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Abstract

A graph is triconnected if it is connected, has at least 4 vertices and the removal
of any two vertices does not disconnect the graph. We give a certifying algorithm
deciding triconnectivity of Hamiltonian graphs with linear running time. If the input
graph is triconnected, the algorithm constructs an easily checkable proof for this fact.
If the input graph is not triconnected, the algorithm returns a separation pair.

1 Introduction

Hopcroft and Tarjan [HT74] and Miller and Ramachandran [MR92] gave linear time
algorithms for deciding triconnectivity of graphs. If the input graph is not triconnected,
both algorithms output a separation pair, i.e., a pair of vertices whose removal splits
the graph into two or more components and hence witnesses that the graph is not
triconnected. If the input graph is triconnected, both algorithms simply state that the
graph is triconnected. Of course, the question arises whether this answer can be trusted.
Indeed, Gutwenger and Mutzel [GM00] implemented the former algorithm and report
that some non-triconnected graphs are declared triconnected by the algorithm. They
provide a correction.

The concept of certifying algorithms aims at avoiding this situation. A certifying al-
gorithm returns in addition to the required output (here: is the input graph triconnected
or not?) a proof for its answer; see [MMNS10] for a general discussion of certifying algo-
rithms. We aim for a linear-time certifying algorithm for triconnectivity. In this paper
we provide such an algorithm for Hamiltonian graphs.

Tutte [Tut61] proved the existence of a linear size witness for triconnectivity: Any
triconnected graph G 6= K4 can be reduced to a K4 by a sequence of edge contractions
such that no intermediate graph has a vertex of degree less than 3. We call such a
sequence a Tutte contraction sequence. It proves triconnectivity of the input graph (see
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Theorem 3) and can be computed in O(n2) time, see [Sch10]. It is open whether it can
be found in sub-quadratic time.

In this paper we give an O(n+m) algorithm for a special case: the graph is Hamilto-
nian and a Hamiltonian cycle is provided as part of the input. In other words, the graph
is a cycle plus chords (= edges connecting non-adjacent vertices of the cycle). Why is a
certifying triconnectivity algorithm for Hamiltonian graphs interesting? The algorithm
by Hopcroft and Tarjan is recursive. The merge step essentially amounts to checking
triconnectivity of Hamiltonian graphs. The algorithm by Miller and Ramachandran is
based on open-ear decomposition. If all ears are edges, the graph is Hamiltonian. We
hope that the linear-time algorithm for Hamiltonian graphs is a first step towards a
general sub-quadratic algorithm.

This paper is organized as follows: After some preliminaries in Section 2 we present
our main result in Section 3: a linear time algorithm for finding a Tutte contraction
sequence of a triconnected Hamiltonian graph. In Section 4 we show how to find sep-
aration pairs in non-triconnected Hamiltonian graphs, and in Section 5 we discuss an
extension to extended Hamiltonian graphs; for this graph class we achieve a time bound
of O(n log n + m). In Section 6 we give a linear time algorithm for checking whether a
sequence of edges is a Tutte contraction sequence. This verification algorithm works for
all graphs. Finally, Section 7 surveys results for higher connectivity.

2 Preliminaries

Let G = (V,E) be a finite, undirected graph without self-loops and parallel edges. We
use n := |V | and m := |E| to denote the number of vertices and edges of G, respectively.
We denote an edge between vertices u and v by uv or (u, v). A graph is connected if
there is a path between every two of its vertices and disconnected otherwise. For k > 1,
a connected graph G is k-connected if n > k and deleting any k − 1 vertices leaves a
connected graph. A set of vertices whose removal disconnects the graph is called a vertex
cut. Vertex cuts of size one, two, and three are called separation vertices, separation pairs,
and separation triples, respectively.

Let xy be an edge of G. The contraction of xy generates a graph G′ = G/xy with
vertex set V (G′) = V (G) \ {x, y} ∪ {vxy}, where vxy is a new vertex. The edge xy
is removed and in each edge having exactly one endpoint in {x, y}, this endpoint is
replaced by vxy. Finally, only one edge for each set of parallel edges is kept. An edge xy
is contractible if G/xy is triconnected. If an edge xy of a triconnected graph with n > 4
is not contractible, there is a separation triple containing x and y.

Theorem 1 ([Tut61]) Every triconnected graph with n > 4 contains a contractible
edge.

