On the Circumference of Essentially 4-connected Planar Graphs

Igor Fabrici* ${ }^{* \ddagger \ddagger}$ Jochen Harant* ${ }^{* \S}$ Samuel Mohr*§』 Jens M. Schmidt**§

Abstract

A planar graph is essentially 4 -connected if it is 3 -connected and every of its 3 -separators is the neighborhood of a single vertex. Jackson and Wormald proved that every essentially 4connected planar graph G on n vertices contains a cycle of length at least $\frac{2 n+4}{5}$, and this result has recently been improved multiple times.

In this paper, we prove that every essentially 4 -connected planar graph G on n vertices contains a cycle of length at least $\frac{5}{8}(n+2)$. This improves the previously best-known lower bound $\frac{3}{5}(n+2)$.

1 Introduction

The circumference $\operatorname{circ}(G)$ of a graph G is the length of a longest cycle of G. Originally being the subject of Hamiltonicity studies, essentially 4 -connected planar graphs and their circumference have been thoroughly investigated throughout literature. Jackson and Wormald [5] proved that $\operatorname{circ}(G) \geq$ $\frac{2 n+4}{5}$ for every essentially 4 -connected planar graph G on n vertices. An upper bound is given by an infinite family of essentially 4 -connected planar graphs G such that $\operatorname{circ}(G)=\frac{2}{3}(n+4)$ [2]. Fabrici, Harant and Jendrol' [2] improved recently the lower bound to $\operatorname{circ}(G) \geq \frac{1}{2}(n+4)$; this result in turn was strengthened to $\operatorname{circ}(G) \geq \frac{3}{5}(n+2)$ in [3]. It remained an open problem whether every essentially 4 -connected planar graph G on n vertices satisfies $\operatorname{circ}(G)>\frac{3}{5}(n+2)$.

In this paper, we present the following result.
Theorem 1. Every essentially 4-connected planar graph G on n vertices contains a cycle of length at least $\frac{5}{8}(n+2)$. If $n \geq 16, \operatorname{circ}(G) \geq \frac{5}{8}(n+4)$.

This result encompasses most of the results known for the circumference of essentially 4connected planar graphs (some of which can be found in [2, 4, 8]). In particular, it improves the bound $\operatorname{circ}(G) \geq \frac{13}{21}(n+4)$ that has been given in [2] for the special case that G is maximal planar for sufficiently large n (in fact, for every $n \geq 16$, as explained in Section 4).

[^0]
2 Preliminaries

Throughout this paper, all graphs are simple, undirected and finite. For a vertex x of a graph G, denote by $\operatorname{deg}_{G}(x)$ the degree of x in G. For a vertex subset $A \subseteq V$, let the neighborhood $N_{G}(A)$ of A consist of all vertices in $V-A$ that are adjacent to some vertex of A. For vertices $v_{1}, v_{2}, \ldots, v_{i}$ of a graph G, let $\left(v_{1}, v_{2}, \ldots, v_{i}\right)$ be the path of G that visits the vertices in the given order. We omit subscripts if the graph G is clear from the context.

A separator S of a graph G is a subset of V such that $G-S$ is disconnected; S is a k-separator if $|S|=k$. A separator S is trivial if at least one component of $G-S$ is a single vertex, and non-trivial otherwise. Let a graph G be essentially 4 -connected if G is 3 -connected and every 3 -separator of G is trivial. It is well-known that, for every 3 -separator S of a 3 -connected planar graph $G, G-S$ has exactly two components.

A cycle C of a graph G is isolating (sometimes also called outer-independent) if every component of $G-V(C)$ is a single vertex that has degree three in G. An edge $x y$ of a cycle C of G is extendable if x and y have a common neighbor in $G-V(C)$. For example, Figure 2 depicts (a part of) an isolating cycle C for which the edge $y z$ becomes extendable after contracting the edge zu. According to Whitney [7], every 3 -connected planar graph has a unique embedding into the plane (up to flipping and the choice of the outer face). Hence, we assume in the following that the embeddings of such graphs are fixed.

3 Proof of Theorem 1

Let G be an essentially 4 -connected plane graph. It is well-known that every 3 -connected plane graph on at most 10 vertices is Hamiltonian [1]; thus, for $4 \leq n \leq 10$, this implies $\operatorname{circ}(G)=n \geq$ $\frac{5}{8}(n+2)$. Since these graphs contain in particular the essentially 4 -connected plane graphs on at most 10 vertices, we assume $n \geq 11$ from now on. For $n \geq 11$, it was shown in [2, Lemma 4(ii)] that G contains an isolating cycle of length at least 8 . Let C be a longest such isolating cycle of length $c:=|E(C)| \geq 8$. We will show that $c \geq \frac{5}{8}(n+2)$, so that C is a cycle of the desired length.

Clearly, C contains no extendable edge $x y$, as otherwise one could find a longer such cycle by replacing $x y$ in C with the path (x, v, y), where $v \notin V(C)$ is a common neighbor of x and y. Let V^{-}be the subset of vertices of V that are contained in the open set of $\mathbb{R}^{2}-C$ that is bounded (hence, strictly inside C), and let $V^{+}:=V-V(C)-V^{-}$. We assume that $\left|V^{-}\right| \geq 1 \leq\left|V^{+}\right|$, since otherwise we are done, as then $c \geq \frac{2}{3}(n+2)$ is implied by [2, Lemma 5]. Let H be the plane graph obtained from G by deleting all chords of C (i. e., all edges $x y \in E-E(C)$ satisfying $x, y \in V(C))$ and let $H^{-}:=H-V^{+}$and $H^{+}:=H-V^{-}$. A face of H is called minor if it is incident to exactly one vertex of $V^{-} \cup V^{+}$, and major otherwise. Let M^{-}and M^{+}be the sets of minor faces in H^{-} and H^{+}, respectively. For example, in Figure 2, we have $a \in V^{-}, b \in V^{+}, f \in M^{-}$and $f^{\prime} \in M^{+}$.

Note that a face f of H is incident to no vertex of $V^{-} \cup V^{+}$if and only if it is bounded by C (i.e., if f is either the region inside or outside C). Since we assumed $\left|V^{-}\right| \geq 1 \leq\left|V^{+}\right|$, our definition of minor faces coincides with the one of [3], so that we can use the following inequality.

Lemma 2 ([3], Inequality (i)). $\left|M^{-} \cup M^{+}\right| \geq\left|V^{-} \cup V^{+}\right|+2$.
In H, an edge e of C is incident with exactly two faces f and f^{\prime} of H. In this case we say f^{\prime} is opposite to f with respect to e. A face f of H is called j-face if it is incident with exactly j edges of C; the edges of C that are incident with f are called C-edges of f. Since C does not contain an extendable edge, we have $j \geq 2$ for every minor j-face of H. For two faces f and f^{\prime} of H, let $m_{f, f^{\prime}}$ be the number of common C-edges of f and f^{\prime}.

