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Abstract

A well-known theorem of Tutte states that every 3-connected graph G on more
than 4 vertices contains a contractible edge. In this paper, we strengthen this result by
showing that every depth-first-search tree of G contains a contractible edge. Moreover,
we show that every spanning tree of G contains a contractible edge if G is 3-regular
or if G does not contain two disjoint pairs of adjacent degree-3 vertices. Additionally,
we provide several families of graphs for which not every spanning tree contains a
contractible edge.

1 Introduction

Let G = (V,E) be a simple undirected graph with n := |V | and m := |E|. We denote an
edge between vertices x and y by xy. If xy ∈ E(G), we say that x and y are neighbors in
G. The degree of x ∈ V (G), denoted by deg(x), is the number of neighbors of x in G.

A graph is connected if there is a path between every two of its vertices. For any subset
of vertices V ′ ⊆ V , let G\V ′ denote the graph generated from G by removing the vertices
in V ′ and all their incident edges. A set of vertices whose removal disconnects the graph is
called a vertex cut. If V ′ is a vertex cut of G, the maximal connected subgraphs of G \ V ′
are called the components of G \ V ′. Vertex cuts of size one, two and three are called
separation vertices, separation pairs and separation triples, respectively. Analogously, an
edge cut of G is a subset of E whose removal disconnects G. For k > 1, G is k-connected
if n > k and removing any k − 1 of its vertices leaves a connected graph.

The contraction of an edge xy ∈ E(G) generates a graph G′ = G/xy with vertex set
V (G′) = V (G)\{x, y}∪{vxy}, where vxy is a new vertex. The edge xy is removed and for
all edges having exactly one end-vertex in {x, y}, this vertex is replaced by vxy. Finally,
only one edge of each set of parallel edges is kept. Let an edge in a 3-connected graph be
contractible (also called 3-contractible) if its contraction results in a 3-connected graph.

Fifty years ago Tutte [22] proved the fundamental result that every 3-connected graph
on more than 4 vertices contains a contractible edge. Since then, the distribution of con-
tractible edges in 3-connected graphs has been intensively studied. Many papers establish
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lower bounds on the number of contractible edges. For example, there are at least n/2
contractible edges [1] in every 3-connected graph with n > 4, and at least (2m + 12)/7
contractible edges [18] in every 3-connected graph with m > 27. Bounds for the number
of contractible edges in longest cycles [3], the number of vertices incident to contractible
edges [26] and results on entire contractible subgraphs [11] have also been investigated;
see [10] for an excellent survey. Bounds have also been settled for the number of removable
edges in 3-connected graphs [6, 8] (edges whose removal leave a 3-connected graph).

A depth-first-search tree of a graph G is a spanning tree of G produced by the depth-
first-search algorithm [12, 21]. Starting from an arbitrary prescribed vertex r, the depth-
first-search algorithm traverses the graph by repeatedly visiting an unvisited neighbor of
the last visited vertex. If all the neighbors of the current vertex have already been visited,
the search backtracks until it finds a vertex with an unvisited neighbor to continue (or all
vertices have been visited). By employing a stack of the visited vertices, this algorithm
can be implemented to run in O(n + m) time [2]. Alternatively, a depth-first-search tree
of G can be characterized as a spanning tree T rooted at r with the property that the
end-vertices of every edge in E(G) \ E(T ) are contained in a path in T that ends at r.

We strengthen Tutte’s result by investigating the existence of contractible edges in
spanning trees of 3-connected graphs. Let T be a spanning tree of a 3-connected graph G
with n > 4. We show that if T does not contain a contractible edge, there are two disjoint
edges x1x2, x3x4 ∈ E(G), where each of the 4 vertices has degree 3 and is the end-vertex
of exactly one edge of T , such that for i = 1, 3, xi and xi+1 have the same neighbor in
T . The above property of depth-first-search trees will then immediately ensure that T
cannot be a depth-first-search tree. We thus conclude that every depth-first-search tree
of a 3-connected graph with n > 4 contains a contractible edge.

