#### Minimum Cycle Bases in Partial 2-Trees



Carola Doerr G. Ramakrishna Jens M. Schmidt

• G = graph with non-negative weights

- G = graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

$$C_1 + C_2 := E(C_1)\Delta E(C_2)$$



- G = graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

m-n+1

$$C_1 + C_2 := E(C_1)\Delta E(C_2)$$



- G = graph with non-negative weights
- cycle basis = minimum-cardinality set of cycles that can generate every cycle in G

m-n+1



• minimum cycle basis = minimize sum of edge-weights

#### **Partial 2-Trees**

- 2-trees:
  - Start with a triangle
  - Add iteratively new vertex that is adjacent to a  $K_2$



#### **Partial 2-Trees**

- 2-trees:
  - Start with a triangle
  - Add iteratively new vertex that is adjacent to a  $K_2$



• partial 2-trees = subgraphs of 2-trees

### **Partial 2-Trees**

- 2-trees:
  - Start with a triangle
  - Add iteratively new vertex that is adjacent to a  $K_2$



- partial 2-trees = subgraphs of 2-trees
- outerplanar graphs ⊂ partial 2-trees

## **Recent Work**

- For general graphs:
  - Deterministic:  $O(m^2n / \log n)$  [Amaldi-Iuliano-Rizzi '10]
  - Monte-Carlo:  $O(m^{\omega})$

[Amaldi-Iuliano-Rizzi '10] ["-Jurkiewicz-Mehlhorn '09]

## **Recent Work**

| [LL 2010]<br>Outerplanar   | <mark>[Our Result]</mark><br>Partial 2-trees | [BSW 2010]<br>Planar |
|----------------------------|----------------------------------------------|----------------------|
| Preprocessing time $O(n)$  | O(n)                                         | $O(n\log^5 n)$       |
| Space required $O(n)$      | O(n)                                         | $O(n \log n)$        |
| Reporting time $size(MCB)$ | size(MCB)                                    | size(MCB             |

## **Recent Work**



 Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]

- Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]
- sp(u,v) = shortest path between u and v
- Cycle C is short if for all u,v in C,  $sp(u,v) \subseteq C$



- Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]
- sp(u,v) = shortest path between u and v
- Cycle C is short if for all u,v in C, sp(u,v) ⊆ C



• SC = set of all short cycles

- Assumption: Unique shortest paths, otherwise [Hartvigsen-Mardon '94]
- sp(u,v) = shortest path between u and v
- Cycle C is short if for all u,v in C, sp(u,v) ⊆ C



• SC = set of all short cycles

Thm [N.+Ramakrishna '12]: MCB = SC for partial 2-trees

# **Tight Edges**

- Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose
- Every loose edge appears in exactly one SC



# **Tight Edges**

- Edge (u,v) tight if sp(u,v)=(u,v), otherwise loose
- Every loose edge appears in exactly one SC



• Precompute these cycles => G contains only tight edges

If partial 2-tree has no K<sub>2.3</sub>-subdivision => outerplanar!



- Decompose G along  $K_{2,3}^{-}$ -subdivisions into outerplanar graphs  $G_{1}^{-},...,G_{r}^{-}$ 

• If partial 2-tree has no  $K_{23}^{2}$ -subdivision => outerplanar!



- Decompose G along  $K_{2,3}^{}$ -subdivisions into outerplanar graphs  $G_{1}^{},...,G_{r}^{}$ 

Thm [N.+Ramakrishna '12]: SC(G) = SC(G<sub>1</sub>)  $\cup ... \cup$  SC(G<sub>r</sub>)













• Find all u,v such that G-u-v has at least 3 components



• Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u,v in common bag)



• Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u,v in common bag)



• Find  $G_i$  that contains sp(u,v) and decompose

• Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u,v in common bag)



Find G<sub>i</sub> that contains sp(u,v) and decompose

[Chaudhuri-Zaroliagis '00] Data structure for fixed tree-width graphs supporting - intermediate vertex queries in O(1)

- bag location queries in O(1)
- distance queries in O(1)

• Find all u,v such that G-u-v has at least 3 components

Suitable tree decomposition (u,v in common bag)



Find G<sub>i</sub> that contains sp(u,v) and decompose

[Chaudhuri-Zaroliagis '00] Data structure for fixed tree-width graphs supporting - intermediate vertex queries in O(1)

- bag location queries in O(1)
- distance queries in O(1)
- Compute MCB from SC(G<sub>i</sub>) and the SC from loose edges

#### Thank you!