If we can prove

$$
\begin{equation*}
2 c \geq \frac{10}{3}\left|M^{-} \cup M^{+}\right|, \tag{1}
\end{equation*}
$$

then Theorem 1 follows directly from the inequality $\left|M^{-} \cup M^{+}\right| \geq n-c+2$ of Lemma 2. We charge every j-face of H with weight j (and thus have a total charge of weight $2 c$) and discharge these weights in H by applying the following set of rules exactly once. In order to prove Inequality (1), we will aim to prove that every minor face of H has weight at least $10 / 3$ after the discharging.

Rule R1: Every major face f of H sends weight $m_{f, f^{\prime}}$ to every minor face f^{\prime} opposite to f.
Rule R2: Every minor face f of H sends weight $\frac{2}{3} m_{f, f^{\prime}}$ to every minor 2-face f^{\prime} opposite to f.
Rule R3: Every minor face f of H sends weight 1 to every minor 3 -face f^{\prime} that is opposite to f with respect to the middle C-edge of f^{\prime}.

Rule R4: Let f_{1} be a minor 4 -face that has an opposite minor j-face f satisfying $j \geq 4$ and $m_{f_{1}, f}=2$, as well as an opposite minor 2 - or 3 -face f_{2} satisfying $m_{f_{1}, f_{2}}=2$. Then f sends weight $2 / 3$ to f_{1}.

Rule R5: Let f_{1} be a minor 5 -face that has an opposite minor j-face f satisfying $j \geq 4$ and $m_{f_{1}, f}=2$, as well as two opposite minor 2 -faces. Then f sends weight $1 / 3$ to f_{1}.

For example, in Figure 2, both faces f and f^{\prime} would send weight $2 / 3$ to each other according to Rule R2, which effectively cancels the exchange of weights. Rules R2 and R3 may be seen as a refinement of the two rules given in [3]; for that reason, some of the early cases about minor 2 - and 3 -faces in the following case distinction will be similar as in [3].

Let w denote the weight function on the set $F(H)$ of faces of H after Rules R1-R5 have been applied. Clearly, $\sum_{f \in F(H)} w(f)=2 c$ still holds. In order to prove that the weight $w(f)$ of every minor face f of H is at least $10 / 3$ and no major face has negative weight, we distinguish several cases. For most of them, we construct a cycle \bar{C} that is obtained from C by replacing a subpath of C with another path. In such cases, \bar{C} will be an isolating (which is easy to verify due to $V(C) \subseteq V(\bar{C})$) cycle of G that is longer than C (we say C is extended); this contradicts the choice of C and therefore shows that the considered case cannot occur. Note that the vertices of C that are depicted in the following figures are pairwise non-identical, because $c \geq 8$; in the rare figures that show more than 8 vertices of C, C has always at least the number of vertices shown.

Let $f \in F(H)$.
Case 1: f is a major j-face for any j.
Initially, f is charged with weight j. By Rule R1, f sends for every of its C-edges weight at most 1 to an opposite face. We conclude $w(f) \geq 0$.

Case 2: f is a minor 2-face (see Figure 1).
Let $x y$ and $y z$ be the C-edges of f and let a be the vertex of $V-V(C)$ that is incident with f. The face f is initially charged with weight 2 and gains weight at least $4 / 3$ by R1 and R2. If f does not send any weight to other faces, this gives $w(f) \geq 10 / 3$, so assume that f sends weight to some face $f^{\prime} \neq f$.
According to R1-R5, f^{\prime} is opposite to f and either a minor 2-face or a minor 3-face of H. Without loss of generality, let f^{\prime} be opposite to f with respect to the edge $y z$. We distinguish the following subcases.

Figure 1: Case 2

Case 2a: f^{\prime} is a minor 2 -face and $x y$ is a C-edge of f^{\prime}.
Then $\{x, z\}$ is the neighborhood of y in G, which contradicts the 3 -connectivity of G.
Case 2b: f^{\prime} is a minor 2-face and $x y$ is not a C-edge of f^{\prime} (see Figure 2).
Then a longer isolating cycle \bar{C} is obtained from C by replacing the path (x, y, z, u) with the path (x, a, z, y, b, u) (see Figure 2), which contradicts the choice of C.

Figure 2: Case 2b

Figure 3: Case 2c

Case 2c: f^{\prime} is a minor 3 -face (see Figure 3).
Since we assumed that f sends weight to f^{\prime}, one C-edge of f, say without loss of generality $y z$, is the middle C-edge of f^{\prime}, according to R3. The edge $y u$ (see Figure 3) exists in G (but not in H, as H does not contain chords of C), because otherwise $d_{G}(y)=2$, which contradicts that G is 3 -connected. Then \bar{C} is obtained from C by replacing the path (x, y, z, u) with the path (x, a, z, y, u).

Case 3: f is a minor 3-face (see Figure 4).
Then f is initially charged with weight 3 and gains weight at least 1 by R1 and R3. If f sends weight at most $2 / 3$ to other faces, this gives $w(f) \geq 10 / 3$, so assume that f sends weight more than $2 / 3$. Since all weights are multiples of $1 / 3, f$ has to send weight at least $3 / 3$. In particular, this implies that Rule R2 or R3 applies on f.
Let f_{1}, f_{2} and f_{3} be the (possibly identical) opposite faces of f with respect to the C-edges $v x, x y, y z$ of f (see Figure 4). Then f_{2} is not a minor 2-face for the same reason as in Case 2c. We distinguish the following subcases.

Case 3a: Neither f_{1} nor f_{3} is a minor 3 -face (see Figure 5).

Figure 4: Case 3

Then f_{2} is neither a minor 2 -face nor a minor 3 -face, and f_{1} and f_{3} are minor 2 -faces, as otherwise by R1-R5 f would not send a total weight of more than $2 / 3$ to its opposite faces. Moreover, $b \neq d$ (in the notation of Figure 5), since $x y$ is not extendable. Then \bar{C} is obtained from C by replacing the path (w, v, x, y, z, u) with the path ($w, b, x, v, a, z, y, d, u$).

Figure 5: Case 3a

Figure 6: Case 3b

Case 3b: f_{1} or f_{3} is a minor 3-face (see Figure 6).
The face f_{2} is not a minor 3 -face with middle C-edge $x y$, as otherwise $\{v, z\}$ would be a 2 -separator of G. Hence, $f_{1} \neq f_{3}$. Since f sends a total weight of more than $2 / 3$ to its opposite faces, at least one of f_{1} and f_{3} is a minor 3 -face that has its middle C-edge in $\{v x, y z\}$ by R3, say without loss of generality that the middle C-edge of f_{3} is $y z$. Then \bar{C} is obtained from C by replacing the path (v, x, y, z, u) with the path (v, a, z, y, x, d, u).

Case 4: f is a minor 4-face (see Figure 7).
Then f is initially charged with weight 4. If f looses a total net weight of at most $2 / 3$, then $w(f) \geq 10 / 3$, so assume that weight at least $3 / 3$ is sent to opposite faces. We have to show that this is impossible by considering Rules R2-R5.