Hence there is a sequence of edge contractions that reduces G to K4 and going only
through triconnected graphs. The latter condition is hard to check. It can be replaced
by a simpler condition.
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Lemma 2 Let G be a graph with minimum degree three and let xy be an edge of G. If
G is not triconnected, G/xy is not triconnected.

Proof: Consider any separation pair {a, b}. Any component of G\{a, b} has at least two
vertices since the minimal vertex degree is at least three. Thus contracting xy cannot
yield a triconnected graph. �

Theorem 3 Let G0 = G,G1, . . . , Gn−4 be a sequence of graphs such that Gi is obtained
from Gi−1 by the contraction of an edge, Gn−4 = K4, and every Gi has minimum degree
3 or more. Then G is triconnected.

Proof: K4 is triconnected. By the preceding Lemma, there can be no i such that Gi is
triconnected, but Gi−1 is not. Thus G0 is triconnected. �

We can slightly strengthen this theorem by restricting only the degree of the endpoints
of the edge to be contracted.

Theorem 4 Let G0 = G,G1, . . . , Gn−4 be a sequence of graphs such that Gn−4 = K4

and Gi is obtained from Gi−1 by the contraction of an edge e = xy with x and y having
both degree at least 3. Then G is triconnected.

Proof: We show that every Gi has minimum degree three and then appeal to the
preceding theorem. Assume otherwise. Then there must be a j, 0 ≤ j ≤ n−5, such that
Gj+1 has minimum degree three but Gj has not. Let v be a vertex of degree less than
three in Gj and e be the edge in Gj such that Gj+1 = Gj/e. Then e is not incident to v,
as both end vertices of e have degree at least three, implying that its contraction does
not increase the degree of v, which contradicts the assumption. �

We call a sequence as in the two preceding theorems a Tutte contraction sequence.
In every triconnected graph at least one edge is contractible ([Tut61]). In fact, a linear
number of edges is contractible ([AES87]). We use that every depth-first-search tree
contains at least one contractible edge.

Theorem 5 ([EMS10]) Let G be a triconnected graph and let T be a DFS-tree of G.
Then at least one edge of T is contractible.

We will give a self-contained proof of this theorem for the special case of Hamiltonian
graphs below, see Lemma 6.

3 A Linear-Time Certifying Algorithm for Hamiltonian

Graphs

We give a linear-time certifying triconnectivity algorithm for Hamiltonian graphs. We
assume that a Hamiltonian cycle is given and use a Hamiltonian path contained in this
cycle as DFS-tree. More precisely, we have vertices 1 to n, tree edges (i, i + 1) for
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1 ≤ i < n and a set of back edges including (n, 1). A back edge is an edge uv with
u > v +1; u is the source of the edge and v is the target of the edge. We use B to denote
the set of back edges. For triconnected inputs we will construct a Tutte contraction
sequence in linear time. For non-triconnected inputs we will return a separation pair.
We say that a vertex is higher than another vertex or above another vertex if its number
is larger.

If the input is triconnected, at least one tree edge is contractible by Theorem 5. We
next give a self-contained proof of this fact for the case of Hamiltonian graphs.

Lemma 6 Let G be a triconnected Hamiltonian graph with n > 4. Then at least one of
the edges (i, i + 1), 1 ≤ i < n, is contractible.

Proof: Assume otherwise. Then for every tree edge xy, there is a z such that {x, y, z}
is a separation triple. Let

Dx,y,z =

{

{z + 1, . . . , x − 1} if z < x

{y + 1, . . . , z − 1} if z > y.

We choose a tree edge xy and a vertex z such that D := Dx,y,z has minimal cardinality.
Let v be the vertex in D such that vz is a tree edge. Since vz is non-contractible, there
must be a w such that {v, z, w} is a separation triple. Since x and y are neighbors, there
is a separation class, call it C, with respect to {v, z, w} containing neither x nor y. C
contains a neighbor of v (otherwise {z,w} would be a separation pair) and hence any
vertex in C is reachable from v by a path avoiding x, y, and z. Because v is contained
in D, C ⊆ D. The containment is proper since v ∈ D \ C.

