Circumference of essentially 4-connected planar triangulations

Igor Fabrici ${ }^{1,2, \mathrm{a}}$, Jochen Harant ${ }^{1, \mathrm{~b}}$, Samuel Mohr ${ }^{1, \mathrm{~b}}$, Jens M. Schmidt ${ }^{1, \mathrm{c}}$
${ }^{\text {a }}$ Institute of Mathematics, P.J. Šafárik University in Košice, Slovakia
${ }^{\text {b }}$ Institute of Mathematics, Ilmenau University of Technology, Germany
${ }^{\text {c }}$ Institute for Algorithms and Complexity, Hamburg University of Technology, Germany

Abstract

A 3-connected graph G is essentially 4-connected if, for any 3-cut $S \subseteq V(G)$ of G, at most one component of $G-S$ contains at least two vertices. We prove that every essentially 4 -connected maximal planar graph G on n vertices contains a cycle of length at least $\frac{2}{3}(n+4)$; moreover, this bound is sharp.

Keywords: circumference, long cycle, triangulation, essentially 4-connected, planar graph
2010 MSC: 05C38, 05C10

We consider finite, simple, and undirected graphs. The circumference $\operatorname{circ}(G)$ of a graph G is the length of a longest cycle of G. A cycle C of G is an outer independent cycle of G if the set $V(G) \backslash V(C)$ is independent. (Note that an outer independent cycle is sometimes called a dominating cycle ([3]), although this is in contrast to the more commonly used definition of a dominating subgraph H of G, where $V(H)$ dominates $V(G)$ in the usual sense.) A set $S \subseteq V(G)(S \subseteq E(G))$ is a k-cut (a k-edge-cut) of G if $|S|=k$ and $G-S$ is disconnected. A 3-cut (a 3-edge-cut) S of a 3-connected (3-edge-connected) graph G is trivial if at most one component of $G-S$ contains at least two vertices and the graph G is essentially 4-connected (essentially 4-edge-connected) if every 3-cut (3-edge-cut) of G is trivial. A 3-edge-connected graph G is cyclically 4-edge-connected if for every 3 -edge-cut S of G, at most one component of $G-S$ contains a cycle.

It is well-known that for (3-connected) cubic graphs different from the triangular prism $K_{3} \times K_{2}$ (which is essentially 4 -connected only) these three notions coincide (see e.g. [6] and [16]). Obviously, the line graph $H=L(G)$ of a 3-connected graph G is 4-connected if and only if G is essentially 4-edge-connected. These two observations are reasons for the quite great interest in studying all these three concepts of connectedness of graphs intensively.

Zhan [17] proved that every 4-edge-connected graph has a Hamiltonian line graph. Broersma [3] conjectured that even every essentially 4-edge-connected graph has a Hamiltonian line graph and showed that this is equivalent to the conjecture of Thomassen [14] stating that every 4-connected line graph is Hamiltonian (which is known to be equivalent to the conjecture by Matthews and Sumner [12] stating that every 4 -connected claw-free graph is Hamiltonian, as shown by Ryjáček [13]). Among others, the subclass of essentially 4-edge-connected cubic graphs is interesting due to a conjecture of Fleischner and Jackson [6] stating that every essentially 4-edge-connected cubic graph has an outer independent cycle which is equivalent to the previous three conjectures.

Regarding to the existence of long cycles in essentially 4-connected graphs we mention the following
Conjecture 1 (Bondy, see [8]). There exists a constant $c, 0<c<1$, such that for every essentially 4 -connected cubic graph on n vertices, $\operatorname{circ}(G) \geq c n$.

Note that the conjecture of Fleischner and Jackson implies Conjecture 1 with $c=\frac{3}{4}$. Bondy's conjecture was later extended to all cyclically 4-edge-connected graphs (see [6]). Máčajová and Mazák [11] constructed

[^0]essentially 4-connected cubic graphs on $n=8 m$ vertices with circumference $7 m+2$. We remark that the conjecture of Fleischner and Jackson and, therefore, also Bondy's Conjecture with $c=\frac{3}{4}$ (this is the result of Grünbaum and Malkevitch [7]) are true for planar graphs, which can be seen easily by the forthcoming Lemma 3. Many results concerning the circumference of essentially 4 -connected planar graphs G can be found in the literature.

For the class of essentially 4-connected cubic planar graphs, Tutte [15] showed that it contains a nonHamiltonian graph, Aldred, Bau, Holton, and McKay [1] found a smallest non-Hamiltonian graph on 42 vertices, and Van Cleemput and Zamfirescu [16] constructed a non-Hamiltonian graph on n vertices for all even $n \geq 42$. As already mentioned, Grünbaum and Malkevitch [7] proved that $\operatorname{circ}(G) \geq \frac{3}{4} n$ for any essentially 4-connected cubic planar graph G on n vertices and Zhang [18] (using the theory of Tutte paths) improved this lower bound on the circumference by 1. Recently, in [10], an infinite family of essentially 4 -connected cubic planar graphs on n vertices with circumference $\frac{359}{366} n$ was constructed.

In [9], Jackson and Wormald extended the problem to find lower bounds on the circumference to the class of arbitrary essentially 4 -connected planar graphs. Their result $\operatorname{circ}(G) \geq \frac{2 n+4}{5}$ was improved in [5] to $\operatorname{circ}(G) \geq \frac{5}{8}(n+2)$ for every essentially 4 -connected planar graph G on n vertices. On the other side, there are infinitely many essentially 4 -connected maximal planar graphs G with $\operatorname{circ}(G)=\frac{2}{3}(n+4)$ ([9]). To see this, let G^{\prime} be a 4-connected maximal planar graph on $n^{\prime} \geq 6$ vertices and let G be obtained from G^{\prime} by inserting a new vertex into each face of G^{\prime} and connecting it with all three boundary vertices of that face. Then G is an essentially 4 -connected maximal planar graph on $n=3 n^{\prime}-4$ vertices and, since G^{\prime} is Hamiltonian, it is easy to see that $\operatorname{circ}(G)=2 n^{\prime}=\frac{2}{3}(n+4)$. It is still open whether there is an essentially 4 -connected planar graph G that satisfies $\operatorname{circ}(G)<\frac{2}{3}(n+4)$. Indeed, we pose the following (to our knowledge so far unstated) Conjecture 2, which has been the driving force in that area for over a decade.

