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Abstract. We present a linear time algorithm for computing an implicit linear space representation
of a minimum cycle basis (MCB) in weighted partial 2-trees, i.e., graphs of treewidth two. The
implicit representation can be made explicit in a running time that is proportional to the size of
the MCB.

For planar graphs, Borradaile, Sankowski, and Wulff-Nilsen [Min st-cut Oracle for Planar Graphs
with Near-Linear Preprocessing Time, FOCS 2010] showed how to compute an implicit O(n logn)
space representation of an MCB in O(n log5 n) time. For the special case of partial 2-trees, our
algorithm improves this result to linear time and space. Such an improvement was achieved pre-
viously only for outerplanar graphs [Liu and Lu: Minimum Cycle Bases of Weighted Outerplanar
Graphs, IPL 110:970–974, 2010].

1 Introduction

A cycle basis of a graph G is a minimum-cardinality set C of cycles in G such that every cycle C ∈ G
can be written as the exclusive-or sum of a subset of cycles in C. A minimum cycle basis (MCB) of
G is a cycle basis that minimizes the total weight of cycles in the basis. Minimum cycle bases have
numerous applications in the analysis of electrical networks, biochemistry, periodic timetabling, surface
reconstruction, and public transportation, and have been intensively studied in the computer science
literature, cf. [12] for an exhaustive survey. It is therefore—both from a practical and a theoretical
viewpoint—an interesting task to compute them efficiently.

All graphs considered in this work are simple graphs G = (V,E) with a non-negative edge-weight
function w : E → R≥0. (Computing MCBs for graphs with cycles of negative weight is an NP-hard
problem [12]. In all previous work that we are aware of it is therefore assumed that the edge-weights are
non-negative.)

1.1 Previous Work

The first polynomial time algorithm for computing MCBs was presented by Horton [11] in 1987. His
algorithm has running time O(m3n). This was improved subsequently in a series of papers by different
authors, cf. [12] or [14] for surveys of the history. The currently fastest algorithms for general graphs
are a deterministic O(m2n/ log n) algorithm of Amaldi, Iuliano, and Rizzi [2] and a Monte Carlo based
algorithm by Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi [1] of running time O(mω), where ω is
the matrix multiplication constant.

The algorithm from [1] is deterministic on planar graphs, and has a running time of O(n2). This
improved the previously best known bound by Hartvigsen and Mardon [10], which is of order n2 log n.
The currently best known algorithm on planar graphs is due to Borradaile, Sankowski, and Wulff-
Nilsen [6]. It constructs an O(n log n) space implicit representation of an MCB in planar graphs in time
O(n log5 n).

Faster algorithms for planar graphs are known only for the special case of outerplanar graphs. For
unweighted outerplanar graphs, Leydold, and Stadler [13] presented a linear time algorithm. More re-
cently, Liu and Lu [14] presented a linear time, linear space algorithm to compute an MCB of a weighted
outerplanar graph (using an implicit representation). This is optimal in terms of both time and space.
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1.2 Our Result

In this contribution, we present a linear time algorithm for computing an implicit O(n)-space represen-
tation of a minimum cycle basis in partial 2-trees (graphs of treewidth two). The explicit representation
can be obtained in additional time that is proportional to the size of the MCB. Since partial 2-trees are
planar graphs, the previously best known algorithm was the one by Borradaile, Sankowski, and Wulff-
Nilsen. That is, for the special case of partial 2-trees we are able to improve their running time by a
factor of Θ(log5 n).

The class of partial 2-trees subsumes, in particular, the class of outerplanar graphs.
Our result is achieved by an iterative decomposition of the partial 2-tree into outerplanar graphs, to

which the recent result of Liu and Lu [14] can be applied. We state our main theorem.

Theorem 1. Given a partial 2-tree G on n vertices and a non-negative weight function w : E → R≥0,
a minimum cycle basis B of G (implicitly encoded in O(n) space) can be obtained in O(n) time.

Moreover, B can be reported explicitly in time O(size(B)), where size(B) is the number of edges in B
counted according to their multiplicity.

