
Minimum Cycle Bases in Partial 2-Trees

Carola Doerr G. Ramakrishna Jens M. Schmidt

Minimum Cycle Basis (MCB)

● G = graph with non-negative weights

Minimum Cycle Basis (MCB)

● G = graph with non-negative weights
● cycle basis = minimum-cardinality set of cycles that can

generate every cycle in G

Minimum Cycle Basis (MCB)

● G = graph with non-negative weights
● cycle basis = minimum-cardinality set of cycles that can

generate every cycle in G

m-n+1

Minimum Cycle Basis (MCB)

● G = graph with non-negative weights
● cycle basis = minimum-cardinality set of cycles that can

generate every cycle in G

● minimum cycle basis = minimize sum of edge-weights

m-n+1

Partial 2-Trees

● 2-trees:
– Start with a triangle
– Add iteratively new vertex that is adjacent to a K

2

Partial 2-Trees

● 2-trees:
– Start with a triangle
– Add iteratively new vertex that is adjacent to a K

2

● partial 2-trees = subgraphs of 2-trees

Partial 2-Trees

● 2-trees:
– Start with a triangle
– Add iteratively new vertex that is adjacent to a K

2

● partial 2-trees = subgraphs of 2-trees

● outerplanar graphs ⊂ partial 2-trees

Recent Work

● For general graphs:
– Deterministic: O(m2n / log n) [Amaldi-Iuliano-Rizzi '10]
– Monte-Carlo: O(m!) [“-Jurkiewicz-Mehlhorn '09]

Recent Work

Recent Work

Can be big: (n2)

Short Cycles

● Assumption:
Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

Short Cycles

● Assumption:
Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

● sp(u,v) = shortest path between u and v

● Cycle C is short if for all u,v in C, sp(u,v) ⊆ C

Short Cycles

● Assumption:
Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

● sp(u,v) = shortest path between u and v

● Cycle C is short if for all u,v in C, sp(u,v) ⊆ C

● SC = set of all short cycles

Short Cycles

● Assumption:
Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

● sp(u,v) = shortest path between u and v

● Cycle C is short if for all u,v in C, sp(u,v) ⊆ C

● SC = set of all short cycles

Thm [N.+Ramakrishna '12]: MCB = SC for partial 2-trees

Tight Edges

● Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose

● Every loose edge appears in exactly one SC

Tight Edges

● Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose

● Every loose edge appears in exactly one SC

● Precompute these cycles => G contains only tight edges

Decomposition

● If partial 2-tree has no K
2,3

-subdivision => outerplanar!

● Decompose G along K
2,3

-subdivisions into outerplanar

graphs G
1
,...,G

r

Decomposition

● If partial 2-tree has no K
2,3

-subdivision => outerplanar!

● Decompose G along K
2,3

-subdivisions into outerplanar

graphs G
1
,...,G

r

Thm [N.+Ramakrishna '12]: SC(G) = SC(G
1
) ∪ … ∪ SC(G

r
)

Decomposition

Decomposition

If (u,v) ∈ G:

Decomposition

If (u,v) ∈ G:

G1

G2

G3

Decomposition

If (u,v) ∉ G:

Decomposition

If (u,v) ∉ G:

G1

G2

G3

Decomposition

If (u,v) ∉ G:

G1

G2

G3blue edges represent sp(u,v)

Algorithm

● Find all u,v such that G-u-v has at least 3 components

Algorithm

● Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition
(u,v in common bag)

Algorithm

● Find all u,v such that G-u-v has at least 3 components

● Find G
i
 that contains sp(u,v) and decompose

Suitable tree decomposition
(u,v in common bag)

Algorithm

● Find all u,v such that G-u-v has at least 3 components

● Find G
i
 that contains sp(u,v) and decompose

Suitable tree decomposition
(u,v in common bag)

[Chaudhuri-Zaroliagis '00]
Data structure for fixed tree-width graphs supporting
- intermediate vertex queries in O(1)
- bag location queries in O(1)
- distance queries in O(1)

Algorithm

● Find all u,v such that G-u-v has at least 3 components

● Find G
i
 that contains sp(u,v) and decompose

● Compute MCB from SC(G
i
) and the SC from loose edges

Suitable tree decomposition
(u,v in common bag)

[Chaudhuri-Zaroliagis '00]
Data structure for fixed tree-width graphs supporting
- intermediate vertex queries in O(1)
- bag location queries in O(1)
- distance queries in O(1)

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