Conjecture 2. For every essentially 4 -connected planar graph on n vertices, $\operatorname{circ}(G) \geq \frac{2}{3}(n+4)$.
By the forthcoming Theorem 4, Conjecture 2 is shown to be true for essentially 4-connected maximal planar graphs.

We remark that $G-S$ has exactly two components for every 3-connected planar graph G and every 3-cut S of G. Thus, in this case, G is essentially 4-connected if and only if S forms the neighborhood of a vertex of degree 3 of G for every 3 -cut S of G. This property will be used frequently in the proof of Theorem 4 .

A cycle C of G is a good cycle of G if C is outer independent and $\operatorname{deg}_{G}(x)=3$ for all $x \in V(G) \backslash V(C)$. An edge $x y$ of a good cycle C is extendable if x and y have a common neighbor $z \in V(G) \backslash V(C)$. In this case, the cycle C^{\prime} of G, obtained from C by replacing the edge $x y$ with the path (x, z, y) is again good (and longer than C). The forthcoming Lemma 3 is an essential tool in the proof of Theorem 4 (an implicit proof for cubic essentially 4 -connected planar graphs can be found in [7], the general case is proved in [4]).

Lemma 3. Every essentially 4-connected planar graph on $n \geq 11$ vertices contains a good cycle.
Theorem 4. For every essentially 4-connected maximal planar graph G on $n \geq 8$ vertices,

$$
\operatorname{circ}(G) \geq \frac{2}{3}(n+4)
$$

Proof of Theorem 4.

Suppose $n \geq 11$, as for $n \in\{8,9,10\}$, Theorem 4 follows from the fact that G is Hamiltonian ([2]). Using Lemma 3 , let $C=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ (indices of vertices of C are taken modulo k in the whole paper) be a longest good cycle of length k of G (i.e., $\operatorname{circ}(G) \geq k$) and let $H=G[V(C)]$ be the graph obtained from G by removing all vertices of degree 3 which do not belong to C. Obviously, H is maximal planar and C is a Hamiltonian cycle of H. A face φ of H is an empty face of H if φ is also a face of G, otherwise φ is a non-empty face of H. Denote by $F_{\mathrm{e}}(H)$ the set of empty faces of H and let $f_{\mathrm{e}}(H)=\left|F_{\mathrm{e}}(H)\right|$. Note that every face of G has at least two (of three) vertices on C. The three neighbors of a vertex of $V(G) \backslash V(C)$ induce a separating 3-cycle of G creating the boundary of a non-empty face of H, which has no edge in common with C because otherwise such an edge would be an extendable edge of C in G.

Let H_{1} and H_{2} be the spanning subgraphs of H consisting of the cycle C and of its chords lying in the interior and in the exterior of C, respectively. Note that $E\left(H_{1}\right) \cap E\left(H_{2}\right)=E(C)$ and H_{1} and H_{2} are maximal outerplanar graphs, both having k-gonal outer face and $k-2$ triangular faces. Let T_{i} be the weak dual of $H_{i}, i \in\{1,2\}$, which is the graph having all triangular faces of H_{i} as vertex set such that two vertices of T_{i} are adjacent if the triangular faces share an edge in H_{i}. Obviously, T_{i} is a tree of maximum degree at most three.

A face φ of H is a j-face if exactly j of its three incident edges belong to $E(C)$. Since $n \geq 11$, there is no 3 -face in H and each face of H is a j-face with $j \in\{0,1,2\}$. Denote by $f_{j}\left(H_{i}\right)$ the number of empty j-faces of H_{i}. Since C does not contain any extendable edge, the following claim is obvious.
Claim 1. Each face of H incident with an edge of any longest good cycle (in particular, each 1- or 2-face) is empty.

An edge e of C incident with a j-face φ and an ℓ-face ψ, where $j, \ell \in\{1,2\}$, is a (j, ℓ)-edge. Let φ be a 2 -face of H_{i}. The sequence $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right), r \geq 2$, is the φ-branch if $\varphi_{2}, \ldots, \varphi_{r-1}$ are 1-faces of H_{i}, φ_{r} is a 0 -face of H_{i}, and $\varphi_{j}, \varphi_{j+1}(1 \leq j \leq r-1)$ are adjacent (i.e. B_{φ} is a minimal path in T_{i} with end vertices of degree 1 and 3). The $\operatorname{rim} R\left(B_{\varphi}\right)$ of the φ-branch B_{φ} is the subgraph of C induced by all edges of C that are incident with an element of B_{φ}. Hence, it is easy to see:
Claim 2. The rim of a φ-branch $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ is a path of length r.
Claim 3. Let $\varphi=\left[v_{1}, v_{2}, v_{3}\right]$ be a 2-face of H_{i}, let $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right), r \geq 2$, be the φ-branch of H_{i}, and let $v_{0} v_{2} \in E\left(H_{3-i}\right)$. If
(a) $R\left(B_{\varphi}\right)=\left(v_{1}, v_{2}, \ldots, v_{r+1}\right)$ is the rim of B_{φ} or
(b) $R\left(B_{\varphi}\right)=\left(v_{0}, v_{1}, \ldots, v_{r}\right)$ is the rim of B_{φ} and $v_{-1} v_{2} \in E\left(H_{3-i}\right)$, or
(c) $R\left(B_{\varphi}\right)=\left(v_{3-r}, \ldots, v_{2}, v_{3}\right)$ is the rim of B_{φ} and $v_{-1} v_{2} \in E\left(H_{3-i}\right)$,
then φ_{r} is empty.