Assume first that f has an opposite minor 2-face f^{\prime}. We distinguish the following subcases.
Case 4a: f^{\prime} has C-edges $w x$ and $x y$ (see Figure 8).
Then $v x$ or $x z$ is an edge of G and C can be extended by detouring C through one of these edges and d, which contradicts the choice of C.
Case 4b: Every opposite minor 2-face of f has exactly one C-edge of f (see Figure 9).
In particular, $m_{f, f^{\prime}}=1$. Without loss of generality, let f^{\prime} have the C-edge $y z$. Then f sends weight $2 / 3$ to f^{\prime} by R2, and R1 does not decrease the weight of f. Moreover,

Figure 7: Case 4

Figure 8: Case 4a

Figure 9: Case 4b
if f sends weight to another face with the Rules R4 or R5, then $x y$ is a C-edge of a major face (since C does not contain any extendable edge) and f gains weight 1 from this major face, so that $w(f) \geq 4-2 / 3+1-2 / 3=11 / 3$, which contradicts $w(f)<10 / 3$. Therefore, f has by R2 and R3 an opposite minor 2- or 3 -face $f_{1} \neq f^{\prime}$. If f_{1} is a minor 2 -face, $m_{f, f_{1}}=1$, so that f_{1} has the C-edge $v w$. Then neither $w x$ nor $x y$ is a C-edge of a minor face opposite to f, as such a minor face would be a 2 -face with C-edges $w x$ and $x y$ (see Case 4a). Thus, f gains weight 2 from the major face(s) with C-edges $w x$ and $x y$, which contradicts $w(f)<10 / 3$.
Hence, f_{1} is a minor 3 -face. Since $w(f)<10 / 3$, the middle C-edge of f_{1} is either $v w$ or $w x$. If it is $v w, \bar{C}$ can be obtained from C by replacing the path (t, v, w, x, y, z, u) with $(t, b, x, w, v, a, z, y, d, u)$ (see Figure 9), as we have $b \neq d$, since otherwise C would contain the extendable edge $x y$. Hence, let the middle C-edge of f_{1} be $w x$. Then $w z \notin E(G)$, as otherwise C could be extended by replacing the path (v, w, x, y, z) with (v, b, y, x, w, z). Since $\{v, y\}$ is not a 2 -separator of the 3 -connected graph G, this implies $x z \in E(G)$. Then \bar{C} can be obtained from C by replacing the path (x, y, z, u) with (x, z, y, d, u), which contradicts the choice of C.

From Cases $4 \mathrm{a}+\mathrm{b}$, we conclude that f^{\prime} has either the C-edges $v w$ and $w x$ or the C-edges $x y$ and $y z$, say without loss of generality the latter.

Case 4c: f^{\prime} has C-edges $x y$ and $y z$, and f has an opposite major face (see Figure 10).
Then $w y \notin E(G)$, as otherwise C can be extended by detouring through f^{\prime}. Hence, $v y \in E(G)$, as otherwise $\operatorname{deg}_{G}(y)=2$. Since f has an opposite major face and $w x$ is not an extendable edge of $C, w x$ is a C-edge of such an opposite major face $f^{\prime \prime}$. Then f gains weight 1 from $f^{\prime \prime}$ by R1 and sends by R2 weight $2 / 3$ to a minor opposite 2 -face
with C-edge $v w$ in order to satisfy the assumption $w(f)<10 / 3$ (see Figure 10 and note that R4 and R5 do not apply here). But this is impossible, as then C can be extended by replacing the path (t, v, w, x, y, z) with (t, b, w, v, y, x, d, z), since $b \neq d$.

Figure 10: Case 4c

Figure 11: Case 4d

Case 4d: f^{\prime} has C-edges $x y$ and $y z$, and $w x$ is a C-edge of a minor 2- or 3-face f_{1} (see Figure 11).
As in Case $4 \mathrm{c}, w y \notin E(G)$ and $v y \in E(G)$. Hence, f_{1} is a minor 3 -face, as otherwise $\operatorname{deg}_{G}(w)=2$. Then \bar{C} is obtained from C by replacing the path (t, v, w, x, y, z) with (t, b, x, w, v, y, z) (note that $b=d$ is possible).
Case 4e: f^{\prime} has C-edges $x y$ and $y z$, and $w x$ is a C-edge of a minor j-face f_{1} with $j \geq 4$ (see Figure 12).
Then f gains weight $2 / 3$ from f_{1} by R 4 and sends weight $4 / 3$ to f^{\prime}. Hence, we get the contradiction $w(f)=10 / 3$, unless f sends weight $2 / 3$ to f_{1} by R4 or $1 / 3$ to f_{1} by R 5 . In that case, $j=4$ or $j=5$ and there are only minor 2 -faces opposite to f_{1}. As argued in Case 4 c , $w y \notin E(G)$ and $v y \in E(G)$. Moreover, $u w$ (and $s u$ in case of $j=5$; see Figure 12) are not edges of G, as otherwise C can be extended by detouring through g. Hence, $u x \in E(G)$, as otherwise $\operatorname{deg}_{G}(u)=2$, which is a contradiction. This implies $\operatorname{deg}_{G}(w)=2$, which is a contradiction.

Figure 12: Case 4 e

From Cases 4a-e, we conclude that f has no opposite minor 2-face. Then $w(f)<10 / 3$ and R1R5 imply that f has an opposite minor 3 -face that has a C-edge of f as middle C-edge (due
to R3), or an opposite minor 4 -face f^{\prime} with $m_{f, f^{\prime}}=2$ that has an opposite minor 2 - or 3 -face f_{2} with $m_{f^{\prime}, f_{2}}=2$ (due to R4); note that we still contradict $w(f)<10 / 3$ when f has two opposite minor 5 -faces, to each of which f sends weight $1 / 3$ by R 5 . We therefore distinguish these remaining subcases.

Case 4f: f has an opposite minor 3-face f^{\prime} with middle C-edge wx or $x y$ (see Figure 13).
Without loss of generality, let $x y$ be the middle C-edge of f^{\prime}. Then $v y \notin E(G)$, as otherwise C can be extended by replacing the path (v, w, x, y, z) with (v, y, x, w, d, z). This implies $w y \in E(G)$, as otherwise $\operatorname{deg}_{G}(y)=2$. Since $\{w, z\}$ is no 2 -separator of $G, v x \in E(G)$. Then C can be extended by replacing the path (v, w, x, y, z) with (v, x, y, w, d, z).