In addition, we exhibit 3-connected graphs with a depth-first-search tree containing
exactly one contractible edge, and 3-connected graphs with a spanning tree containing no
contractible edge. The 3-connected graphs with n > 4 that admit spanning trees with no
contractible edges are rather cunning and tricky; we call such graphs foxes. The wheel
graphs, Wi for i ≥ 5, are an example for a family of foxes. We present additional infinite
families of foxes, and give conditions under which a 3-connected graph is not a fox.

A certifying algorithm is an algorithm that produces, with each output, a certificate
that the particular output has not been compromised by a bug (see [9] and [15, Section
2.14] for a general discussion of certifying algorithms and [14] for an extensive survey). A
certificate for the 3-connectivity of a graph would be the sequence of contractible edges
that is generated by repeatedly applying Tutte’s theorem until a K4 is produced.

When we started this research, the best certifying algorithms for 3-connectivity [16, 19]
of general graphs had a running time of O(n2); in contrast, the best non-certifying decision
algorithms [7, 17, 24, 25] have a running time of O(n+m) time. We hope that the results
of this paper lead to a linear-time certifying algorithm for 3-connectivity. As a first step in
this direction, we used this result –the existence of a contractible edge in every depth-first-
search tree of a 3-connected graph– to establish an O(n + m)-time certifying algorithm
for the 3-connectivity of Hamiltonian graphs [4]. A linear-time certifying algorithm was
found later by the third author [20]; the algorithm does not use the results of this paper.
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2 Preliminaries

The following lemmas are used to prove our claims; their proofs are straightforward and
accordingly omitted.

Lemma 2.1 Let S be a separation triple in a 3-connected graph G, and let C be one of
the components of G \ S. Every vertex in S has a neighbor in C.

Lemma 2.2 Let S be a separation triple in a 3-connected graph G, and let C be one of
the components of G \S. If S′ is a separation triple in G with S′ 6= S and S′ ⊆ S ∪V (C),
there is a component of G \ S′ properly contained in C.

Lemma 2.3 Let G be a 3-connected graph, and let {x, y, z} and {v, y, w} be two separation
triples in G intersecting exactly in y. Then v and w are contained in the same component
of G\{x, y, z} if and only if x and z are contained in the same component of G\{v, y, w}.
Moreover, if v and w belong to distinct components of G\{x, y, z}, then each of G\{x, y, z}
and G \ {v, y, w} has exactly two components.

According to Veldman [23], two vertex cuts S and S′ interfere if at least two compo-
nents of G \ S contain vertices of S′ and vice versa. We call two separation triples S and
S′ crossing if they interfere and in addition have a common vertex. By Lemma 2.3, each
of G \ S and G \ S′ has exactly two components.

Lemma 2.4 Let G be a 3-connected graph, let {x, y, z} and {v, y, w} be two crossing
separation triples, let D be the component of G \ {x, y, z} containing v, and let X and Z
be the components of G \ {v, y, w} containing x and z, respectively. Then {x, y, v} is a
separation triple unless X ∩D = ∅, and {z, y, v} is a separation triple unless Z ∩D = ∅.

We also use the following results to prove our claims.

Lemma 2.5 (Dean, Hemminger, Ota [3]) An edge xy in a 3-connected graph with
n > 4 is contractible if and only if there is no separation triple containing both x and y.

Lemma 2.6 (Halin [5]) In a 3-connected graph with n > 4, every degree-3 vertex has
an incident contractible edge.

Lemma 2.7 (Ota [18]) Let v be a degree-3 vertex in a 3-connected graph G with n > 4,
and let x, y, and z be its neighbors. If xy ∈ E(G), then vz is contractible.

3 Contractible Edges and Spanning Trees

Examples: There are arbitrarily large foxes; the wheel graphs, Wi for i ≥ 5, with their
spokes as spanning trees, form an infinite family; see Figure 1(a). Figure 1(b) shows the
base graph of another infinite family of foxes. In this graph, the vertices x, y, and w play
a special role. The next larger graph in this family is obtained as follows: Let z be the
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Figure 1: The solid edges are non-contractible and form a spanning tree.

Figure 2: A depth-first-search tree (thick edges) with only one contractible edge wx.

neighbor of x that is neither y nor w in the smaller graph, subdivide xz by one vertex and
connect the new vertex with y; see Figure 1(c). More examples are in Figures 5 and 6.