Fig. 1. A longest good cycle (cyan) sharing an edge with φ_{r}.

Proof.
(a) The cycle C^{\prime} obtained from C by replacing the path $\left(v_{0}, v_{1}, \ldots, v_{r+1}\right)$ with the path $\left(v_{0}, v_{2}, \ldots, v_{r}, v_{1}\right.$, v_{r+1}) (Fig. 1(a)) is another longest good cycle of G and contains the edge $v_{1} v_{r+1}$ incident with φ_{r}, thus φ_{r} is empty (by Claim 1).
(b) Let $\varphi_{s}=\left[v_{0}, v_{1}, v_{s}\right]$, for some s with $3 \leq s \leq r$, be a 1 -face of H_{i}. The cycle C^{\prime} obtained from C by replacing the path $\left(v_{-1}, v_{0}, \ldots, v_{r}\right)$ by the path $\left(v_{-1}, v_{2}, \ldots, v_{r-1}, v_{1}, v_{0}, v_{r}\right)$, for $s=r$ (Fig. 1(b)), or by the path $\left(v_{-1}, v_{2}, v_{1}, v_{3}, \ldots, v_{r-1}, v_{0}, v_{r}\right)$, for $s \leq r-1$ (Fig. 1(c)), is a longest good cycle of G and contains the edge $v_{0} v_{r}$ incident with φ_{r}, thus φ_{r} is empty (by Claim 1).
(c) If $r \leq 3$, then φ_{r} is empty by (a) or (b). If $r \geq 4$, then $v_{0} v_{3}, v_{-1} v_{3} \in E\left(H_{i}\right)$, thus $\left\{v_{-1}, v_{2}, v_{3}\right\}$ is a non-trivial 3 -cut, a contradiction.

These tools will be used continuously in the following; we continue with the proof of Theorem 4. Hereby, we consider two cases. In the first case, both subgraphs H_{1} and H_{2} have some 0 -faces. By using a customized discharging method, we distribute some weights from edges to faces to prove that sufficiently many faces are empty (each empty face will finally contain weight at most $\frac{2}{3}$). In the second case, there are only empty faces on one side of C, so that all vertices not in C are located on the other side of C. We have to prove that there are some additional empty faces on this side.
CASE 1. Let H_{1} and H_{2} both contain at least two 0 -faces or one non-empty 0 -face.
For every edge e of C we define the weight $w_{0}(e)=1$. Obviously, $\sum_{e \in E(C)} w_{0}(e)=|E(C)|=k$.

First redistribution of weights.

Each edge of C sends weight to both incident faces as follows
Rule R1. A (1,1)-edge sends $\frac{1}{2}$ to both incident 1 -faces.
Rule R2. A $(1,2)$-edge sends $\frac{2}{3}$ to the incident 1 -face and $\frac{1}{3}$ to the incident 2 -face.
Rule R3. A (2,2)-edge sends $\frac{1}{2}$ to both incident 2 -faces.
The edges of C completely redistribute their weights to incident 1 - and 2 -faces. For an empty face φ, let $w_{1}(\varphi)$ be the total weight obtained by φ (in first redistribution). Obviously, for an empty face φ, it is

$$
w_{1}(\varphi)= \begin{cases}1, & \text { if } \varphi \text { is a } 2 \text {-face incident with two (2,2)-edges, } \\ \frac{5}{6}, & \text { if } \varphi \text { is a } 2 \text {-face incident with a (1,2)-edge and a (2,2)-edge, } \\ \frac{2}{3}, & \text { if } \varphi \text { is a } 2 \text {-face incident with two (1,2)-edges, } \\ \frac{2}{3}, & \text { if } \varphi \text { is a } 1 \text {-face incident with a (1,2)-edge, } \\ \frac{1}{2}, & \text { if } \varphi \text { is a } 1 \text {-face incident with a (1,1)-edge, } \\ 0, & \text { if } \varphi \text { is a } 0 \text {-face. }\end{cases}
$$

Moreover, $\sum_{\varphi \in F_{\mathrm{e}}(H)} w_{1}(\varphi)=|E(C)|=k$.

Second redistribution of weights.

The weight of 2 -faces of H exceeding $\frac{2}{3}$ will be redistributed to 1 -faces and empty 0 -faces of H by the following rules. Let φ be a 2 -face of H_{i} with $w_{1}(\varphi)>\frac{2}{3}$ (i.e. incident with at least one (2,2)-edge) and let $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right), r \geq 2$, be the φ-branch. Moreover, let α be a 2 -face of H_{3-i} adjacent to φ and let α_{2} be the face of H_{3-i} adjacent to α.
Rule R4. φ sends $w_{1}(\varphi)-\frac{2}{3}$ to φ_{r} if φ_{r} is empty and $r \leq 3$.
Rule R5. φ sends $\frac{1}{6}$ to φ_{j} if $\varphi_{j}(2 \leq j \leq r-1)$ is a 1-face incident with a (1,1)-edge.
Rule R6. φ sends $\frac{1}{6}$ to φ_{r} if φ_{r} is empty and $r \geq 4$.
Rule R7. φ sends $\frac{1}{6}$ to α_{2} if α is incident with a (1,2)-edge and α_{2} is an empty 0 -face.
Rule R8. φ sends $\frac{1}{6}$ to β_{2}, where β is a 2 -face of H_{3-i} having exactly one common vertex with φ and incident with two (1,2)-edges and β_{2} is an empty 0 -face of H_{3-i} adjacent to β.

Fig. 2. Redistribution rules R4-8 (1-f is a 1-face and e0-f is an empty 0 -face).

