Minimum Cycle Bases in Partial 2-Trees

Carola Doerr
G. Ramakrishna Jens M. Schmidt

Minimum Cycle Basis (MCB)

- $G=$ graph with non-negative weights

Minimum Cycle Basis (MCB)

- $G=$ graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

$$
C_{1}+C_{2}:=E\left(C_{1}\right) \Delta E\left(C_{2}\right)
$$

Minimum Cycle Basis (MCB)

- $G=$ graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

$$
m-n+1
$$

$$
C_{1}+C_{2}:=E\left(C_{1}\right) \Delta E\left(C_{2}\right)
$$

Minimum Cycle Basis (MCB)

- $G=$ graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

$$
m-n+1
$$

$$
C_{1}+C_{2}:=E\left(C_{1}\right) \Delta E\left(C_{2}\right)
$$

- minimum cycle basis = minimize sum of edge-weights

Partial 2-Trees

- 2-trees:
- Start with a triangle
- Add iteratively new vertex that is adjacent to a K_{2}

Partial 2-Trees

- 2-trees:
- Start with a triangle
- Add iteratively new vertex that is adjacent to a K_{2}

- partial 2-trees = subgraphs of 2-trees

Partial 2-Trees

- 2-trees:
- Start with a triangle
- Add iteratively new vertex that is adjacent to a K_{2}

- partial 2-trees = subgraphs of 2-trees
- outerplanar graphs \subset partial 2-trees

Recent Work

- For general graphs:
- Deterministic: $O\left(m^{2} n / \log n\right)$
- Monte-Carlo: $O\left(m^{\omega}\right)$
[Amaldi-luliano-Rizzi '10] ["-Jurkiewicz-Mehlhorn '09]

Recent Work

Recent Work

	[LL 2010]	[Our Result]	[BSW 2010]
	Outerplanar	Partial 2-trees	Planar
Preprocessing time	$O(n)$	$O(n)$	$O\left(n \log ^{5} n\right)$
Space required	$O(n)$	$O(n)$	$O(n \log n)$
Reporting time	size($M C B$)	size($M C B$)	$\operatorname{size}(M C B)$

Can be big: $\Omega\left(\mathrm{n}^{2}\right)$

Short Cycles

- Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

Short Cycles

- Assumption:

Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

- $s p(u, v)=$ shortest path between u and v
- Cycle C is short if for all u, v in $C, s p(u, v) \subseteq C$

Short Cycles

- Assumption:

Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

- $s p(u, v)=$ shortest path between u and v
- Cycle C is short if for all u, v in $C, s p(u, v) \subseteq C$
- $\mathrm{SC}=$ set of all short cycles

Short Cycles

- Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]
- $s p(u, v)=$ shortest path between u and v
- Cycle C is short if for all u, v in $C, s p(u, v) \subseteq C$
- $\mathrm{SC}=$ set of all short cycles

Thm [N.+Ramakrishna '12]: MCB = SC for partial 2-trees

Tight Edges

- Edge (u,v) tight if $s p(u, v)=(u, v)$, otherwise loose
- Every loose edge appears in exactly one SC

Tight Edges

- Edge (u,v) tight if $s p(u, v)=(u, v)$, otherwise loose
- Every loose edge appears in exactly one SC

- Precompute these cycles => G contains only tight edges

Decomposition

- If partial 2-tree has no $\mathrm{K}_{2,3}$-subdivision => outerplanar!

- Decompose G along $\mathrm{K}_{2,3}$-subdivisions into outerplanar graphs G_{1}, \ldots, G_{r}

Decomposition

- If partial 2-tree has no $\mathrm{K}_{2,3}$-subdivision => outerplanar!

- Decompose G along $\mathrm{K}_{2,3}$-subdivisions into outerplanar graphs G_{1}, \ldots, G_{r}

Thm [N.+Ramakrishna '12]: SC(G) $=\operatorname{SC}\left(\mathrm{G}_{1}\right) \cup \ldots \cup \mathrm{SC}\left(\mathrm{G}_{\mathrm{r}}\right)$

Decomposition

Decomposition

If $(u, v) \in G$:

Decomposition

If $(u, v) \in G$:

Decomposition

If $(u, v) \notin \mathrm{G}:$

Decomposition

If $(u, v) \notin \mathrm{G}:$

Decomposition

If $(u, v) \notin \mathrm{G}:$

Algorithm

- Find all u,v such that G-u-v has at least 3 components

Algorithm

- Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u, v in common bag)

Algorithm

- Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u, v in common bag)

- Find G_{i} that contains $s p(u, v)$ and decompose

Algorithm

- Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u, v in common bag)

- Find G_{i} that contains $s p(u, v)$ and decompose
[Chaudhuri-Zaroliagis '00]
Data structure for fixed tree-width graphs supporting
- intermediate vertex queries in $\mathrm{O}(1)$
- bag location queries in $O(1)$
- distance queries in $\mathrm{O}(1)$

Algorithm

- Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u,v in common bag)

- Find G_{i} that contains $\operatorname{sp}(u, v)$ and decompose
[Chaudhuri-Zaroliagis '00]
Data structure for fixed tree-width graphs supporting
- intermediate vertex queries in $\mathrm{O}(1)$
- bag location queries in $O(1)$
- distance queries in $O(1)$
- Compute MCB from $\operatorname{SC}\left(\mathrm{G}_{\mathrm{i}}\right)$ and the SC from loose edges

Thank you!