We may assume z > y. Then v = z − 1 and C ⊆ D = {y + 1, . . . , v}. Thus
y ≤ w < v− 1 and hence C = Dz,v,w, which contradicts the minimal cardinality of D. �

The following Lemma tells us that only edges in the vicinity of a contracted edge can
become contractible after a contraction. Contracting an edge xy removes the vertices x
and y and introduces a new vertex vxy. We define a function S on the vertices of G that
returns for any vertex z of G its representative in G/xy, namely S(x) := S(y) := vxy

and S(z) := z for z 6∈ {x, y}.

Lemma 7 Let G be a triconnected Hamiltonian graph, let (i, i+1) be a contractible tree
edge, and let (j, j + 1) be a non-contractible tree edge. If (S(j), S(j + 1)) is contractible
after the contraction of (i, i + 1) then j ∈ {i − 2, i − 1, i + 1, i + 2}.

Proof: Since (j, j + 1) is not contractible in G, there is a separation triple containing j
and j + 1, say ST = {j, j + 1, z}. Since (i, i + 1) is contractible, i and i + 1 cannot both
belong to ST and hence S(ST ) := {S(j), S(j + 1), S(z)} has cardinality three after the
contraction. Let C1 and C2 be the separation classes of G with respect to ST . If the
sets

{S(a) | a ∈ Ci} \ S(ST ), i = 1, 2,
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are both non-empty after the contraction, S(ST ) is a separation triple after the contrac-
tion. So one must become empty by the contraction and hence consist of a single vertex
before the contraction. Thus either i or i + 1 must belong to {j − 1, j, j + 1, j + 2}. �

Assume for the moment that we have a way to test whether a tree edge is con-
tractible. We maintain a label for each tree edge. Edges labelled “non-contractible”
are non-contractible and edges labelled “unknown status” are either contractible or non-
contractible. Initially, all tree edges are labelled “unknown status”. As long as there are
more than four vertices, we do the following. We select a tree-edge labelled “unknown
status” (if the graph is triconnected, there must be such an edge by Theorem 5) and test
it for contractability. If it is non-contractible, we change its label to non-contractible. If
it is contractible, we contract it and change the labels of up to four edges (the two tree
edges above and the two tree edges below) to “unknown status”. If we run out of edges
with unknown status before n reaches four, the graph is not triconnected. If n reaches
four, the graph is contracted to a K4 and we have proved triconnectivity.

Lemma 8 The algorithm performs at most 5n tests for contractability.

Proof: Consider the potential function

5 · # of tree edges + # of edges labelled “unknown status”.

Its initial value is 5(n− 1) and it decreases by at least one in every iteration. If the edge
tested is contractible, the first term goes down by five and the second term goes up by at
most four, and if the edge tested is non-contractible, the first term does not change and
the second term decreases by one. The potential is always non-negative. We conclude
that the number of iterations is bounded by 5n. �

We next characterize the non-contractible tree edges. If a tree edge xy is non-
contractible, there must be a z such that {x, y, z} is a separation triple. The following
lemma deals with the case z < x. A symmetric lemma deals with the case z > y.

Lemma 9 Let xy with y = x + 1 be a tree edge and let z < x. The triple {x, y, z} splits
G if and only if

• z < x − 1,

• z > 1 if y = n,

• there is no chord (u, v) with either

property one: u > y and z < v < x or

property two: z < u < x and v < z

Proof: If {x, x + 1, z} with z < x is a separation triple, the two components consist of
vertices z+1, . . . , x−1 and x + 2, . . . , z − 1, respectively; here we use the fact that (n, 1)
is among the back edges. Therefore, we must have z + 1 ≤ x − 1 and z > 1 if y = n.
Also, there can be no back edge connecting the two sets. �
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We next specify data structures dealing with properties one and two. Consider a tree
edge xy with y = x + 1. We query both data structures with x. The data structure for
property one returns

z1(x) := max{z < x | there is a back edge uz with u > y}.

So there is no back edge starting above y and ending between z1(x) and x. However,
there is such a back edge uz1(x) with u > y. The data structure for property two yields

z2(x) := max{z < x − 1 | there is no back edge uv with v < z < u < x}.