Figure 13: Case 4f

Figure 14: Case 4 g

Case 4g: f has an opposite minor 3-face f^{\prime} with middle C-edge vw or yz, but no opposite 4 -face (see Figure 14).
Without loss of generality, let $y z$ be the middle C-edge of f^{\prime}. Let f_{1} be the face opposite to f that has C-edge $w x$. Then f_{1} is not major, as otherwise $w(f)=4-1+1>10 / 3$, since f has no opposite minor 2 -faces. For the same reason, f_{1} is a minor j-face satisfying $j \geq 3$. If $j \geq 5, f_{1}$ sends weight $2 / 3$ to f due to R4, which contradicts $w(f)<10 / 3$, as f sends weight at most $1 / 3$ to f_{1} due to R5 (exactly $1 / 3$ only if $j=5$ and f_{1} has two opposite 2-faces).
Since $j \neq 4$ by assumption, f_{1} is a minor 3 -face (see Figure 14). Then $w y \notin E(G)$, as otherwise \bar{C} is obtained from C by replacing the path (v, w, x, y, z, u) with (v, a, z, y, w, x, d, u), and $w z \notin E(G)$, as otherwise \bar{C} is obtained from C by replacing the path (w, x, y, z, u) with (w, z, y, x, d, u). Hence, $t w \in E(G)$, as otherwise $\operatorname{deg}_{G}(w)=2$. Then \bar{C} is obtained from C by replacing the path (t, v, w, x, y, z, u) with $(t, w, v, a, z, y, x, d, u)$, which contradicts the choice of C.
Case 4h: f has an opposite minor 3-face f^{\prime} with middle C-edge vw or yz and an opposite 4 -face f_{1} (see Figure 15).
Without loss of generality, let $y z$ be the middle C-edge of f^{\prime}. Then $m_{f, f_{1}}=2$, as otherwise $w x$ is a C-edge of a major face, which would imply $w(f)=4-1+1>10 / 3$. Hence, f_{1} sends weight $2 / 3$ to f by R4, which implies that f must send weight $2 / 3$ to f_{1} by R4, as otherwise $w(f) \geq 10 / 3$. Hence, f_{1} has an opposite minor 2- or 3 -face f_{2} that satisfies $m_{f_{1}, f_{2}}=2$ (see Figure 15). Then $w y \notin E(G)$, as otherwise C can be extended by replacing the path (v, w, x, y, z, q) with (v, a, z, y, w, x, d, q), and $w z \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q).

If f_{2} is a 3 -face, this implies by symmetry $t w \notin E(G)$ and $u w \notin E(G)$, which contradicts $\operatorname{deg}_{G}(w) \geq 3$. Hence, f_{2} is a 2 -face. Then $u w \notin E(G)$, as otherwise C can be extended by replacing the path (t, u, v, w) with (t, g, v, u, w), which implies $t w \in E(G)$, as otherwise $\operatorname{deg}_{G}(w)=2$. This contradicts $\operatorname{deg}_{G}(u) \geq 3$.

Figure 15: Case 4h

Case 4i: f has no opposite minor 3 -face whose middle C-edge is a C-edge of f (see Figure 16).
Then, as argued before, f has an opposite minor 4 -face f^{\prime} with $m_{f, f^{\prime}}=2$ and C-edges $x y$ and $y z$, that has an opposite minor 2 - or 3 -face f_{2} with $m_{f^{\prime}, f_{2}}=2$. According to R4, f sends weight $2 / 3$ to f^{\prime}. Let $f^{\prime \prime}$ be the face opposite to f that has C-edge $w x$. Then $f^{\prime \prime}$ must be either a second opposite minor 4 -face with $m_{f, f^{\prime \prime}}=2$ that has an opposite minor 2 - or 3 -face f_{1} with $m_{f^{\prime \prime}, f_{1}}=2$ (due to R4), or a opposite minor 5 -face with $m_{f, f^{\prime \prime}}=2$ that has two opposite minor 2 -faces (due to R5), as otherwise $w(f) \geq 4-2 / 3=10 / 3$, since f sends no weight to any 2 - or 3 -face by R2 or R3. Note that $g=a=h$ and $b=d$ are possible.

Figure 16: Case 4i

We claim that in all cases $v y$ is an edge of G. Consider the case that f_{2} is a 2 -face (see Figure 16). Then $y q \notin E(G)$, as otherwise C can be extended by replacing the path (y, z, q, r) with (y, q, z, h, r), and thus $x q \in E(G)$, as otherwise $\operatorname{deg}_{G}(q)=2$. This implies that $v y$ or $w y$ is in G, as otherwise $\operatorname{deg}_{G}(y)=2$. Since $w y \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z, q, r) with (w, y, x, q, z, h, r), we have $v y \in E(G)$, as claimed. Now consider the remaining case that f_{2} is a 3 -face. By
symmetry, we will assume instead that f_{1} is a 3 -face and prove that $w z \in E(G)$ (such that the notation of Figure 16 can be used); this implies $v y \in E(G)$ for the case that f_{2} is a 3 -face. Then $w y \notin E(G)$, as otherwise C can be extended by replacing the path (s, t, u, v, w, x, y) with $(s, g, v, u, t, b, x, w, y)$, and $u w \notin E(G)$, as otherwise C can be extended by replacing the path (s, t, u, v, w, x) with (s, g, v, w, u, t, b, x). In addition, $t w \notin E(G)$, as otherwise C can be extended by replacing the path (s, t, u, v, w) with (s, g, v, u, t, w). Then $w z \in E(G)$, as claimed, since otherwise $\operatorname{deg}_{G}(w)=2$, which is a contradiction.
Hence, we proved that in all cases $v y \in E(G)$. If $f^{\prime \prime}$ is a 5 -face, then $u x \in E(G)$ by the last argument of Case 4e, which contradicts $\operatorname{deg}_{G}(w) \geq 3$. Hence, $f^{\prime \prime}$ is a 4 -face, and no matter whether f_{1} is a 2 - or 3 -face, $w z$ is an edge of G by a symmetric argument to the one of the last paragraph. This contradicts that G is plane, because $v y \in E(G)$.

Case 5: f is a minor 5-face (see Figure 17).
Then f is initially charged with weight 5 . If f looses a total net weight of at most $5 / 3$, then $w(f) \geq 10 / 3$, so assume otherwise. We distinguish the following subcases.

Figure 17: Case 5

Case 5a: f sends weight to an opposite minor 5-face f^{\prime} (see Figure 18).
Without loss of generality, let $x y$ and $y z$ be C-edges of f^{\prime} by R5. Then f sends weight $1 / 3$ to f^{\prime}, and f^{\prime} has two opposite minor 2 -faces f_{1} and f_{2}. Since $w(f)<10 / 3, f$ does neither send weight to a second 5 -face nor to a 4 -face nor to a 3 -face (as there may be at most one of each kind and, if so, no 2 -face that receives weight from f). This implies that the edge $u v$ is a C-edge of a minor 2 -face f_{3} opposite to f, and that $v w$ and $w x$ are the C-edges of a second minor 2 -face f_{4} opposite to f (see Figure 18). Then f^{\prime} sends weight $1 / 3$ back to f by R5, but $w(f)=5-3 \cdot \frac{2}{3}=3<10 / 3$ is still satisfied.
We have $y p \notin E(G)$ and $p r \notin E(G)$, as otherwise C can be extended by detouring through g. Since $\operatorname{deg}_{G}(p) \geq 3, x p \in E(G)$. By symmetry, $w z \in E(G)$, which implies $y w \in E(G)$. Then C can be extended by replacing the path (v, w, x, y) with (v, b, x, w, y).
Case 5b: f sends weight to an opposite minor 4 -face f^{\prime} (see Figure 19).
Without loss of generality, let $x y$ and $y z$ be C-edges of f^{\prime} by R4. Assume first that f sends weight to an opposite minor 3 -face f_{1}. Then f sends total weight $5 / 3$ to f^{\prime} and f_{1}, and the middle C-edge of f_{1} is either $u v$ or $v w$. Both cases contradict $w(f)<10 / 3$, since no further weight is sent. The same argument gives a contradiction if f sends weight to a minor 4 -face different from f^{\prime}.
Hence, f sends a total weight of at least $4 / 3$ to minor 2 -faces, as R 2 sends only multiples of weight $2 / 3$. This implies that f has an opposite minor 2 -face f_{1} with $m_{f, f_{1}}=2$. If f_{1} has C-edges $u v$ and $v w$, then $w x$ is again a C-edge of major face, which sends weight 1 to