We shall show that every depth-first-search tree of a 3-connected graph on more than
4 vertices contains a contractible edge. The graph on 6 vertices in Figure 2 indicates that
this bound is tight. However, we are not aware of any graph on more than 6 vertices that
admits a depth-first-search tree containing exactly one contractible edge. �

Consider a fox G, and let T be a spanning tree of G that contains no contractible
edge. According to Lemma 2.5, there is a vertex z ∈ V (G) for every edge xy ∈ E(T ) such
that {x, y, z} is a separation triple. We call each such {x, y, z} a T -separation triple. The
components that result from the removal of a T -separation triple are called T -components.
A T -component is minimal if there is no T -component properly contained in it. The
notions of T -components and minimal T -components are special cases of the more general
S-fragments and S-ends definitions, which are studied in [13].

Lemma 3.1 Let G be a fox, and let T be a spanning tree of G that contains no contractible
edge. Then every minimal T -component consists of exactly one vertex, say v. This vertex
has degree 3 and is the end-vertex of exactly one edge of T . More precisely, if the neighbors
of v in G are x, y, and z with xy ∈ E(T ), then vz /∈ E(T ), and either vx ∈ E(T ) or
vy ∈ E(T ).

Proof. Let D be a minimal T -component, and let {x, y, z} with xy ∈ E(T ) be the
associated T -separation triple. Since T is a spanning tree, there exists a vertex v ∈ V (D)
that is a neighbor of x, y, or z in T . We show that D has only one vertex, namely v.

If vz ∈ E(T ), then vz is non-contractible, and hence a separation triple {v, z, w}
exists. Since xy ∈ E(G), either w ∈ {x, y} or both x and y are in the same component
of G \ {v, z, w}. Consequently, there exists a component C of G \ {v, z, w} such that
x, y /∈ V (S). By Lemma 2.1, v has a neighbor, say u, in C. Since u /∈ {x, y, z}, u is in the
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Figure 3: The minimal T -component D.

same component of G \ {x, y, z} as v, i.e. u ∈ V (D). It follows that every vertex in C is
also in D. Since v /∈ V (C), C is properly contained in D, contradicting D being minimal.
It follows that vz /∈ E(T ). Accordingly, either vx ∈ E(T ) or vy ∈ E(T ).

Assume, without loss of generality, that vy ∈ E(T ); see Figure 3. Therefore, vy
is non-contractible and a separation triple {v, y, w} exists. If there is a component of
G\{v, y, w} containing neither x nor z, the arguments of the preceding paragraph indicate
that the T -component D is not minimal. It follows that {v, y, w} splits G into exactly two
components, one containing x and one containing z. Call the former component X and
the latter Z. We show next that both X ∩D and Z ∩D must be empty.

If X ∩D 6= ∅, Lemma 2.4 implies that {x, y, v} separates X ∩D from the rest of G,
contradicting D being minimal. This implies that X ∩D = ∅. Analogously, Z ∩D = ∅.

We have thus shown that, assuming v ∈ V (G) is in a minimal T -component, there
exists a separation triple {x, y, z} with xy ∈ E(T ), such that vx, vy, vz ∈ E(G), deg(v) = 3,
vz /∈ E(T ) and vy ∈ E(T ). �

We use the next lemma in the proof of Lemma 3.3.

Lemma 3.2 Let G be a 3-connected graph, let S be a separation triple that splits G in
two components, and let X be a component of G \S. If G′ = G \V (X) is not 2-connected
and w′ is a separation vertex of G′, then w′ 6∈ S and one of the vertices in S has w′ as its
only neighbor in G′ (and hence is a component of G′ \w′). Conversely, if every vertex in
S has at least two neighbors in G′, then G′ is 2-connected.

Proof. Assume that G′ is not 2-connected. Accordingly, there is a separation vertex
w′ in G′. If one of the components of G′ \ {w′} does not contain a vertex from S, then
w′ is a separation vertex in G, contradicting G being 3-connected. It follows that every
component of G′ \ w′ contains at least one vertex from S.