For an empty face φ, let $w_{2}(\varphi)$ be the total weight obtained by φ (after second redistribution). Obviously, $\sum_{\varphi \in F_{\mathrm{e}}(H)} w_{2}(\varphi)=|E(C)|=k$ (as non-empty faces do not obtain any weight). In the following, we will show that the weight $w_{2}(\varphi)$ of each (empty) face φ does not exceed $\frac{2}{3}$ which will mean $k=\sum_{\varphi \in F_{\mathrm{e}}(H)} w_{2}(\varphi) \leq \frac{2}{3} f_{\mathrm{e}}(H)$. The maximal planar graph G has exactly $2 n-4$ faces. Each of $f_{\mathrm{e}}(H) \geq \frac{3}{2} k$ empty faces of H is a face of G as well, and each of $n-k$ (pairwise non-adjacent) vertices of G not belonging to C (whose removal has created a non-empty face of H) is incident with three ("private") faces of G. Hence $2 n-4=|F(G)|=$ $f_{\mathrm{e}}(H)+3(n-k) \geq \frac{3}{2} k+3 n-3 k$ and finally $k \geq \frac{2}{3}(n+4)$ will follow.

Weight of a 2-face.

Let $\varphi=\left[v_{1}, v_{2}, v_{3}\right]$ be a 2-face of H_{i} and let $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right), r \geq 2$, be the φ-branch. As already mentioned, $\frac{2}{3} \leq w_{1}(\varphi) \leq 1$. We check that the weight of φ exceeding $\frac{2}{3}$ will be shifted in the second redistribution.