Figure 18: Case 5a

Figure 19: Case 5b
f and thus contradicts $w(f)<10 / 3$. Hence, f_{1} has C-edges $v w$ and $w x$ (see Figure 19). Then $u w$ and $w y$ are not edges of G, as otherwise C can be extended by detouring through b. Hence, $w z \in E(G)$, as otherwise $\operatorname{deg}_{G}(w)=2$. Moreover, $y q \notin E(G)$ and $x q \in E(G)$ for the same reason as in Case 4 i , which contradicts $\operatorname{deg}_{G}(y) \geq 3$.
Case 5c: f sends weight to an opposite minor 3 -face f^{\prime} with middle C-edge wx (see Figure 20).
In order to have $w(f)<10 / 3$, by R1-R3, f sends weight $2 / 3$ to each of the minor 2 -faces f_{1} and f_{2} having C-edges $u v$ and $y z$, respectively. Then $u w$ and $x z$ are not edges of G, as otherwise C can be extended by detouring C through b or g, respectively. Since $\{v, y\}$ is not a 2-separator of G, this implies that either $w z \in E(G)$ or $u x \in E(G)$, say by symmetry the former. Then we can obtain \bar{C} from C by replacing the path (v, w, x, y, z) with (v, d, y, x, w, z).
Case 5d: f sends weight to an opposite minor 3-face f^{\prime} with middle C-edge vw or xy, but not to any opposite minor 4- or 5-face (see Figure 21).
Without loss of generality, let the middle C-edge of f^{\prime} be $x y$. Then $v y \notin E(G)$, as otherwise C can be extended by replacing the path (v, w, x, y, z) with (v, y, x, w, d, z). Let f_{1} be the face opposite to f that has $v w$ as a C-edge. Since $w(f)<10 / 3, f_{1}$ is either a minor 3-face with middle C-edge $u v$ or a minor 2-face with C-edges $v w$ and $w x$. Assume to the contrary that f_{1} is a 2 -face. Then $v x \notin E(G)$, as otherwise C can be extended by detouring through b. This implies $v z \in E(G)$, as otherwise $\operatorname{deg}_{G}(v)=2$. Then $\{w, z\}$ is

Figure 20: Case 5c
a 2-separator of G, which is a contradiction.
Hence, f_{1} is a 3 -face (see Figure 21). Then $u x \notin E(G)$, as otherwise C can be extended by replacing the path (r, u, v, w, x) with (r, b, w, v, u, x). Thus, since $\{w, z\}$ is no 2separator of G, uy or $v x$ is an edge of G. Assume to the contrary that uy $\notin E(G)$. Then $v x \in E(G)$, and we have $w y \notin E(G)$, as otherwise C can be extended by replacing the path (r, u, v, w, x, y, z) with $(r, b, w, y, x, v, u, a, z)$. Since $\operatorname{deg}_{G}(y) \geq 3$, this implies $u y \in E(G)$. Assume to the contrary that $v x \notin E(G)$. Then $x z \in E(G)$, as otherwise $\operatorname{deg}_{G}(x)=2$, and C can be extended by replacing the path (r, u, v, w, x, y, z) with (r, b, w, v, u, y, x, z), which gives a contradiction. Hence, $u y \in E(G)$ and $v x \in E(G)$. Then C can be extended by replacing the path (u, v, w, x, y, z) with (u, y, x, v, w, d, z).

Figure 21: Case 5d
Case 5e: f sends weight to an opposite minor 3-face f^{\prime} with middle C-edge uv or yz, but not to any opposite minor 4- or 5-face (see Figure 22).
Without loss of generality, let the middle C-edge of f^{\prime} be $y z$. Assume first that f sends weight to a second opposite minor 3 -face $f_{1} \neq f^{\prime}$. By Case 5 d , f_{1} has not middle C edge $v w$, so that f^{\prime} must have middle C-edge $u v$. Then $w x$ is a C-edge of a major face opposite to f that sends weight 1 to f, which contradicts $w(f)<10 / 3$.
Hence, in order to satisfy $w(f)<10 / 3, f$ sends by R2 a total weight of $4 / 3$ to opposite minor 2 -faces. This implies that there is a minor 2 -face f_{2} opposite to f that satisfies $m_{f, f_{2}}=2$. Then f_{2} has not C-edges $u v$ and $v w$, as otherwise $w x$ would once again be a C-edge of a major face, which contradicts $w(f)<10 / 3$. Hence, f_{2} has C-edges $v w$ and
$w x$ (see Figure 22). Then $u w \notin E(G)$, as otherwise C can be extended by replacing the path (u, v, w, x) with (u, w, v, b, x), and $w y \notin E(G)$, as otherwise C can be extended by replacing the path (v, w, x, y) with (v, b, x, w, y). Since $\operatorname{deg}_{G}(w) \geq 3, w z \in E(G)$. Then C can be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q), which is a contradiction.

Figure 22: Case 5e

We conclude that f sends no weight to any opposite minor 3 -, 4 - or 5 -face. In order to satisfy $w(f)<10 / 3, f$ must therefore send a total weight of $6 / 3$ to opposite minor 2 -faces by R2. In particular, there is at least one minor 2 -face f^{\prime} opposite to f that has $m_{f, f^{\prime}}=2$. We distinguish the following subcases for f^{\prime}.

