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● G = graph with non-negative weights
● cycle basis = minimum-cardinality set of cycles that can 

generate every cycle in G

● minimum cycle basis = minimize sum of edge-weights

m-n+1
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● 2-trees:
– Start with a triangle
– Add iteratively new vertex that is adjacent to a K

2

● partial 2-trees = subgraphs of 2-trees

● outerplanar graphs ⊂  partial 2-trees



Recent Work

● For general graphs:
– Deterministic: O(m2n / log n) [Amaldi-Iuliano-Rizzi '10]
– Monte-Carlo:  O(m!) [“-Jurkiewicz-Mehlhorn '09]



Recent Work



Recent Work

Can be big: (n2)
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Short Cycles

● Assumption:
Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

● sp(u,v) = shortest path between u and v

● Cycle C is short if for all u,v in C, sp(u,v) ⊆ C

● SC = set of all short cycles

Thm [N.+Ramakrishna '12]: MCB = SC for partial 2-trees
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● Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose

● Every loose edge appears in exactly one SC



Tight Edges

● Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose

● Every loose edge appears in exactly one SC

● Precompute these cycles => G contains only tight edges
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● If partial 2-tree has no K
2,3

-subdivision => outerplanar!

● Decompose G along K
2,3

-subdivisions into outerplanar 

graphs G
1
,...,G

r

Thm [N.+Ramakrishna '12]: SC(G) = SC(G
1
) ∪ … ∪ SC(G

r
)
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Decomposition

If (u,v) ∉ G:

G1 

G2 

G3blue edges represent sp(u,v)
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Algorithm

● Find all u,v such that G-u-v has at least 3 components

● Find G
i
 that contains sp(u,v) and decompose

● Compute MCB from SC(G
i
) and the SC from loose edges

Suitable tree decomposition
(u,v in common bag)

[Chaudhuri-Zaroliagis '00]
Data structure for fixed tree-width graphs supporting
- intermediate vertex queries in O(1)
- bag location queries in O(1)
- distance queries in O(1)



Thank you!
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