proceed with the general argument.

If all edges from Q that connect F to T are k-contractible, we are done. So
there exists a green edge xy with x ∈ F and y ∈ T and a T ′ ∈ T(G) with
{x, y} ⊆ T ′, and by Claim 1 (applied to xy and F ) we obtain F ⊆ T ′. We
discuss the possible locations of y and will show that all are impossible, which
proves the theorem. Observe that A must have at least a = |A| neighbors in F ,
for otherwise F \ NG(A) would be a nonempty set with less than k neighbors
in G, which contradicts the fact that G is k-connected. It follows F ⊆ NG(A).

If y would be the vertex in V (e) \ A, then xy would be a red edge with its
endvertices in NG(A), certifying that A is an R-fragment properly contained
in the R-end B, which is absurd. If y would be some vertex in A, then xy
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would be a red edge, and by Claim 1 (applied to xy and A), we get A ⊆ T ′.
Hence, T ′ intersects B and contains the a + a = k − 1 vertices from A ∪ F .
Since T ′ has k vertices, exactly one of its vertices is not in A ∪ F . Since B is
an R-end, this vertex must be in B, as any other choice would imply that a
T ′-R-fragment is strictly contained in B. It follows that T ′ and TB cross (i.e.
T ′ ∩ B 6= ∅ 6= T ′ ∩ B). Consider a T ′-fragment F ′ that contains TB ∩ F (this
exists, as G[TB ∩ F ] is connected and does not intersect T ′). Because T ′ and
TB cross, TB must intersect F ′, which contradicts TB \ F = F ⊆ T ′.

It follows that, necessarily, y ∈ B. Suppose to the contrary that T ′ separates
A ∪ V (e), that is, there exists a T ′-fragment F ′ such that F ′ ∩ (A ∪ V (e)) 6= ∅
and F ′ ∩ (A ∪ V (e)) 6= ∅. Then T ′ must contain a vertex z from A, and TB

and T ′ cross, so that T ′ separates A′ ∪ V (e′) ⊇ TB \ T ′, too. Thus, T ′ contains
a vertex z′ from A′. Since T ′ cannot separate the end vertices of V (e′), we
know that V (e′) ∩ F ′ = ∅ or V (e′) ∩ F ′ = ∅. Without loss of generality we
may suppose that V (e′) ∩ F ′ = ∅. If F ′ ∩ B 6= ∅, then F ′ ∩ B would be an
S := (F ′ ∩ TB) ∪ (T ′ ∩ TB) ∪ (T ′ ∩ B)-fragment, as F ′ ∩ B 6= ∅. Since e′ is a
green edge with exactly one end vertex from the S-atom A′ and contained in S
we know from Claim 1 that A′ ⊆ S, contradiction. If F ′ ∩ B 6= ∅, then F ′ ∩ B
would be an P := (F ′ ∩ TB) ∪ (T ′ ∩ TB) ∪ (T ′ ∩B)-fragment containing V (e′),
as F ′ ∩B 6= ∅. This implies again A′ ⊆ P , contradiction. Therefore, B ⊆ T ′. It
follows k = |T ′| = |B ∩ T ′| + |TB ∩ T ′| + |B ∩ T ′| ≥ |B| + |F ∪ {z′}| + |{z}| ≥
a+ (a+ 1) + 1 > k, contradiction.

Hence we have to assume that T ′ does not separate A ∪ V (e). Consequently,
there exists a T ′-fragment F ′ such that F ′ ∩ (A ∪ V (e)) = ∅. If F ′ ∩ F 6= ∅,
then |F ′ ∩ T | ≥? |F ∩ T ′| = |F | ≥ a, and if otherwise F ′ ∩ F = ∅, then
|F ′ ∩T | = |F ′| ≥ a, too. On the other hand, |F ′ ∩T | ≤ k− |A∪V (e)| − |{y}| =
k − (a+ 1)− 1 = a− 1, contradiction. �

We now prove a condition that guarantees two k-contractible edges in any span-
ning tree.