If z2(x) ≥ z1(x) (and y < n or z2(x) > 1), {x, y, z2(x)} is a separation triple, because
there is no back edge having one endpoint in {z2(x) + 1, . . . , x− 1} and one endpoint in
{y + 1, . . . , n, 1, . . . , z2(x) − 1}. If z2(x) < z1(x), there is no separation triple {x, y, z}
with z < x. Assume otherwise. If z < z1(x), the back edge uz1(x) with u > y witnesses
that {x, y, z} is not separating and if z ≥ z1(x) > z2(x), there is a back edge uv with
v < z < u < x; it witnesses that {x, y, z} is not separating.

We need to clarify how the graph is represented after a sequence of contractions.
Each vertex of the current graph corresponds to a set of consecutive vertices of the
original graph. We maintain a union-find data structure for the correspondence between
original vertices and current vertices. For any vertex x of G, let cur(x) be the vertex
of the current graph containing x. With each vertex of the current graph, we store the
highest and lowest original vertex contained in it. The tree edges of the current graph
are tree edges of the original graph. The back edges Bc of the current graph are the edges
(cur(u), cur(v)), where uv ∈ B, cur(v) 6= cur(u) and (cur(v), cur(u)) is not parallel to
a tree edge of the current graph.

The running times of general solutions for the union-find problem are not quite
linear. However, in the following situation the amortized cost of unions and finds is
constant [IA87, GT85]. The union-find data structure is on a set of items and some forest,
called the union-tree, on these items is specified when the union-find data structure is
initialized. The blocks of the union-find data structure are subtrees of this forest. More
precisely, forest edges are either light or solid. At the beginning all edges are light; the
blocks are the connected components formed by solid edges. A union turns an edge from
light to solid. For the union-find structure Cur , the union tree is the path (1, 2, . . . , n).

As shown before, computing whether a tree edge e = (x, y) with y = x + 1 is
contractible in G reduces to computing the vertices z1(x) and z2(x).

Computing z1(x): We store all back edges uv in a data structure for 2-dimensional
orthogonal range queries [Meh84, dBKOS97]. The back edge uv is stored as the point
(u, v). Let xℓ be the lowest numbered vertex in cur(x) and let yh be the highest numbered
vertex in cur(y). We determine

max{v < xℓ | there is a back edge uv ∈ B with u > yh}.

Then cur(v) is the highest numbered vertex below cur(x) in the current graph that
has an incoming back edge from a source above cur(y) in the current graph. Using
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the results for 3-sided two-dimensional orthogonal range queries in [ABR00, Section 2.1,
Theorem 4], which are based on computing iteratively nearest common ancestors in a
Cartesian tree as shown by Bentley, Gabow and Tarjan [GBT84, Section 3], the query
takes O(1) time.

Computing z2(x): For any x, let

cand(x) = {z < x | there is no back edge uv with v < z < u < x}.

We show how to compute the sets cand(x) for all x in linear time. The following
recursive characterization is useful: cand(1) = ∅ and for x > 1,

cand(x) = {x − 1} ∪ (cand(x − 1) \ {z | (x − 1, v) is a back edge and v < z}) ,

i.e., we delete all z from cand(x−1) that lie above the lowest back edge emanating from
x−1, and add x−1. We can compute and store all sets cand(x) in a forest in linear time
and space (see Figure 1(a)), as vertices that are deleted once will not be considered again
for the next cand-lists. For any x, the elements in cand(x) lie on a leaf-to-root path in
this forest. Assume we have already the list cand(x− 1). Let (x− 1, v) be the back edge
starting in x − 1 with smallest v. Then cand(x) starts with a new item labelled x − 1
and this item points to the first element on cand(x − 1) which is less than or equal to v
(if it exists).

Given the cand-structure, it is easy to compute z2(x) by just taking the second
element in cand(x). But how does the cand-structure evolve as edges are contracted?
The cand-structure for the current graph has one item for each vertex of the current
graph. The vertices of the current graph correspond to the blocks of the cur -union-find
structure and hence we will use these blocks as the vertices of the cand-structure for
the current graph. Each block has an outgoing cand-edge. This edge goes to an item of
the cur -structure. A find applied to this item then brings us to the block containing the
item (= the true target of the cand-edge). Initially, all blocks are singletons, finds are
trivial, and hence the structure is as described in the previous paragraph.