1. Let φ be incident with two (2,2)-edges (note that $w_{1}(\varphi)=1$). Denote $\alpha=\left[v_{0}, v_{1}, v_{2}\right]$ and $\beta=\left[v_{2}, v_{3}, v_{4}\right]$ the 2 -faces of H_{3-i} adjacent to φ. Let α_{2} and β_{2} be the face of H_{3-i} adjacent to α and β, respectively. Each of the faces φ_{2}, α_{2}, and β_{2} is either a 1-face or empty 0 -face (by Claim 3a).
1.1. Let α_{2} and β_{2} be 0 -faces (possibly $\alpha_{2}=\beta_{2}$).
1.1.1. If edges $v_{0} v_{1}$ and $v_{3} v_{4}$ of C do not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$ of B_{φ}, then $r=2$, thus φ sends $\frac{1}{3}$ to empty 0 -face φ_{2} (by R4).
1.1.2. If $v_{0} v_{1}$ belongs to the $\operatorname{rim} R\left(B_{\varphi}\right)$ and $v_{3} v_{4}$ does not belong to $R\left(B_{\varphi}\right)$, then $\varphi_{2}=\left[v_{0}, v_{1}, v_{3}\right]$ is a 1 -face and φ_{r} is empty (by Claim 3a). Thus φ sends weight $\geq \frac{1}{6}$ to φ_{r} (by R4 or R6) and $\frac{1}{6}$ to α_{2} (by R7). (Similarly if $v_{0} v_{1}$ does not belong to $R\left(B_{\varphi}\right)$ and $v_{3} v_{4}$ belongs to $R\left(B_{\varphi}\right)$.)
1.1.3. If edges $v_{0} v_{1}$ and $v_{3} v_{4}$ belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then both are (1,2)-edges. Thus φ sends $\frac{1}{6}$ to α_{2} and $\frac{1}{6}$ to β_{2} (by R7).
1.2. Let $\alpha_{2}=\left[v_{-1}, v_{0}, v_{2}\right]$ be a 1 -face and β_{2} be a 0 -face. (Similarly if α_{2} is a 0 -face and β_{2} is a 1 -face.)
1.2.1. If $v_{3} v_{4}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $r \leq 3$ and φ_{r} is empty (by proof of Claim 3c). Thus φ sends $\frac{1}{3}$ to φ_{r} (by R4).
1.2.2. If $v_{3} v_{4}$ belongs to the $\operatorname{rim} R\left(B_{\varphi}\right)$ and $v_{0} v_{1}$ does not belong to $R\left(B_{\varphi}\right)$, then $\varphi_{2}=\left[v_{1}, v_{3}, v_{4}\right]$ is a 1-face and φ_{r} is empty (by Claim 3a). Thus φ sends weight $\geq \frac{1}{6}$ to φ_{r} (by R4 or R6) and $\frac{1}{6}$ to β_{2} (by R7).
1.2.3. Let edges $v_{3} v_{4}$ and $v_{0} v_{1}$ belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then both are (1,2)-edges. If $v_{0} v_{1}$ and $v_{3} v_{4}$ are incident with φ_{2} and φ_{3}, then $\left\{v_{0}, v_{2}, v_{4}\right\}$ is a non-trivial 3 -cut, a contradiction. If $\varphi_{2}=\left[v_{0}, v_{1}, v_{3}\right]$ and $\varphi_{3}=\left[v_{-1}, v_{0}, v_{3}\right]$, then $\left\{v_{-1}, v_{2}, v_{3}\right\}$ is a non-trivial 3-cut, a contradiction as well. Thus $\varphi_{2}=\left[v_{1}, v_{3}, v_{4}\right]$ and $\varphi_{3}=\left[v_{1}, v_{4}, v_{5}\right]$.
1.2.3.1. If $v_{-1} v_{0}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then φ_{r} is empty (by Claim 3b). Thus φ sends $\frac{1}{6}$ to φ_{r} (by R6) and $\frac{1}{6}$ to β_{2} (by R7).
1.2.3.2. If $v_{-1} v_{0}$ belongs to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $v_{-1} v_{0}$ is a (1,1)-edge. Thus φ sends $\frac{1}{6}$ to φ_{j}, a 1 -face of B_{φ} incident with $v_{-1} v_{0}$ (by R5) and $\frac{1}{6}$ to β_{2} (by R7).
1.3. Let $\alpha_{2}=\left[v_{-1}, v_{0}, v_{2}\right]$ and $\beta_{2}=\left[v_{2}, v_{4}, v_{5}\right]$ be 1-faces.
1.3.1. If $v_{3} v_{4}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $r \leq 3$ and φ_{r} is empty (by proof of Claim 3c). Thus φ sends $\frac{1}{3}$ to φ_{r} (by R4). (Similarly if $v_{0} v_{1}$ does not belong to $R\left(B_{\varphi}\right)$.)
1.3.2. Let edges $v_{0} v_{1}$ and $v_{3} v_{4}$ belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then both are $(1,2)$-edges. If $v_{0} v_{1}$ and $v_{3} v_{4}$ are incident with φ_{2} and φ_{3}, then $\left\{v_{0}, v_{2}, v_{4}\right\}$ is a non-trivial 3 -cut, a contradiction. If $\varphi_{2}=\left[v_{0}, v_{1}, v_{3}\right]$ and $\varphi_{3}=\left[v_{-1}, v_{0}, v_{3}\right]$, then $\left\{v_{-1}, v_{2}, v_{3}\right\}$ is a non-trivial 3-cut, a contradiction as well. (Similarly if $\varphi_{2}=\left[v_{1}, v_{3}, v_{4}\right]$ and $\left.\varphi_{3}=\left[v_{1}, v_{4}, v_{5}\right].\right)$
2. Let φ be incident with (2,2)-edge $v_{1} v_{2}$ and (1,2)-edge $v_{2} v_{3}$ (note that $w_{1}(\varphi)=\frac{5}{6}$). Denote $\alpha=\left[v_{0}, v_{1}, v_{2}\right]$ the 2 -face of H_{3-i} adjacent to φ and let α_{2} be the face of H_{3-i} adjacent to α. Each of the faces φ_{2} and α_{2} is either a 1 -face or empty 0 -face (by Claim 3a).
2.1. Let α_{2} be 0 -face.
2.1.1. If $v_{0} v_{1}$ does not belong to the $\operatorname{rim} R(B \varphi)$, then φ_{r} is empty (by Claim 3a). Thus φ sends $\frac{1}{6}$ to φ_{r} (by R4 or R6).
2.1.2. If $v_{0} v_{1}$ belongs to the $\operatorname{rim} R(B \varphi)$, then $v_{0} v_{1}$ is a (1,2)-edge. Thus φ sends $\frac{1}{6}$ to α_{2} (by R7).
2.2. Let α_{2} be a 1 -face incident with $v_{-1} v_{0}$ (i.e. $\alpha_{2}=\left[v_{-1}, v_{0}, v_{2}\right]$).
2.2.1. If $v_{3} v_{4}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $r \leq 3$ and φ_{r} is empty (by proof of Claim 3c). Thus φ sends $\frac{1}{6}$ to φ_{r} (by R4).
2.2.2. If $v_{3} v_{4}$ belongs to the $\operatorname{rim} R\left(B_{\varphi}\right)$ and $v_{0} v_{1}$ does not belong to $R\left(B_{\varphi}\right)$, then $\varphi_{2}=\left[v_{1}, v_{3}, v_{4}\right]$ is a 1-face and φ_{r} is empty (by Claim 3a). Thus φ sends $\frac{1}{6}$ to φ_{r} (by R4 or R6).
2.2.3. Let edges $v_{3} v_{4}$ and $v_{0} v_{1}$ belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$. If $v_{-1} v_{0}$ does not belong to $R\left(B_{\varphi}\right)$, then φ_{r} is empty (by Claim 3b). Thus φ sends $\frac{1}{6}$ to φ_{r} (by R6). Otherwise $v_{-1} v_{0}$ belongs to $R\left(B_{\varphi}\right)$, thus it is a (1,1)-edge incident with a 1-face φ_{j} of B_{φ}. Hence φ sends $\frac{1}{6}$ to φ_{j} (by R5).
2.3. Let α_{2} be a 1 -face incident with $v_{2} v_{3}$ (i.e. $\alpha_{2}=\left[v_{0}, v_{2}, v_{3}\right]$). Since $v_{0} v_{3} \in E\left(H_{3-i}\right), \varphi_{2}$ cannot be the 1-face $\left[v_{0}, v_{1}, v_{3}\right]$ in H_{i}.
2.3.1. If $v_{3} v_{4}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $r=2$, thus φ sends $\frac{1}{6}$ to φ_{2} (by R4).
2.3.2. If $v_{3} v_{4}$ belongs to the $\operatorname{rim} R\left(B_{\varphi}\right)$, then $r \geq 3$ and $\varphi_{2}=\left[v_{1}, v_{3}, v_{4}\right]$.
2.3.2.1. If $v_{3} v_{4}$ is incident with a 1 -face of H_{3-i} (i.e., $v_{3} v_{4}$ is a (1,1)-edge), then φ sends $\frac{1}{6}$ to φ_{2} (by R5).
2.3.2.2. Let $v_{3} v_{4}$ be incident with a 2-face β of H_{3-i} (necessarily, $\beta=\left[v_{3}, v_{4}, v_{5}\right]$). If $r=3$, then φ_{3} is empty (by Claim 3a), thus φ sends $\frac{1}{6}$ to φ_{3} (by R4). If $r=4$, then $\varphi_{3}=\left[v_{1}, v_{4}, v_{5}\right]$ (as $\left\{v_{0}, v_{3}, v_{4}\right\}$ is a non-trivial 3 -cut if $\varphi_{3}=\left[v_{0}, v_{1}, v_{4}\right]$) and φ_{4} is empty (by Claim 3a), thus φ sends $\frac{1}{6}$ to φ_{4} (by R6). Finally, let $r \geq 5$. Necessarily $\varphi_{3}=\left[v_{1}, v_{4}, v_{5}\right]$ (as for $r=4$) and $\varphi_{4}=\left[v_{1}, v_{5}, v_{6}\right]$ (as $\left\{v_{0}, v_{3}, v_{5}\right\}$ is a non-trivial 3-cut if $\varphi_{4}=\left[v_{0}, v_{1}, v_{5}\right]$) are 1-faces of B_{φ}. If $v_{5} v_{6}$ is a (1,1)-edge, then φ sends $\frac{1}{6}$ to φ_{4} (by R5). Otherwise $v_{5} v_{6}$ is a (1,2)-edge, thus it does not belong to β-branch (in H_{3-i}) and therefore β_{2} is a 0 -face, which is, moreover, empty (as the cycle obtained from C by replacing the path $\left(v_{0}, \ldots, v_{5}\right)$ by the path $\left(v_{0}, v_{2}, v_{1}, v_{4}, v_{3}, v_{5}\right)$ is a longest good cycle of G and contains the edge $v_{3} v_{5}$ incident with β_{2} (Claim 1)). Hence φ sends $\frac{1}{6}$ to β_{2} (by R8).