Lemma 3 Let Q be a spanning tree of a noncomplete graph G of connectivity
k, set S := {V (e) : e ∈ E(Q)}, suppose that all S-fragments have cardinality
at least k−1

2 , set R := {V (e) : e ∈ E(Q), |V (e) ∩ A| = 1 for some S-end A}.
Then Q contains two k-contractible edges or there is an R-end of cardinality
k−1

2 such that Q contains no k-contractible edge with an endvertex from it.

Proof. Call a fragment C small if |C| = k−1
2 and big otherwise; call C good if

Q contains a k-contractible edge that has at least one endvertex in C and bad
otherwise. Call C very good if all edges from Q having exactly one endvertex in
C are k-contractible. In this language, Theorem 8 tells us that an R-end B is
small, or good, or NG(B) contains a small, very good R-fragment.

We may assume that Q contains at least one non-k-contractible edge, so that
there exists anS-fragment and hence anS-end, which we call A. Take anS-end
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A′ ⊆ A. There exist edges e, e′ ∈ E(Q) with |V (e)∩A| = 1 and |V (e′)∩A′| = 1;
clearly, e 6= e′, and we are done if both e, e′ are k-contractible. In what remains
we thus may assume that there exists an R-fragment.

Suppose that there exists a very goodR-fragment C. Consider anR-end B ⊆ C.
If B is good, then there exists a k-contractible edge e having a vertex in common
with B and another one having a vertex in common with C, which proves the
lemma. Hence B is bad. If B is small, then the lemma is proved again, so we
may assume that B is big. By Theorem 8, NG(B) contains a (small) very good
R-fragment D. As C and D are disjoint and their union is not equal to V (G),
Q contains two distinct k-contractible edges that are incident with vertices from
C or D, which proves the lemma.

Therefore, we may assume that there are no very good R-fragments. Conse-
quently, by Theorem 8, every big R-end is good. Moreover, we may assume
that every small R-end is good, for otherwise we are done. Hence, every R-end
B is good, and, for any R-end C contained in B, Q contains two distinct k-
contractible edges that have an endvertex in B and C, respectively, which gives
the lemma. �.

We now specialize to DFS trees. A DFS tree of some graph G is a spanning
tree Q with a prescribed root vertex r such that for every vertex x (including
the case x = r), any two x-branches are nonadjacent in G, where an x-branch is
the vertex set of any component of Q− x that does not contain r. Now we are
prepared to prove the following theorem, which implies Theorem 3 immediately,
as, in a graph of connectivity k and of minimum degree at least 3

2k −
3
2 , every

fragment has cardinality at least k−1
2 .

Theorem 9 Let Q be a DFS tree of a noncomplete graph G of connectivity k >
3, and set S := {V (e) : e ∈ E(Q)}. (i) If all S-fragments have cardinality at
least k−1

2 , then Q contains at least one k-contractible edge. (ii) If all fragments
have cardinality at least k−1

2 , then Q contains at least two k-contractible edges.

Proof. First, let us assume that all S-fragments have cardinality at least k−1
2 .

Set R := {V (e) : e ∈ E(Q), |V (e)∩A| = 1 for some S-end A} and observe that
k−1

2 > 1. By Lemma 3, we may assume that there exists a TB-R-end B with
|B| = k−1

2 such that Q contains no k-contractible edge with an endvertex from
B. There exists an edge e ∈ E(Q) and a TA-S-end A such that |V (e) ∩A| = 1
and V (e) ⊆ TB . By Claim 1 in the proof of Theorem 8, we see that |A| = k−1

2
and A ⊆ TB . Let x be the vertex in V (e) \A.

Observe that B is an S-end (as it is even an S-atom) and consider any edge
f ∈ E(Q) with |V (f) ∩ B| = 1 (there exists at least one such edge). Let y be
the vertex in V (f) \B. As f is not k-contractible, there exists a T ∈ T(G) with
V (f) ⊆ T . According to Claim 1 in the proof of Theorem 8, B ⊆ T . All vertices
from B are neighbors of A (for otherwise (TB − A) ∪ (NG(A) ∩ B) would be a
separating vertex set of G with less than k vertices), that is, B ⊆ TA.
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Figure 3: The structure of the R-fragments B and F in Theorem 9.