When we contract a tree edge (x, y), the vertices cur(x) and cur(y) are merged.
Let us call the new vertex vxy; after the union-operation on cur(x) and cur(y), we
have vxy = cur(x) = cur(y). There are cand-edges (= edges in the cand-structure)
to cur(x) and cur(y); they should now go to vxy. This requires no action as the cur -
union-find structure takes care of the indirection. How do the cand-sets change? Let
us conceptually go through the construction of the cand-structure for the current graph
and relate it to the cand-structure before the contraction. For the vertices below cur(x)
nothing changes (see Figure 1). Also, cand(vxy) is simply cand(cur(x)).

Let us next consider the first vertex a above vxy in the current graph (i. e., the first
vertex above cur(y) before the contraction). The first element in cand(a) is vxy; before
the contraction it was cur(y) and hence union-find takes care of the change. The second
element is the first element on cand(vxy) that is smaller or equal to the lowest back
edge going out of vxy. This back edge is the lowest back edge out of either cur(x) or
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Figure 1: (a) shows the original graph and the corresponding cand-structure. All edges
in the cand-structure are directed downwards; cand(6) is equal to {5, 4, 2, 1} and cand(7)
is equal to {6, 1}.
(b) shows the graph and the corresponding cand-structure after contracting the edge
(4, 5); cand(6) is equal to {{5, 4}, 2, 1} and cand(7) is equal to {6, 1}.
(c) shows the graph and the corresponding cand-structure after contracting the edges
(4, 5) and (5, 6); cand(7) is equal to {{6, 5, 4}, 1}.

cur(y) before the contraction. If neither cur(x) nor cur(y) contributes a back edge,
the second element of cand(a) after the contraction is the first element of cand(vxy).
If cur(x) contributes the lowest back edge, the second element on cand(a) after the
contraction becomes the second element of cand(cur(y)) before the contraction, as shown
in Figure 1(b). If cur(y) contributes the lowest back edge, the second element of cand(a)
after the contraction is simply the second element of cand(a) before the contraction, as
shown in Figure 1(c). Finally, for the vertices above a, nothing changes, except that
edges into cur(x) or cur(y) are now interpreted as edges in vxy.

We conclude that the cand-structure can be updated in constant time after a con-
traction. We have now shown our main result.

Theorem 10 Let G be a triconnected Hamiltonian graph with known Hamiltonian cycle.
Then a Tutte contraction sequence for G can be constructed in linear time O(n + m).

4 Finding a Separation Pair

The algorithms of Hopcroft-Tarjan and Miller-Ramachandran find separation pairs in
graphs that are not triconnected. In the case of Hamiltonian graphs, separation pairs
can also be found using the data structures defined above.
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Lemma 11 Vertices x and z with x > z form a separation pair if z < x − 1, either
z > 1 or x < n, and there is no edge (u, v) with z < u < x and v < z or v > x.

We can use our data structures for properties one and two to check for the existence
of such a pair {x, z} in linear time. Consider a fixed x. The data structure for property
one yields the maximal z < x, call it z1(x), such that there is a back edge uz1(x) with
u > x. The data structure for property two yields the maximal z < x − 1, call it z2(x),
such that there is no back edge uv with v < z < u < x. If z2(x) ≥ z1(x), {x, z2(x)} is a
separation pair. If z2(x) < z1(x), there is no separation pair {x, z} with z < x.

5 An Extension

We consider extended Hamiltonian graphs. Let C be a simple cycle. We can now add
chords and segments. A chord is an edge whose endpoints are nonadjacent vertices on
the cycle. A segment s consists of a new vertex v(s) that is connected to three or more
vertices on C. We feel that the generalization is interesting for two reasons: First, they
are exactly the kind of graph considered in the merge step of the algorithm of Hopcroft
and Tarjan. Second, we do not achieve linear time but only time O(n log n + m). So the
generalization adds something qualitatively new and hints that the generalization of our
results to general graphs will be non-trivial.

Let G be an extended Hamiltonian graph and let G′ be a Hamiltonian graph obtained
from G as follows. Number the vertices of C consecutively, starting at an arbitrary vertex.
In this way, C becomes a path P plus a back edge. C and all the chords of G belong to
G′. Let s be any segment of G and let v1 < v2 < . . . < vk be its attachments on C. For
each i, 1 ≤ i ≤ k, we add the chords v1vi, vi−1vi, vivi+1 and vivk, except if such a chord
is a self-loop or connects adjacent vertices on P .

Lemma 12 G is triconnected if and only if G′ is triconnected.