Let S = {v, y, w}. If w′ ∈ S, say w′ = y, then G′ \ {w′} has exactly two components
one containing v and one containing w. Since S is a separation triple in G, there are
vertices in G′ other than those in S. It follows that one of the components of G′ \ {w′}
must have at least two vertices, say the component containing w. Then {w,w′} splits G,
contradicting G being 3-connected. We conclude that w′ 6∈ S.

The vertices of S cannot all lie in one component of G′ \ {w′}. Hence, at least one
of these components contains exactly one vertex from S, say w. If w has a neighbor in
G′ other than w′, then {w,w′} splits G, contradicting G being 3-connected. We conclude
that one of the vertices in S has w′ as its only neighbor in G′. �
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Figure 4: A case contradicting the minimality of X.

Assume that a 3-connected graph G with n > 4 is a fox, and let T be a spanning
tree of G that contains no contractible edge. Let v be a minimal T -component in G, and
let vy be the only tree edge incident with v. We call every T -separation triple {v, y, w}
a special T -separation triple. The components that result from the removal of a special
T -separation triple are called special T -components. A special T -component is minimal if
there is no special T -component properly contained in it.

Lemma 3.3 Let G be a fox, and let T be a spanning tree of G that contains no contractible
edge. Then every minimal special T -component consists of exactly one vertex and has a
neighbor that is also a minimal special T -component. Let v and v′ be any such pair
of minimal special T -components with vv′ ∈ E(G). There exists a vertex y such that
vy, v′y ∈ E(T ).

Proof. Let X be a minimal special T -component; it is split off by a special T -separation
triple S = {v, y, w} with v being a minimal T -component and vy ∈ E(T ). By Lemma 2.2,
no other special T -separation triple has its three vertices in V (X) ∪ S. Since S is a
T -separation triple, there exists a minimal T -component v′ ∈ V (X); v′ belongs to a
special T -separation triple S′ = {v′, y′, w′} with v′y′ ∈ E(T ), where y′ ∈ V (X) ∪ S and
w′ /∈ V (X) ∪ S (otherwise, X would not be minimal).

Assume first that y′ ∈ V (X); see Figure 4. Then w′ must split G \X, and Lemma 3.2
implies that one of the vertices in S has w′ as its only neighbor in G\X. Since vy ∈ E(G),
such vertex must be w, i. e. ww′ ∈ E(G). We next show that all neighbors of w are
contained in S′, and hence w has degree 3. Assume to the contrary that w has a neighbor
u′ 6∈ S′. Then u′ and w belong to the same component of G \ S′. Every path from u′ to
any vertex in a different component of G \S′ must pass through either v′, y′ or w. Hence,
{v′, y′, w} is a special T -separation triple contained in V (X) ∪ S. But such possibility is
ruled out in the previous paragraph because of the minimality of X. It follows that w has
degree 3, its neighbors are precisely the vertices in S′, and w is a minimal T -component. By
Lemma 2.7, ww′ is contractible, and accordingly does not belong to T . Also, wv′ 6∈ E(T )
since v′y′ ∈ E(T ) and v′ has only one incident tree edge. Hence, wy′ ∈ E(T ). Let z′

be the third neighbor of v′ besides y′ and w. Then {w, y′, z′} is a special T -separation
triple that separates v′ from the rest of G. This again contradicts our choice of X being
minimal. We conclude that y′ /∈ V (X), and hence y′ ∈ S.
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Since v′ and w′ are in different components of G \ S, using Lemma 2.3, the triples
S and S′ cross. Hence, the vertices of S \ {y′} must belong to different components of
G \ S′. Since vy ∈ E(G), this excludes the possibility that y′ = w. Also, y′ 6= v, since
otherwise v would be an end-vertex of two tree edges, namely vy and v′y′. It must then
be the case that y = y′ (and v′ = x in Figure 4). If |V (X)| > 1, Lemma 2.4 implies that
either {v′, y, v} or {v′, y, w} is a special T -separation triple. Such a triple has a component
properly contained in X, contradicting the minimality of X. It follows that v′ is the only
vertex in X. Let z be the third neighbor of v besides v′ and y. Then {v′, y, z} is a special
T -separation triple that separates v from the rest of G. We conclude that v and v′ are
both minimal special T -components, vv′ ∈ E(G) and vy, v′y ∈ E(T ). �

Here comes our main theorem implying our best characterization for foxes.