Let F be a T -fragment. Then F ∩ B 6= ∅ implies |F ∩ TB | ≥? |B ∩ T | = k−1
2

and F ∩ B = ∅ implies |F ∩ TB | = |F | ≥ k−1
2 , too. As the same holds for F

instead of F , we deduce |F ∩ TB | = |F ∩ TB | = k−1
2 and T ∩ TB = {y}. It

follows that A ⊆ F or A ⊆ F , for otherwise T contains a vertex from A, as G[A]
is connected; this vertex can only be y, so that applying Claim 1 of the proof
of Theorem 8 on f and A (or alternatively using Theorem 5 with S = V (f))
implies A ⊆ T , which gives the contradiction |T ∩TB | ≥ |A| > 1. It follows that
A = F ∩ TB or A = F ∩ TB and x ∈ T ∩ TB , so that x = y (see Figure 3a).

Since f ∈ E(Q) has been chosen arbitrarily from the edge neighborhood of B,
we see that x is the only neighbor of B in Q. In particular, A is an R-end
(certified by any f as above), since B ∪ {x} ⊆ TA. Let us take over the notion
of small, big, good, bad, and very good fragments from Lemma 3; then A and
B are small and B is bad. If A was bad, too, then by symmetry of A and B
we see that x = y is the only neighbor of A in Q. Since G[A] and G[B] are
connected, each of them contains at most one x-branch of Q; if each of them
contains an x-branch, these x-branches span G[A] and G[B] and, as every vertex
in A has a neighbor in B and vice versa, the two x-branches are adjacent, which
is a contradiction. Hence, one of G[A], G[B] does not contain an x-branch, and,
thus, contains the root of Q, whereas the other one is spanned by a single x-
branch. By symmetry, let us assume that B contains the root, and consider any
vertex z ∈ B ∩ TA. Again, z and the vertices in A are in different x-branches,
but z must have at least one neighbor in A, contradiction.

Therefore, we may assume from now on that A is good. Hence, Q contains a
k-contractible edge aa′ with a ∈ A and a′ ∈ B∩TA (see also Figures 1a and 1b).
This proves (i) of the statement.

12



Now let us assume, in addition, that all fragments have cardinality at least k−1
2 ,

and (reductio ad absurdum) that aa′ is the unique k-contractible edge of Q.
Observe that all small fragments of G are atoms, so that, by Theorem 6, they
are either subsets of or disjoint from any smallest separating set.

Let us apply Theorem 8 to an arbitrary R-end B′ such that B′ ⊆ A (see
Figure 3b). If B′ was good, then Q would contain a k-contractible edge that
has an endvertex in B′, and is thus distinct from aa′, contradiction. Hence B′ is
bad. If B′ was big, then NG(B′) would contain a small, very good R-fragment
C by Theorem 8. Since aa′ is the unique k-contractible edge in Q, we see that
a′ ∈ C, and, as C is an atom and a′ ∈ TA, we infer C ⊆ TA by Theorem 6.
Since V (e) is not k-contractible, x 6∈ C, which implies that C contains no vertex
from B either. As B ∪ {x} ⊆ TA, it follows C = TA ∩B. Consequently, x is the
only neighbor of A in Q, as A is bad, C is very good and x is the only neighbor
of B in Q. Using these restrictions, it is now not possible to locate the root
vertex of our DFS tree: It cannot be in A∪ {x}, because then we find adjacent
vertices from A and B in distinct x-branches, it cannot be in A ∪ C, because
then we find adjacent vertices from B and A∩TB in distinct x-branches, and it
cannot be in B, because then we find adjacent vertices from C and NG(C) ∩A
in distinct x-branches — contradiction.