Weight of a 1-face.

To estimate the weight of a 1-face, we use the following simple observation:
Claim 4. Each 1-face of H belongs to at most one branch.
Let ψ be a 1 -face incident with an edge e of C. If e is a (1,2)-edge, then ψ obtains weight $\frac{2}{3}$ from e (by R2) only. Otherwise e is a (1,1)-edge, thus ψ obtains $\frac{1}{2}$ from e (by R1). Furthermore, in this case, ψ can get $\frac{1}{6}$ from a 2 -face φ (by R5) if ψ belongs to the φ-branch. Hence $w_{2}(\psi) \leq \frac{2}{3}$.

Weight of an empty 0-face.

Each empty 0 -face ω belongs to at most two branches (in Case 1). Let φ be a 2 -face of H_{i} with the φ-branch $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ such that $\varphi_{r}=\omega$, and let e be the edge incident with φ_{r} and φ_{r-1} (where $\varphi_{r-1}=\varphi$ for $r=2$).

If φ is adjacent to two 2-faces, then ω gets through e the weight $\frac{1}{3}$ (by R4) for $r \leq 3$ or the weight $\frac{1}{6}$ (by R6) for $r \geq 4$. If φ is adjacent to one 2 -face, then ω gets through e the weight $\frac{1}{6}$ (by R4) and additionally $\frac{1}{6}$ (by R7) for $r=2$ or the weight at most $\frac{1}{6}$ (by R4) for $r=3$ or the weight $\frac{1}{6}$ (by R6) for $r \geq 4$. Finally, if φ is adjacent to no 2-face, then ω gets through e the weight $\frac{1}{6}$ (by R6) for $r \geq 4$ or the weight at most $2 \times \frac{1}{6}$ (by R8) for $r \leq 3$.

We showed that $w_{2}(\varphi) \leq \frac{2}{3}$ for each empty face φ and completed the Case 1 . Thus, we can assume that in H_{i} are only empty faces and among them, at most one face is a 0 -face. To complete the proof, we have to show that there are some empty faces in H_{3-i} as well.

CASE 2. Let H_{i} contain no 0 -face or exactly one 0 -face which is additionally empty.
Obviously, if H_{i} contains no 0 -face, then it contains two 2 -faces α_{1} and α_{2} (since T_{i} is a path and 2-faces of H_{i} are leaves of T_{i}). Note that, (only) in this case, the branches in H_{i} are not defined.

Remember that $H=G[V(C)]$ has $k \geq 7$ vertices (as otherwise G with at most $k+2 \leq 8$ vertices is Hamiltonian). If H_{i} contains exactly one 0 -face, then it contains three 2 -faces α_{1}, α_{2} and α_{3} (since T_{i} is a subdivision of $K_{1,3}$ and 2-faces of H_{i} are leaves of T_{i}). We assume that H_{3-i} contains at least two 0-faces as otherwise all but at most one faces of H_{3-i} are empty and G has $n \leq|V(H)|+1=k+1$ vertices and Theorem 4 follows immediately (with $n \geq 11$).

Distribution of points.

To estimate the number of empty 0 - and 1-faces in H_{3-i}, each 2-face α_{j} of $H_{i}\left(j \in\{1,2\}\right.$ if H_{i} contains no 0 -face and $j \in\{1,2,3\}$ if H_{i} contains one 0 -face, respectively) will distribute 1 or 2 points to faces of H_{3-i}. Let α_{j} be adjacent to the faces φ and ψ of H_{3-i}.
Rule P1. If φ and ψ are 2-faces of H_{3-i} with branches $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ and $B_{\psi}=\left(\psi, \psi_{2}, \ldots, \psi_{t}\right)$, then φ_{r} and ψ_{t} will each receive 1 point (or 2 points if $\varphi_{r}=\psi_{t}$) from α_{j}.
Rule P2. If φ and ψ are 1-faces of H_{3-i}, then φ and ψ will each receive 1 point from α_{j}.
Rule P3. If φ is a 2-faces of H_{3-i} with φ-branch $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ and ψ is a 1-face of H_{3-i} not belonging to B_{φ}, then φ_{r} and ψ will each receive 1 point from α_{j}.
Rule P4. If φ is a 2 -faces of H_{3-i} with φ-branch $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ and ψ is a 1-face of H_{3-i} belonging to B_{φ}, then only ψ will receive 1 point from α_{j}.
For a face φ of H_{3-i}, let $p(\varphi)$ be the total number of points carried by φ (in the distribution of points).
Claim 5. $f_{1}\left(H_{3-i}\right)+2 f_{0}\left(H_{3-i}\right) \geq \sum_{\varphi \in F_{\mathrm{e}}\left(H_{3-i}\right)} p(\varphi)$.
Proof. We have to prove that each 1-face of H_{3-i} gets at most 1 point and that each 0-face of H_{3-i} gets points only if it is empty and it gets at most 2 points. Consequently, Claim 5 follows by simple counting.

Let β be a 1-face of H_{3-i}. Since β can only get points if it is adjacent to some α_{j} and there can only be one such face then $p(\beta) \leq 1$.