Case 5f: f^{\prime} has C-edges uv and vw, or $x y$ and $y z$ (see Figure 23).
Without loss of generality, let f^{\prime} have C-edges $x y$ and $y z$. Assume first that f has a second opposite minor 2 -face $f_{1} \neq f^{\prime}$ with $m_{f, f_{1}}=2$. Then f_{1} has not C-edges $u v$ and $v w$, as then $w x$ would be a C-edge of a major face sending f weight 1 , which implies $w(f)=5-4 \cdot \frac{2}{3}+1=10 / 3$. Hence, f_{1} has C-edges $v w$ and $w x$ (see Figure 23). Then $w y \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z) with (w, y, x, d, z). Hence, $v y \notin E(G)$, as otherwise $\operatorname{deg}_{G}(w)=2$. Since $\operatorname{deg}_{G}(y) \geq 3$, we conclude $u y \in E(G)$ and, by $\operatorname{deg}_{G}(w) \geq 3$, $u w \in E(G)$. Then C can be extended by replacing the path (u, v, w, x) with (u, w, v, b, x).
Hence, f has no second opposite minor 2-face $f_{1} \neq f^{\prime}$ with $m_{f, f_{1}}=2$. Since f sends a total weight of $6 / 3$ to opposite minor 2 -faces by R2, f has an opposite minor 2 -face $f_{2} \neq f^{\prime}$ that has C-edge $u v$ but no other C-edge of f. Then $v w$ and $w x$ are C-edges of major face(s), which contradicts $w(f)<10 / 3$.
Case 5g: f^{\prime} has C-edges vw and $w x$, or $w x$ and $x y$ (see Figure 24).
Without loss of generality, let f^{\prime} have C-edges $w x$ and $x y$. By Case $5 f, f$ has no second opposite minor 2-face $f_{1} \neq f^{\prime}$ with $m_{f, f_{1}}=2$. By $w(f)<10 / 3, f$ has an opposite minor 2-face f_{2} that has exactly one of the C-edges of f as a C-edge. If this edge e is not $y z, e=u v$ and then $v w$ is a C-edge of a major face, which contradicts $w(f)<10 / 3$. Hence $e=y z$. Since neither $u v$ nor $v w$ is a C-edge of a major face, as this would again contradict $w(f)<10 / 3, u v$ and $v w$ are C-edges of a minor j-face f_{3} with $j \geq 4$ that does not receive any weight from f. Then f_{3} sends weight $1 / 3$ to f by R5, which gives $w(f)=10 / 3$ and thus a contradiction.

Figure 23: Case 5 f

Figure 24: Case 5g

Case 6: f is a minor 6-face (see Figure 25).
Then f is initially charged with weight 6 . If f looses a total net weight of at most $8 / 3$, then $w(f) \geq 10 / 3$, so assume that f looses a total net weight of at least $9 / 3$. We distinguish the following subcases.

Figure 25: Case 6

Case 6a: f sends weight to an opposite minor 5-face f^{\prime} (see Figure 26).
Without loss of generality, let $x y$ and $y z$ be C-edges of f^{\prime} getting weight from f by R5. Then f sends weight $1 / 3$ to f^{\prime}, and total weight $8 / 3$ to opposite minor 2 -faces f_{3} and f_{4} by R1-R5, as otherwise $w(f) \geq 10 / 3$ (see Figure 26). Let f_{1} and f_{2} be the two minor 2-faces opposite to f^{\prime} due to R5.
We have $u w \notin E(G)$ and $w y \notin E(G)$, as otherwise C can be extended by detouring

Figure 26: Case 6a
through b, and $t w \notin E(G)$, as otherwise $\operatorname{deg}_{G}(u)=2$. Since $\operatorname{deg}_{G}(w) \geq 3, w z \in E(G)$. Moreover, $y p \notin E(G)$ and $p r \notin E(G)$, as otherwise C can be extended by detouring through g. Since $\operatorname{deg}_{G}(p) \geq 3, x p \in E(G)$. Hence, $\operatorname{deg}_{G}(y)=2$, which contradicts that G is 3-connected.
Case 6b: f sends weight to an opposite minor 4 -face f^{\prime} (see Figure 27).
Without loss of generality, let $x y$ and $y z$ be C-edges of f^{\prime} by R4. Since $w(f)<10 / 3, f$ has neither an opposite minor 5 -face, nor a second opposite minor 4 -face. Assume first that f sends weight to an opposite minor 3 -face f_{1}. Then f sends total weight $5 / 3$ to f^{\prime} and f_{1}, and must therefore send weight $4 / 3$ to minor 2 -face(s), as otherwise $w(f) \geq 10 / 3$. Hence, f_{1} has middle C-edge $t u$, and f has one opposite minor 2-face f_{2} that has C-edges $v w$ and $w x$ (see Figure 27).

Figure 27: Case 6b
Then $u w$ and $w y$ are not edges of G, as otherwise C can be extended by detouring through b. Moreover, $t w \notin E(G)$, as otherwise C can be extended by replacing the path (s, t, u, v, w) with (s, h, v, u, t, w). Hence, $w z \in E(G)$, as otherwise $\operatorname{deg}_{G}(w)=2$. Moreover, $y q \notin E(G)$ and $x q \in E(G)$ for the same reason as in Case 4i, which contradicts $\operatorname{deg}_{G}(y) \geq 3$.
Case 6c: f sends weight to an opposite minor 3 -face f^{\prime} with middle C-edge vw or wx (see Figure 28).
Without loss of generality, let the middle C-edge of f^{\prime} be $w x$. In order to have $w(f)<$ $10 / 3, f$ must by R2-R3 send weight 2 to minor 2 -faces. Thus, f has two minor 2 -faces
f_{1} and f_{2} such that f_{1} has C-edges $t u$ and $u v$, and f_{2} has $y z$ as a C-edge.

Figure 28: Case 6c
Then $u w \notin E(G)$, as otherwise C can be extended by detouring C through b. In addition, $u x \notin E(G)$, as otherwise C can be extended by replacing the path (u, v, w, x, y) with (u, x, w, v, d, y). Then $u y \notin E(G)$, as otherwise the fact that $\{v, y\}$ is not a 2-separator of G would imply $u w \in E(G)$ or $u x \in E(G)$. Since $\operatorname{deg}_{G}(u) \geq 3, u z \in E(G)$. Then we can obtain \bar{C} from C by replacing the path (t, u, v, w, x, y, z, q) with $(t, a, z, u, v, w, x, y, g, q)$.
Case 6d: f sends weight to an opposite minor 3 -face f^{\prime} with middle C-edge uv or xy (see Figure 29).
Without loss of generality, let the middle C-edge of f^{\prime} be $x y$. As in Case 6 c, $w(f)<10 / 3$ implies that f has opposite minor 2-faces f_{1} and f_{2} such that f_{2} has C-edges $u v$ and $v w$ and f_{1} has C-edge $t u$ (see Figure 29).

Figure 29: Case 6d
Then $t v$ and $v x$ are not edges of G, as otherwise C can be extended by detouring C through b. In addition, $v y \notin E(G)$, as otherwise C can be extended by replacing the path (v, w, x, y, z) with (v, y, x, w, d, z). Since $\operatorname{deg}_{G}(v) \geq 3, v z \in E(G)$. This implies that $\{w, z\}$ is a 2 -separator of G, which contradicts that G is 3 -connected.
Case 6e: f sends weight to an opposite minor 3 -face f^{\prime} with middle C-edge tu or yz, but not to any opposite minor 4- or 5-face (see Figure 30).
Without loss of generality, let the middle C-edge of f^{\prime} be $y z$. Assume first that f has a second opposite minor 3 -face $f^{\prime \prime}$. By Cases $6 \mathrm{c}+\mathrm{d}$, $f^{\prime \prime}$ has middle C-edge $t u$. By $w(f)<$ $10 / 3, f$ has an opposite minor 2-face f_{2} with C-edges $v w$ and $w x$ (see Figure 30). Then
$u w \notin E(G)$ and $w y \notin E(G)$, as otherwise C can be extended by detouring through b. Moreover, $w z \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q). By symmetry, $t w \notin E(G)$, which contradicts $\operatorname{deg}_{G}(w) \geq 3$.