Therefore, B′ is a small, bad R-end, just as B. We may infer — just as before
for B — that TB′ := NG(B′) contains a small, good TA′ -R-end A′. Since
A′ ⊆ TB′ ⊆ TA ∪ A, we see that A and A′ are disjoint. As A′ is good and aa′
is the only k-contractible edge, it follows a′ ∈ A′, and, as A′ is an atom having
a vertex in common with TA, we see that A′ ⊆ TA by Theorem 6. Since A′
contains a′ /∈ TB , we infer for the same reason that A′ does not contain x, and,
as G[A′] is connected and a′ ∈ B, A′ does not contain any vertex from B. It
follows A′ = B ∩ TA. Moreover, we get, as for A and B above, a unique vertex
x′ in TA′ ∩ TB′ and infer that all non-k-contractible edges from Q with exactly
one vertex from B′ are incident with x′.

We claim that aa′ is the only edge from Q that connects A and A′. Assume to
the contrary there was another one, say, zz′ ∈ E(Q) \ {aa′}, with z ∈ A and
z′ ∈ A′. Since zz′ is not k-contractible, there exists a T ′ ∈ T(G) with z, z′ ∈ T ′,
and from Theorem 6 we get A∪A′ ⊆ T ′. Since A ⊆ T ′, T ′ contains at least one
vertex from A (by applying Lemma 2 to T ′ and TA) and thus consists of the
k−1 vertices from A∪A′ and another vertex from A; but then TA\T ′ = B∪{x}
induces a connected subgraph of G, so T ′ does not separate TA, contradiction.

Observe that (when the position of the root in Q is neglected), the situation
is symmetric in A,B, a, x and A′, B′, a′, x′. We have seen that NQ(B) = {x},
NQ(A) = {x, a′}, NQ(A′) = {x′, a}, and NQ(B′) = {x′}. It follows that NQ(B∪
A∪A′ ∪B′) = {x, x′}. Let us again analyze the position of the root vertex r of
our DFS tree. We claim that the following statement holds:

(*) r 6= x and the r, x-path in Q enters x by an edge incident to A or B.
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If (*) is false, e ∈ E(Q) implies that the vertex s from V (e)\{x} and any vertex
in NG(s) ∩B are in distinct adjacent x-branches (contradiction). Likewise, the
following holds.

(*’) r 6= x′ and the r, x′-path in Q enters x′ by an edge incident to A′ or B′.

SettingX := B∪A∪A′∪B′ we thus see that r ∈ X, for otherwise the second last
vertex of every r,X-path in Q (ending at the first occurrence of a vertex from
X) is either x or x′ and its r, x- or r, x′-subpath violates (*) or (*’), respectively.
Furthermore, x 6= x′, for otherwise r ∈ B violates (*’), r ∈ A violates (*’) if the
r, x′-path in Q does not use the edge aa′ and r ∈ A violates (*) if it does, and
we get symmetric violations for r ∈ B′ and r ∈ A′, respectively. Now we claim
that R := Q[X ∪ {x, x′}] is connected, that is, a subtree of Q. Suppose, to the
contrary, that R contains a vertex z such that there is no r, z-path in R. The
r, z-path in Q therefore has to use vertices from V (G) \ V (R), and, therefore,
both x and x′. If x is used last (that is, x′ is on the r, x-path), then (*) is
violated, and otherwise (*’) is.

By symmetry of A,B and A′, B′, we may assume that r is not in B. Since
|TB ∩ A| = k−1