Proof: Assume first that G is not triconnected and let {a, b} be a separation pair. Then
a and b must belong to C. Thus {a, b} splits G′.

Assume next that G′ is not triconnected and let {a, b} be a separation pair. C \{a, b}
consists of two nonempty paths, say Q1 and Q2 and no chord of G′ connects Q1 and Q2.
Assume that there is a segment s of G that connects Q1 and Q2; let v1 < v2 < . . . < vk

be the attachments of s. Let vi lie on Q1 and let vj lie on Q2. We may assume i < j. If
one of v1 or vk lies on Q1 or Q2, G′ contains a chord that connects Q1 and Q2. Therefore
{a, b} = {v1, vk} and hence the vertices vi to vj are distinct from a and b. There must
be an ℓ such that vℓ ∈ Q1 and vℓ+1 ∈ Q2. Thus G′ contains a chord connecting Q1 and
Q2. �

In order to prove triconnectivity of G, we prove triconnectivity of G′. A segment s
of G with k attachments gives rise to no more than 3k − 6 edges of G′. Thus linear time
in the size of G′ is linear time in the size of G.

It is easy to extend a contraction sequence for G′ into a contraction sequence for
G. Let e1, e2, . . . en−4 be the contraction sequence for G′ where e1 to en−4 are distinct

9



tree edges. The contractions transform G′ into K4 without generating a vertex of degree
two. We perform a slightly extended sequence of contractions in G. It suffices to explain
the correspondence for the first contraction. A contraction of e1 in G might generate a
segment with only two attachments and hence a vertex of degree two. This is the case if
e1 = xy and there is a segment in G having attachments x, y and z. The segment gives
rise to edges xz and yz in G′; one of these edges is missing if z is a neighbor of x or y on
C. Let v(s) be the internal vertex of s. In G, we first contract the tree edge into v(s)
and then xy.

It remains to describe how we detect the segments having exactly three attachments
and x and y among them. Again, we maintain a union-find data structure for the vertices
of G′. The blocks correspond to the vertices of the current graph, i.e., two vertices of
G′ belong to the same block if they have been contracted into the same vertex of the
current graph. For a vertex x, let B(x) be the block containing x. With each such block
B we maintain a (mergeable) priority queue PQB ; it contains all segments s having an
attachment in B and at least one attachment above B. The segments are ordered in
increasing order by their first attachment above B.

Assume now we want to contract the tree edge xy with y being above x. We perform
findmin operations on PQB(x). Let s be the segment delivered and let y′ be the next
attachment of s above B. If y′ ∈ B(y), the contraction of xy merges two attachments of
s into one. We decrease the degree of v(s) and if the degree becomes two, we contract
the tree edge into v(s). We continue until PQB(x) delivers a segment whose lowest
attachment y′ above B does not lie in B(y). We unite B(x) and B(y) into a common
block and we merge PQB(x) and PQB(y) into the priority queue for the new block.

Since mergeable priority queues can be maintained in time O(log n) per operation,
we obtain:

Theorem 13 A Tutte contraction sequence for an extended Hamiltonian graph can be
constructed in time O(n log n + m).

6 Checking the Witness

Let G be an arbitrary graph and let e1, e2, . . . , en−4 be a sequence of edges of G. Let
G0 = G and let Gi = Gi−1/ei. We describe a linear-time algorithm that checks whether
the sequence is a Tutte contraction sequence for G.

The question is how to maintain the graphs Gi? We use a union-find data structure
B to represent the vertices of Gi. Each block is a vertex of Gi. The adjacency lists for
each block contain vertices of the original graph, and may describe parallel edges and
self-loops. According to Theorem 4, we need to verify that, before the contraction of an
edge xy, x and y have at least three neighbors each. We describe the test for x. Let
B(x) be the block containing x. We iterate over the adjacency list for B(x) and build up
a set S of neighbors of B(x). We start with S being the empty set and stop the scan as
soon as S has three elements. Assume now that an edge x′y′ with x′ ∈ B(x) is scanned.
If y′ ∈ B(x), x′y′ is a self-loop in the current graph and we simply delete it from the
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adjacency list of B(x). If y′ 6∈ B(x), but B(y′) ∈ S, we are scanning an edge parallel to
an edge scanned previously and we delete it from the adjacency list. If y′ 6∈ B(x) and
B(y′) 6∈ S, we add B(y′) to S. The scan over the adjacency list of B(x) ends once the
size of S reaches three. If we run out of edges before, B(x) has degree less than three in
the current graph and we reject the contraction sequence. The number of edges required
to check is therefore three plus the number of edges deleted, amortizing to a total of
O(n + m) checks.