Figure 30: Case 6e
Hence, by R1-R3, f sends total weight 2 to at least two opposite minor 2 -faces f_{1} and f_{2}. If $m_{f, f_{1}}=1$ or $m_{f, f_{2}}=1$, either the edge $u v$ or the edge $w x$ would be a C-edge of a major face, which contradicts $w(f)<10 / 3$. Thus, f_{1} has C-edges $t u$ and $u v$, and f_{2} has C-edges $v w$ and $w x$. From the previous argument, we know that $u w, w y$ and $w z$ are not in G. Since $\operatorname{deg}_{G}(w) \geq 3, t w \in E(G)$. This contradicts $\operatorname{deg}_{G}(u) \geq 3$.

We conclude that f sends no weight to any opposite minor 3 -, 4 - or 5 -face. In order to satisfy $w(f)<10 / 3, f$ must therefore send a total weight of $10 / 3$ to opposite minor 2 -faces by R2, as R 2 sends only multiples of weight $2 / 3$. If some C-edge e of f is not a C-edge of a minor 2 -face, e must be either $t u$ or $y z$, as otherwise e would be in a major face that sends weight 1 to f and therefore contradicts $w(f)<10 / 3$. Hence, f has three opposite minor 2-faces f_{1}, f_{2} and f_{3} such that $m_{f, f_{1}}=m_{f, f_{2}}=2$ and the C-edges of f_{1} and f_{2} are either $u v, v w, w x, x y$ or one of $t u, u v, v w, w x$ and $v w, w x, x y, y z$. We distinguish these subcases.

Case 6f: The C-edges of f_{1} and f_{2} are $t u, u v, v w, w x$ or $v w, w x, x y, y z$ (see Figure 31).
Without loss of generality, let f_{1} and f_{2} have the C-edges $v w, w x, x y, y z$. By the above argument, f_{3} has the C-edges $t u$ and $u v$ (see Figure 31).

Figure 31: Case 6f

Then $u w$ and $w y$ are not in G, as otherwise C can be extended by detouring through b. Moreoever, $w z \notin E(G)$, as otherwise $\operatorname{deg}_{G}(y)=2$. By symmetry, $t w \notin E(G)$, which contradicts $\operatorname{deg}_{G}(w) \geq 3$.
Case 6g: The C-edges of f_{1} and f_{2} are $u v, v w, w x, x y$ (see Figure 32).
Then f_{3} has either $t u$ or $y z$ as a C-edge, say without loss of generality the latter.

Figure 32: Case 6g
Then $t v$ and $v x$ are not in G, as otherwise C can be extended by detouring through b. Moreover, $v y \notin E(G)$, as otherwise $\operatorname{deg}_{G}(x)=2$. Since $\operatorname{deg}_{G}(v) \geq 3, v z \in E(G)$. Then $x z \notin E(G)$, as otherwise C can be extended by detouring through g. Hence, we obtain the contradiction $\operatorname{deg}_{G}(x)=2$.

Case 7: f is a minor 7-face (see Figure 33).
Then f is initially charged with weight 7 . If f looses a total net weight of at most $11 / 3$, then $w(f) \geq 10 / 3$, so assume that f looses a total net weight of at least $12 / 3$. According to R1-R5, f sends to every opposite face f^{\prime} at most weight $\frac{2}{3} m_{f, f^{\prime}}$ (for example, if f^{\prime} is a minor 3 -face, f sends only weight at most $\frac{1}{2} m_{f, f^{\prime}}$ by R3). Hence, f does not send any weight to a 5 -face, as otherwise $w(f) \geq 10 / 3$. We distinguish the remaining cases.

Figure 33: Case 7

Case 7a: f sends weight to an opposite minor 4 -face f^{\prime} (see Figure 34).
Without loss of generality, let f^{\prime} have C-edges $x y$ and $y z$. Since $w(f)<10 / 3$, all other C-edges of f are C-edges of minor 2 -faces f_{1}, f_{2} and f_{3} (see Figure 34).
Then $y p \notin E(G)$, as otherwise C can be extended by detouring through g, and hence $x p \in$ $E(G)$, as otherwise $\operatorname{deg}_{G}(p)=2$. Also, $u w$ and $w y$ are not in G, as otherwise C can be extended by detouring through b. Hence, y has a neighbor in G that is incident to f and

Figure 34: Case 7a
different from $\{w, x, z\}$. We conclude $w z \notin E(G)$. In addition, $t w \notin E(G)$, as otherwise $\operatorname{deg}_{G}(u)=2$. Thus, $s w \in E(G)$, which implies $s y \in E(G)$. Then \bar{C} can be obtained from C by replacing the path ($r, s, t, u, v, w, x, y, z$) with ($r, i, t, u, v, w, x, y, s, a, z$).
Case 7b: f sends weight to an opposite minor 3-face f^{\prime} (see Figure 35).
Since $w(f)<10 / 3$, the middle C-edge of f^{\prime} must be either st or $y z$; say without loss of generality the latter. For the same reason as in Case 7a, all other C-edges of f are C-edges of minor 2 -faces f_{1}, f_{2} and f_{3} (see Figure 35). Note that if there is another 3 -face $f^{\prime \prime}$ with middle C-edge $s t$, then the edges $u v, v w$ and $w x$ are not all C-edges of some 2 -face.

Figure 35: Case 7b

Then $u w \notin E(G)$ and $w y \notin E(G)$, as otherwise C can be extended by detouring through b. Moreover, $w z \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q). Also $t w \notin E(G)$, as otherwise $\operatorname{deg}_{G}(u)=2$. Since $\operatorname{deg}_{G}(w) \geq 3, s w \in E(G)$. Since $\operatorname{deg}_{G}(u) \geq 3, s u \in E(G)$. Then C can be extended by replacing the path (s, t, u, v) with (s, u, t, h, v).
Case 7c: f sends no weight to 3-, 4- and 5 -faces (see Figure 36).
Then f sends a total weight of at least $6 \cdot \frac{2}{3}=4$ to opposite minor 2 -faces. The C edges of these 2 -faces must be consecutive on C, as otherwise exactly one C-edge of f would be a C-edge of a major face, which contradicts $w(f)<10 / 3$. Hence, there are three minor 2 -faces f_{1}, f_{2} and f_{3}, whose C-edges are consecutive on C and satisfy
$m_{f, f_{1}}=m_{f, f_{2}}=m_{f, f_{3}}=2$ (see Figure 36). Assume without loss of generality that f_{3} has C-edges $x y$ and $y z$.