2 > 1, there exists a vertex t ∈ (TB ∩ A) \ {x′}; t has a neighbor
z ∈ B, and t, z cannot be in different v-branches for any vertex v, so that either
z is on the r, t-path in Q or t is on the r, z-path in Q. The first option cannot
occur, as B has only one neighbor in Q, and the second one implies that t, like
all vertices from the r, z-path, is in V (R). Since t 6∈ {x, x′} and t 6∈ B ∪A∪A′,
we deduce t ∈ B′, in other words, TB ∩B′ 6= ∅. By Theorem 6, B′ ⊆ TB , which
determines TB = A ∪ {x} ∪ B′, TA = A′ ∪ {x} ∪ B, TA′ = A ∪ {x′} ∪ B′, and
TB′ = A′ ∪ {x′} ∪ B. The set Y := A ∩ B ∩ A′ ∩ B′ has all its neighbors in
TA∪TB ∪TA′ ∪TB′ \ (A∪B∪A′∪B′) = {x, x′}, which implies that Y is empty.
Therefore, A ∩ B = {x′}, so that NG(x′) = A′ ∪ B′ ∪ {x}. Hence {x′} is a
fragment of cardinality 1, contradiction. �

4 Contractible edges in DFS trees of 3-connec-
ted graphs

For proving Theorem 1, observe that the fragment size conditions from Theo-
rem 9 are vacuously true in the case that k = 3. However, the conclusion in (ii)
does not hold for that case, as shown for its direct implication Theorem 3 in
the introduction, so we may expect some differences in the argumentation for
k = 3. Nonetheless, a substantial part of the proof of Theorem 8 can be taken
over.

Proof of Theorem 1. Let Q be a DFS tree of a 3-connected graph G noniso-
morphic to K4. We will prove that Q contains at least one 3-contractible edge,
and that Q contains at least two 3-contractible edges unless G is a prism or a
prism plus a single edge (and Q has a special shape). Set S := {V (e) : e ∈
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E(Q)} and R := {V (e) : e ∈ E(Q), |V (e) ∩ A| = 1 for some S-end A}. Let
us adopt once more the terminology of small, big, good, bad, and very good
fragments introduced in the proof of Lemma 3.

By Lemma 3 (which is, in contrast to Theorem 9, true for k = 3, too), we
may assume that there exists a small, bad TB-R-end B = {b}. There exists an
edge e ∈ E(Q) and a TA-end A such that V (e) ⊆ TB and |V (e) ∩ A| = 1, and
as in Claim 1 in the proof of Theorem 8 we see that |A| = 1, say, A = {a}.
Let x be the vertex in V (e) \ {a} and let t be the vertex in TB \ V (e). As bt
is 3-contractible (as any smallest separating set containing b and t would have
both neighbors a and x of b on the same side, since {a, b, x} induces a triangle
in G 6∼= K4), we know that bt 6∈ E(Q), as otherwise B would not be bad. Hence,
as ax ∈ E(Q), exactly one of ba, bx is in E(Q). Observe that a is not adjacent
to t, because a has degree 3 and a neighbor in B.

Suppose that ba ∈ E(Q). Then there exists a T ∈ T(G) containing b, a, and a
vertex p from B. Consider any T -fragment F . At least one of F ∩ B,F ∩ B
must be empty, for otherwise one of these sets is an {a, p, x}-fragment and the
other one is an {a, p, t}-fragment; this is not possible, because a has only one
neighbor in B. So {x} or {t} is a T -fragment, but the latter is not because t
is not adjacent to a ∈ T . Consequently, {x} is a T -fragment, and, in fact, an
S-atom.

Therefore, after possibly having exchanged the names of a, x (and resetting A
to {a} accordingly), we may assume without loss of generality that bx ∈ E(Q);
then TA consists of b, x, and a vertex s from B (replacing the former vertex p),
and we see immediately that A = {a} is a small R-end, too. The edge as is
3-contractible, because NG(a) \ {s} = {b, x} induces a complete graph in G.

Now if the small R-end A was bad, ax would be the only edge incident with a
in Q, since as is 3-contractible. Then one of a and b must be the root vertex r
of the DFS tree Q, because otherwise a, b would belong to different x-branches
but are adjacent. If r = a, then b and t belong to different x-branches but are
adjacent; if otherwise r = b, then a and s belong to different x-branches but are
adjacent. Thus, A is good.