Theorem 3.4 Let G be a fox, and let T be a spanning tree of G that contains no con-
tractible edge. There exist two disjoint edges in G such that their end-vertices are minimal
special T -components.

Proof. Let v and v′ be adjacent minimal special T -components as in Lemma 3.3; v is
split off by S′ = {v′, y, w′} and v′ is split off by S = {v, y, w}.

Assume first that there is a minimal special T -component in V (G) \ {v, v′, y, w,w′}.
Call it z, and let z′ be the adjacent minimal special T -component. Then z′ 6∈ {v, v′}, and
hence (v, v′) and (z, z′) are the desired pairs.

Otherwise, any minimal special T -component of G is contained in {v, v′, y, w,w′}. Let
W ′ be the component of G \ S containing w′, and let W be the component of G \ S′
containing w. Both W ′ and W are special T -components, and hence contain minimal
special T -components. These components must be w for W and w′ for W ′. Then (v, w′)
and (v′, w) are the desired pairs. �

The previous theorem implies that every fox has at least four degree-3 vertices. Re-
markably, there are arbitrarily large foxes with exactly four degree-3 vertices; see Figure 5.

Next, we use Theorem 3.4 to prove the following algorithmically-utilizable result.

Corollary 3.5 Consider a 3-connected graph G with n > 4. Every depth-first-search tree
of G contains a contractible edge.

Proof. Let T be a depth-first-search tree of G, and assume that T contains no contractible
edge. By Theorem 3.4, there exist two disjoint pairs of degree-3 vertices, each vertex is a
minimal T -component, such that the vertices of each pair are adjacent in G. By Lemma
3.1, every minimal T -component is a degree-3 vertex that is either the root or a leaf in T .
Accordingly, there exists a pair of vertices that are leaves in T while being adjacent in G,
contradicting the fact that T is a depth-first-search tree. �

It is interesting to note that although foxes must have some degree-3 vertices as indi-
cated earlier, not all vertices of a fox can be of degree 3.

7



Figure 5: An arbitrarily large fox with exactly four degree-3 vertices.

Lemma 3.6 If G is a 3-connected 3-regular graph with n > 4, then G is not a fox.

Proof. Assume that G has a spanning tree T containing no contractible edge. According
to Lemma 3.1, there are vertices v, x, y, z ∈ V (G), such that vx, vy, vz ∈ E(G), xy, vy ∈
E(T ) but vz /∈ E(T ). Because G is 3-regular, deg(x) = deg(y) = 3. As T is a spanning
tree of G, either the third edge incident with x, say xr, or the third edge incident with y,
say ys, is a tree edge. Since vy ∈ E(G), xr is contractible by Lemma 2.7. Since xy, vy ∈
E(T ), both edges are non-contractible by assumption. Accordingly, ys is contractible by
Lemma 2.6. This contradicts the assumption that T contains no contractible edge. �

As a last remark, we give another property for which a 3-connected graph is not a fox.

Lemma 3.7 Let G be a 3-connected graph with n > 4, and let F be an edge cut of G. If
every edge e in F has an end-vertex x, where deg(x) = 3 and x has two neighbors in G\F
adjacent to each other, then G is not a fox.

4 Conclusions

Our main objective was to show that every depth-first-search tree of a 3-connected graph
with n > 4 contains a contractible edge. However, there are 3-connected graphs that have
spanning trees with no contractible edges. We called those graphs foxes. Foxes seem to
be rare though; we supported this statement by giving restricted properties for foxes.

An interesting fact is that all wheel graphs, as well as the family of foxes depicted in
Figure 1, satisfy m = 2n−2. This raises the question about the existence of an infinite class
of foxes where |m− 2n| grows with n. So far, we have only found foxes with |m− 2n| ≤ 3;
see Figure 6 for an extremal example. Another open question is whether there exists an
inductive characterization of foxes. Such a characterization may provide more insight into
the distribution of contractible edges in 3-connected graphs.
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Figure 6: A fox with m = 2n− 3.
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