Figure 36: Case 7c
Then $u w$ and $w y$ are not in G, as otherwise C can be extended by detouring through d. Moreover, $t w$ and $w z$ are not in G, as otherwise $\operatorname{deg}_{G}(u)=2$ or $\operatorname{deg}_{G}(y)=2$. Since $\operatorname{deg}_{G}(w) \geq 3$, $s w \in E(G)$. Moreover, su $\notin E(G)$, as otherwise C can be extended by detouring through b. Hence, we obtain the contradiction $\operatorname{deg}_{G}(u)=2$.

Case 8: f is a minor 8-face (see Figure 37).
Then f is initially charged with weight 8 . If f looses a total net weight of at most $14 / 3$, then $w(f) \geq 10 / 3$, so assume that f looses a total net weight of at least $15 / 3$. Hence, f does not send any weight to a 4 - or 5 -face, as otherwise $w(f) \geq 10 / 3$. We distinguish the remaining cases.

Figure 37: Case 8

Case 8a: f sends weight to an opposite minor 3-face f^{\prime} (see Figure 38).
Then $w(f)<10 / 3$ implies that f^{\prime} has exactly two C-edges that are C-edges of f, and that every other C-edge of f is a C-edge of a minor 2 -face. Without loss of generality, let f^{\prime} have middle C-edge $y z$, and let f_{1}, f_{2} and f_{3} be the minor 2 -faces opposite to f (see Figure 38).
Then $s u$, $u w$ and $w y$ are not edges of G, as otherwise C can be extended by detouring through h or b. Moreover, $w z \notin E(G)$, as otherwise C can be extended by replacing the path (w, x, y, z, q) with (w, z, y, x, d, q). Also $s w \notin E(G)$ and $t w \notin E(G)$, as otherwise $\operatorname{deg}_{G}(u)=2$. Since $\operatorname{deg}_{G}(w) \geq 3, r w \in E(G)$. Since $\operatorname{deg}_{G}(u) \geq 3, r u \in E(G)$. This gives the contradiction $\operatorname{deg}_{G}(s)=2$.

Figure 38: Case 8a

Case 8b: f sends no weight to 3-, 4- and 5 -faces (see Figure 39).
Then f sends a total weight of exactly $8 \cdot \frac{2}{3}=16 / 3$ to opposite minor 2-faces, as R2 sends only multiples of $\frac{2}{3}$ weight. Assume first that a minor 2 -face f_{4} opposite to f has C-edges $x y$ and $y z$ (see Figure 39). Then $w y \notin E(G)$, as otherwise C can be extended by detouring through g, and $w z \notin E(G)$, as otherwise $\operatorname{deg}_{G}(y)=2$. Then the same arguments as in Case 8a give the contradiction $\operatorname{deg}_{G}(s)=2$.

Figure 39: Case 8b
Hence, let $y z$ be the only C-edge of f_{4} that is a C-edge of f. Then v has no neighbor that is incident to f and not in $\{u, w\}$, as otherwise t or x has degree 2 in G. Hence, we obtain the contradiction $\operatorname{deg}_{G}(v)=2$.

Case 9: f is a minor j-face with $j \geq 9$ (see Figure 40).
Then f is initially charged with weight j and looses a total net weight of at most $\frac{2}{3} j$, so that $w(f) \geq \frac{1}{3} j \geq \frac{10}{3}$ if $j \geq 10$. Hence, $j=9$ and every C-edge of f is a C-edge of a minor 2-face. Since 9 is odd, we may assume without loss of generality that one minor 2-face f_{1} has $q r$ but no other C-edge of f as a C-edge (see Figure 40). Then the same arguments as in Cases $8 \mathrm{a}+\mathrm{b}$ imply that $\operatorname{deg}_{G}(s)=2$.

This proves $2 c=\sum_{f \in F(H)} w(f) \geq 10 / 3 \cdot\left|M^{-} \cup M^{+}\right|$, which completes the proof of Theorem 1.

Figure 40: Case 9

4 Remarks

We remark that the bound of Theorem 1 can be improved to $\frac{5}{8}(n+4)$ for every $n \geq 16$: then Lemma 5 in [2] implies the improved bound for the special case that V^{-}or V^{+}is empty, while in the remaining case $\left|V^{-}\right| \geq 1 \leq\left|V^{+}\right|$Lemma 2 can be immediately strengthened to $\mid M^{-} \cup$ $M^{+}\left|\geq\left|V^{-} \cup V^{+}\right|+4\right.$ using the same proof with a different induction base (see also [3]). This immediately improves the bound $\operatorname{circ}(G) \geq \frac{13}{21}(n+4)$ given in [2] for every $n \geq 16$. We note that $\operatorname{circ}(G) \geq \frac{5}{8}(n+4)$ does not hold for $n \leq 6$, as for these values a cycle of length at least $\frac{5}{8}(n+4)>n$ is impossible.

The proof of Theorem 1 is constructive and gives a quadratic-time algorithm that finds a cycle of length at least $\frac{5}{8}(n+2)$, by applying the result of [6] exactly as shown in [3, Section Algorithm]. We therefore conclude the following theorem.

Theorem 3. For every essentially 4-connected plane graph G on n vertices, a cycle of length at least $\frac{5}{8}(n+2)$ can be computed in time $O\left(n^{2}\right)$.

References

[1] M. B. Dillencourt. Polyhedra of small order and their Hamiltonian properties. Journal of Combinatorial Theory, Series B, 66(1):87-122, 1996.
[2] I. Fabrici, J. Harant, and S. Jendrol. On longest cycles in essentially 4-connected planar graphs. Discussiones Mathematicae Graph Theory, 36:565-575, 2016.
[3] I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt. Longer cycles in essentially 4-connected planar graphs. Discussiones Mathematicae Graph Theory, 40:269-277, 2020.
[4] B. Grünbaum and J. Malkevitch. Pairs of edge-disjoint Hamilton circuits. Aequationes Mathematicae, 14:191-196, 1976.
[5] B. Jackson and N. C. Wormald. Longest cycles in 3-connected planar graphs. Journal of Combinatorial Theory, Series B, 54:291-321, 1992.
[6] A. Schmid and J. M. Schmidt. Computing Tutte paths. In Proceedings of the 45 th International Colloquium on Automata, Languages and Programming (ICALP'18), pages 98:1-98:14, 2018.
[7] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1):150-168, 1932.
[8] C.-Q. Zhang. Longest cycles and their chords. Journal of Graph Theory, 11:341-345, 1987.

[^0]: *Partially supported by DAAD, Germany (as part of BMBF) and by the Ministry of Education, Science, Research and Sport of the Slovak Republic within the project 57320575.
 ${ }^{\dagger}$ Partially supported by Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by the Slovak VEGA Grant 1/0368/16.
 ${ }^{\ddagger}$ Institute of Mathematics, Pavol Jozef Šafárik University, Košice
 ${ }^{\text {§ }}$ Institute of Mathematics, TU Ilmenau
 ${ }^{\text {a }}$ Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 327533333 und 270450205 ; partially supported by the grants 327533333 and SCHM 3186/1-1 (270450205) from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