Since ab /∈ E(Q) and ax is not 3-contractible, it follows that Q contains the
3-contractible edge as. This gives the first claim; for the second, let us assume
that as is the only 3-contractible edge from Q. We have to prove that G is
either the prism or the prism plus a single new edge; to this end, we proceed as
in the proof of Theorem 9, and consider an arbitrary TB′ -R-end B′ ⊆ A. If it
was good, we would find a 3-contractible edge having an endvertex in common
with B′, and, thus, distinct from as, which gives a contradiction. Thus, B′ is
bad. If B′ was big, it would contain a very good end in its neighborhood; just
as in the proof of Theorem 9, we cannot locate the root of Q properly, which
gives a contradiction.

Therefore, B′ is a bad, small R-end, and we may apply to B′ the same line of
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arguments that we applied before to B: TB′ consists of three vertices a′, x′, t′ (we
will use these letters also for any other arbitrarily chosen R-end later), where
A′ := {a′} is a good, small TA′ -R-end, and TA′ consists of b′, x′ and a vertex s′
from B′, where, moreover, x′a′ and x′b′ are from E(Q) and not 3-contractible,
and a′s′ is from E(Q) and 3-contractible.

Since as is the only 3-contractible edge, we see that a′s′ = as, which implies a′ =
s and s′ = a. Again the situation is symmetric in a, b, x, s, t and a′, b′, x′, s′, t′,
and we may proceed almost literally as in the proof of Theorem 9 by showing
first that x 6= x′, r /∈ {x, x′}, and R := Q[{a, b, x, a′, b′, x′}] is a subtree of Q,
and thus, more precisely, a path bxaa′x′b′. By symmetry, we may assume that
r ∈ {a′, b′}, and, as b cannot be on the r, t-path in Q, that t must be on the
r, b-path in Q and hence in R ∩ A. Different from the more general argument,
we now have two options for t: t is either b′, or it is x′. We consider the
corresponding cases separately:

Case 1. t = b′

Then t′ = b. The set X := A∩B∩A′∩B′ has all its neighbors in TA∪TB∪TA′∪
TB′ \ (A∪B ∪A′ ∪B′) = {x, x′}. Therefore, X is empty, and so A∩B = {x′},
which implies that G is the prism.

Case 2. t = x′.

Assume that a, b, a′, b′, x, x′ = t, t′ are the only vertices of G and that they are
all distinct. Since TA′ = {b′, x′, a} is a smallest separating set and t′ /∈ TA′ ,
st′ /∈ G. Since t′ has degree at least three and is adjacent to b′, we conclude
NG(t′) = {x, t, b′}. As certified by the S-end {b′} and the edge b′t, {t′} is an
R-end contained in A. As we have seen above (for the arbitrarily chosen B′),
the neighborhood of such a fragment necessarily contains a′, contradiction.

If there are further vertices other than those listed in the previous paragraph,
they are all from X := A ∩ B ∩ A′ ∩ B′. Then X has all its neighbors in
TA ∪ TB ∪ TA′ ∪ TB′ \ (A ∪ B ∪ A′ ∪ B′) = {x, x′, t′} =: T . Therefore, t′ 6= x,
and X is, indeed, an T -fragment, and X = {a, b, a′, b′}. Since t′ has only one
neighbor in X, F := X∪{t′} is an {x, x′, b′}-fragment (with F = {a, b, a′}). The
S-end {b′} together with the edge b′t certifies that F is an R-fragment, and,
thus, contains an R-end B′′, which is in A. However, the neighborhood of B′′
does not contain a′, as it should, by what we have proven about the arbitrarily
chosen B′ above, which gives a contradiction.

Therefore, there are no further vertices but a, b, a′, b′, x, x′ = t, t′, and the ver-
tices listed are not all distinct. This implies x = t′. The neighborhoods of
a, b, a′, b′ are determined, so that E(G) is determined up to a possible edge con-
necting x and x′. If x and x′ are not adjacent, we get the prism, and otherwise
we get the prism plus a single edge.

This proves the theorem. �
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