It remains to discuss the details of the union-find data structure. We remarked in
Section 3 that there are linear-time solutions to the union-find problem if a union-tree
prescribing the potential unions is part of the input. For the union-find structure B
required in this section, the union tree is defined as follows. Let T = (V, {e1, . . . , en−4}).
We first verify that T is a forest. If not, the sequence is rejected, because one of the
contractions will contract a self-loop and hence the final graph will have more than four
vertices. If T is a forest, it contains four trees, one for each vertex of the final graph.
These trees build the prescribed set of possible unions and therefore yield linear total
time.

We still need to check that the final graph is K4. The graph has four vertices. As
described in the preceding paragraph, we remove self-loops and parallel edges. Then we
only need to check whether there are six edges left.

Theorem 14 Given a graph G and a sequence e1 to en−4 of edges of G, one can check
in linear time whether the sequence is a Tutte contraction sequence for G.

One of the reviewers remarked that the linear-time solution for the union-find problem
with given union-tree [GT85] is fairly complex and hence should not be used in an
algorithm for checking witnesses. This criticism is valid; it can be overcome in two ways.
First, one may sacrifice linear running time and resort to almost linear solutions of the
general union-find problem. Second, one may require that the vertices of the graph are
numbered in a special way; it would be an obligation of the triconnectivity algorithm to
compute such a numbering. The numbering has the property that for all i, 1 ≤ i ≤ n−4,
the vertices in any component of T = (V, {e1, . . . , ei}) are numbered consecutively. It is
easy to compute such a numbering in linear time using the linear-time solution for the
union-find problem with given union-tree. This numbering replaces the union tree by
a union path, where possible unions are performed only between consecutive vertices.
Then a much simpler approach of [IA87] applies.

7 Higher Connectivity

Connectivity and two-connectivity are easily certified in linear time. A spanning tree cer-
tifies connectivity, a cut vertex certifies non-two-connectivity, and every s-t-numbering,
open ear decomposition and bipolar orientation certifies two-connectivity [Bra02].

For arbitrary k, the situation is as follows. In linear time any k-connected graph can
be sparsified to a k-connected graph with O(kn) edges [NI92]. Of course, certifying k-
connectivity of the sparsification certifies k-connectivity of the original graph. Also, it is
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easy to check whether a vertex cut in the sparsification is also a vertex cut in the original
graph. k-connectivity can be tested in time O(m + min(kn2, k2n3/2)) ([Eve75, Gal80]);
the algorithms are certifying. The certificates are flows.

[LLW88] gave a geometric characterization of k-connectivity for general k. A graph
G is k-connected if and only if, specifying any k vertices of G, the vertices of G can be
represented as points in Rk−1 so that no k are on a hyperplane and each vertex is in
the convex hull of its neighbors, except for the k specified vertices. The characterization
gives rise to an O(n5/2 + nk5/2) time Monte Carlo algorithm for k-connectivity and an
O(kn5/2 + nk7/2) Las Vegas algorithm for k-connectivity. The algorithms are certifying.

For k ≥ 4, k-connected graphs do not necessarily contain edges that preserve k-
connectivity upon contraction [Kri02] (we call such edges k-contractible edges). This is
in sharp contrast to k = 1, 2, 3, in particular, to Theorem 1 for the case of 3-connected
graphs. Although it is possible to characterize the non-complete 4-connected graphs that
do not contain 4-contractible edges, an analogue characterization for k = 5 is regarded
as tremendously hard problem in [Kri02]. However, some subclasses of k-connected
graphs have been proven to contain a k-contractible edge, e. g., the class of triangle-free
k-connected graphs [Tho81].

8 Conclusion

We gave a linear-time certifying triconnectivity algorithm for Hamiltonian graphs and an
O(n log n+m) algorithm for extended Hamiltonian graphs. The challenge is to generalize
this result to all graphs. We have also shown that the validity of a contraction sequence
can be checked in linear time by a simple algorithm.
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