Let β be a 0 -face of H_{3-i}. Since β can only get points if it belongs to a branch and it belongs to at most two branches (as there are at least two 0 -faces in H_{3-i}), then $p(\beta) \leq 2$. Assume first that β gets a point by P1. Then there is α_{j} incident with two (2,2)-edges and adjacent 2-faces φ and ψ of H_{3-i}. Let $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ with $\varphi_{r}=\beta$ be the branch which ends in β. By Claim 3a, $\varphi_{r}=\beta$ is an empty 0-face.

Thus, assume that β gets a point by P3. Then there is α_{j} incident with a $(1,2)$-edge with adjacent 1-face ψ in H_{3-i} and a (2,2)-edge with adjacent 2-face φ such that ψ does not belong to the branch $B_{\varphi}=$ $\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ with $\varphi_{r}=\beta$. Since the common edge of α_{j} and ψ does not belong to the rim $R\left(B_{\varphi}\right)$, again by Claim 3a, $\varphi_{r}=\beta$ is an empty 0 -face.

Claim 6. $\quad f_{1}\left(H_{3-i}\right)+2 f_{0}\left(H_{3-i}\right) \geq 4$.
Proof. If $\sum_{\varphi \in F_{\mathrm{e}}\left(H_{3-i}\right)} p(\varphi) \geq 4$, then $f_{1}\left(H_{3-i}\right)+2 f_{0}\left(H_{3-i}\right) \geq 4$ (by Claim 5). Assume $\sum_{\varphi \in F_{\mathrm{e}}\left(H_{3-i}\right)} p(\varphi) \leq 3$.

1. Let H_{i} contains exactly one 0 -face. As there are three 2 -faces $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in H_{i} (note, that T_{i} is a subdivided 3 -star in this case), then $\sum_{\varphi \in F_{\mathrm{e}}\left(H_{3-i}\right)} p(\varphi)=3$. Furthermore, only P4 was applied to each $\alpha_{j}(j \in\{1,2,3\})$ hence there are three 1-faces with 1 point and they belong to three different branches.

Since $|V(H)|=k \geq 7$, there is $j \in\{1,2,3\}$ such that α_{j} is adjacent to a 1 -face δ of H_{i}. Let φ be the adjacent 2-face of α_{j} in H_{3-i} and $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ be its branch.
1.1. If $r \geq 4$, then φ_{2} and φ_{3} are 1-faces of the same branch. Thus, at most one among φ_{2} and φ_{3} has a point and $f_{1}\left(H_{3-i}\right) \geq 4$.
1.2. If $r=3$, then δ and φ are not adjacent (i.e. $\delta \neq \varphi_{2}$, since H has no multiple edges) and φ_{3} is an empty 0 -face (by Claim 3b), hence $f_{1}\left(H_{3-i}\right)+f_{0}\left(H_{3-i}\right) \geq 4$.
2. Let H_{i} contains no 0 -face. Since $\sum_{\varphi \in F_{\mathrm{e}}\left(H_{3-i}\right)} p(\varphi) \leq 3$, there is $j \in\{1,2\}$ such that P 4 was applied to α_{j}. Let δ be the 1 -face of H_{i} adjacent to α_{j} (since $|V(H)|=k \geq 7$), let φ and ψ be the 2-face and 1-face of H_{3-i} adjacent with α_{j}, respectively, and let $B_{\varphi}=\left(\varphi, \varphi_{2}, \ldots, \varphi_{r}\right)$ be the branch of φ. We may assume $\alpha_{j}=\left[v_{1}, v_{2}, v_{3}\right]$ and $\varphi=\left[v_{2}, v_{3}, v_{4}\right]$.
2.1. Let $r \leq 4$.
2.1.1 If $\delta=\left[v_{0}, v_{1}, v_{3}\right]$, then $v_{0} v_{1}$ does not belong to the $\operatorname{rim} R\left(B_{\varphi}\right)$ (otherwise $\varphi_{2}=\left[v_{1}, v_{2}, v_{4}\right], \varphi=\left[v_{0}, v_{1}, v_{4}\right]$ and v_{0}, v_{3}, v_{4} is a non-trivial 3 -cut, a contradiction) and φ_{r} is an empty 0 -face (by Claim 3b). By P1-4, there is a face in H_{3-i} other than ψ and φ_{r} with a point, thus $f_{1}\left(H_{3-i}\right)+2 f_{0}\left(H_{3-i}\right) \geq 4$.
2.1.2 If $\delta=\left[v_{1}, v_{3}, v_{4}\right]$, then $\varphi_{2}=\left[v_{2}, v_{4}, v_{5}\right]$ (since $\left.v_{1} v_{4} \in E\left(H_{i}\right)\right), \psi=\varphi_{3}=\left[v_{1}, v_{2}, v_{5}\right]$, and $\left\{v_{1}, v_{4}, v_{5}\right\}$ is a non-trivial 3 -cut, a contradiction.
2.2. Let $r=5$. There are three 1-faces (in fact φ_{2}, φ_{3}, and φ_{4}) all belonging to the same branch B_{φ}. We may assume that P4 was applied to α_{j} and P2 was applied to α_{3-j}, and all three 1-faces are adjacent to α_{1} or α_{2} (since otherwise there is another 1 -face or empty 0 -face and Claim 6 follows).
2.2.1. If $\alpha_{3-j}=\left[v_{-1}, v_{0}, v_{1}\right]$, then $\operatorname{rim} R\left(B_{\varphi}\right)=\left(v_{-1}, \ldots, v_{4}\right)$, thus $\varphi_{2}=\left[v_{1}, v_{2}, v_{4}\right]$ and $\delta=\left[v_{1}, v_{3}, v_{4}\right]$, a contradiction to the simplicity of H.
2.2.2. If $\alpha_{3-j}=\left[v_{4}, v_{5}, v_{6}\right]$ and $\delta=\left[v_{0}, v_{1}, v_{3}\right]$, then $\operatorname{rim} R\left(B_{\varphi}\right)=\left(v_{1}, \ldots, v_{6}\right)$ and φ_{5} is an empty 0 -face (by Claim 3b), thus $f_{1}\left(H_{3-i}\right)+f_{0}\left(H_{3-i}\right) \geq 4$.
2.2.3. If $\alpha_{3-j}=\left[v_{4}, v_{5}, v_{6}\right]$ and $\delta=\left[v_{1}, v_{3}, v_{4}\right]$, then $\operatorname{rim} R\left(B_{\varphi}\right)=\left(v_{1}, \ldots, v_{6}\right)$. Hence $v_{1} v_{6} \in E\left(H_{3-i}\right)$ and consequently $\left\{v_{1}, v_{4}, v_{6}\right\}$ is a non-trivial 3 -cut, a contradiction.
2.3. If $r \geq 6$, then there are at least four 1-faces in B_{φ}, thus $f_{1}\left(H_{3-i}\right) \geq 4$.

Remember that each j-face of H_{3-i} is incident with j ("private") edges of C, hence $2 f_{2}\left(H_{3-i}\right)+f_{1}\left(H_{3-i}\right)=$ k. As each of the $k-2$ triangular faces of H_{i} is empty, all non-empty faces of H belong to H_{3-i} and their number is $(k-2)-f_{2}\left(H_{3-i}\right)-f_{1}\left(H_{3-i}\right)-f_{0}\left(H_{3-i}\right)=(k-2)-\frac{1}{2}\left(k-f_{1}\left(H_{3-i}\right)\right)-f_{1}\left(H_{3-i}\right)-f_{0}\left(H_{3-i}\right)=$ $\frac{k}{2}-2-\frac{1}{2}\left(f_{1}\left(H_{3-i}\right)+2 f_{0}\left(H_{3-i}\right)\right) \leq \frac{k}{2}-4$ (by Claim 6). Finally, at most $\frac{k}{2}-4$ vertices of G lie outside the cycle C (and exactly k vertices on C), hence $n \leq k+\left(\frac{k}{2}-4\right)$ and $k \geq \frac{2}{3}(n+4)$ follows, which completes the proof of Theorem 4.

References

[1] R. E. L. Aldred, S. Bau, D. A. Holton, and B. D. McKay. Nonhamiltonian 3-connected cubic planar graphs. SIAM Journal on Discrete Mathematics, 13(1):25-32, 2000. doi:10.1137/s0895480198348665.
[2] D. Barnette and E. Jucovič. Hamiltonian circuits on 3-polytopes. Journal of Combinatorial Theory, 9(1):54-59, 1970. doi:10.1016/S0021-9800 (70) 80054-0.
[3] H. J. Broersma. On some intriguing problems in hamiltonian graph theory-a survey. Discrete Mathematics, 251(1-3):47-69, 2002. doi:10.1016/s0012-365x (01) 00325-9.
[4] I. Fabrici, J. Harant, and S. Jendrol'. On longest cycles in essentially 4-connected planar graphs. Discussiones Mathematicae Graph Theory, 36(3):565-575, 2016. doi:10.7151/dmgt. 1875.
[5] I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt. On the circumference of essentially 4-connected planar graphs. Journal of Graph Algorithms and Applications, 24(1):21-46, 2020. doi:10.7155/jgaa.00516.
[6] H. Fleischner and B. Jackson. A note concerning some conjectures on cyclically 4-edge connected 3-regular graphs. Annals of Discrete Mathematics, 41:171-177, 1989. doi:10.1016/s0167-5060 (08) 70458-8.
[7] B. Grünbaum and J. Malkevitch. Pairs of edge-disjoint Hamilton circuits. Aequationes Mathematicae, 14:191-196, 1976.
[8] B. Jackson. Longest cycles in 3-connected cubic graphs. Journal of Combinatorial Theory, Series B, 41(1):17-26, 1986. doi:10.1016/0095-8956(86)90024-9.
[9] B. Jackson and N. C. Wormald. Longest cycles in 3-connected planar graphs. Journal of Combinatorial Theory, Series B, 54(2):291-321, 1992. doi:10.1016/0095-8956(92) 90058-6.
[10] O.-H. S. Lo and J. M. Schmidt. Longest cycles in cyclically 4-edge-connectedcubic planar graphs. Australasian Journal of Combinatorics, 72(1):155-162, 2018.
[11] E. Máčajová and J. Mazák. Cubic graphs with large circumference deficit. Journal of Graph Theory, 82(4):433-440, 2016. doi:10.1002/jgt. 21911.
[12] M. M. Matthews and D. P. Sumner. Longest paths and cycles in $\mathrm{K}_{1,3}$-free graphs. Journal of Graph Theory, 9(2):269-277, 1985. doi:10.1002/jgt. 3190090208.
[13] Z. Ryjáček. On a closure concept in claw-free graphs. Journal of Combinatorial Theory, Series B, 70(2):217-224, 1997. doi:10.1006/jctb.1996.1732.
[14] C. Thomassen. Reflections on graph theory. Journal of Graph Theory, 10(3):309-324, 1986. doi: 10.1002/jgt. 3190100308.
[15] W. T. Tutte. A non-hamiltonian planar graph. Acta Mathematica Academiae Scientiarum Hungaricae, 11(3-4):371-375, 1960. doi:10.1007/bf02020951.
[16] N. Van Cleemput and C. T. Zamfirescu. Regular non-hamiltonian polyhedral graphs. Applied Mathematics and Computation, 338:192-206, 2018. doi:10.1016/j.amc.2018.05.062.
[17] S. Zhan. Hamiltonian connectedness of line graphs. Ars Combinatoria, 22:89-95, 1986.
[18] C.-Q. Zhang. Longest cycles and their chords. Journal of Graph Theory, 11(4):521-529, 1987. doi: 10.1002/jgt. 3190110409.

[^0]: ${ }^{1}$ Partially supported by DAAD, Germany (as part of BMBF) and the Ministry of Education, Science, Research and Sport of the Slovak Republic within the project 57447800.
 ${ }^{2}$ Partially supported by the Slovak Research and Development Agency under contract No. APVV-15-0116.