Note in Theorem 1 that, although B has an implicit representation of linear size, the explicit size of
B may be quadratic. This is true already for outerplanar graphs, cf. [14] for a simple grid graph G in
which the unique MCB of G contains Θ(n2) edges.

For the proof of Theorem 1, it will be crucial that the set of lex short cycles (cf. Section 2.3) in any
weighted partial 2-tree forms a minimum cycle basis [15]. As lex short cycles are inherently defined by
shortest paths, we will need a data structure that reports the distance between two vertices in constant
time (e.g., for checking whether an edge is the shortest path between its endpoints). In outerplanar
graphs, such a data structure exists due to Frederickson and Jannardan [9]. For our more general case,
we will instead extend a result of Chaudhuri and Zaroliagis [7, Lemma 3.2] on weighted partial k-trees,
which is able to give the distance of every two vertices in constant time, as long as both are contained in
one bag of a tree decomposition. Using this extension, we can report the shortest path P between any
two such vertices in time O(|E(P )|).

2 Graph Preliminaries, Partial 2-Trees and Lex Shortest Paths

We consider weighted undirected graphs G = (V,E) where V denotes the set of vertices, E the set
of edges and w : E → R≥0 a non-negative weight function. Throughout this work, we set n = |V |
and m = |E|. All graph classes considered in this paper are sparse, i.e., we have a linear dependence
m = O(n).

The weight w(P ) of a path P in G is the sum of weights of edges in P ; i.e., w(P ) :=
∑

e∈P w(e).
A set X ⊂ V of vertices in G is said to be a vertex separator of G if the removal of the vertices in
X disconnects the graph G. A vertex separator X is minimal, if no proper subset of X is a vertex
separator. For Y ⊆ V , we write G[Y ] for the subgraph of G that is induced by Y and we write G−Y for
the subgraph that is obtained from G by deleting the vertices in Y . For k, ` ∈ N, we denote by K` the
complete graph on ` vertices and by K`,k we denote the the complete bipartite graph on ` and k vertices.
For a graph H, an H-subdivision is a graph obtained from H by replacing its edges with non-empty and
pairwise vertex-disjoint paths. In this work, we will be mainly concerned with K2,3-subdivisions. In such
a K2,3-subdivision, we call the vertices of degree greater than two the branch vertices of the subdivision.

2.1 Minimum Cycle Bases

A cycle C in G is a connected subgraph of G in which every vertex has degree two. Let C1, . . . , Ck be
cycles in G and let ⊕ denote the symmetric difference function. Then the sum S := C1 ⊕ . . .⊕Ck is the
set of edges appearing an odd number of times in the multi-set {C1, . . . , Ck}. It is well known that S is
a union of cycles in G.

Let a set C = {C1, . . . , Ck} of cycles of G span the cycle space of G if every cycle C of G can be
written as a sum Ci1 ⊕ . . .⊕Ci` of elements of C. In this case, we say that Ci1 , . . . , Ci` generate C. The
size size(C) of C is the number of edges in C counted according to their multiplicity.
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A cycle basis of G is a minimum cardinality set of cycles that spans the cycle space of G. Put
differently, a cycle basis is a maximal set of independent cycles, where we consider a set of cycles to be
independent if their incidence vectors in {0, 1}m are independent over the field GF(2). The cardinality of
a cycle basis is sometimes referred to as the dimension of the cycle space of G. For any simple weighted
graph the dimension equals m− n+ 1 [5].

We are interested in identifying a minimum cycle basis (MCB) of G; i.e., a cycle basis C of minimum
total weight

∑
C∈C w(C).

A minimum cycle basis of a graph G is equal to the disjoint union of the minimum cycle basis of the
2-connected components of G. Therefore, throughout this paper, we assume without loss of generality
that G is 2-connected.

2.2 Tree Decompositions and Partial 2-Trees

A tree decomposition of a graph G is a pair ({X1, . . . , Xr}, T ) of a set of bags X1, . . . , Xr and a tree T
with vertex set V (T ) = {X1, . . . , Xr} that satisfies the following three properties:

1. X1 ∪ . . . ∪Xr = V ,
2. For each edge {u, v} ∈ E, there is an index 1 ≤ i ≤ r such that {u, v} ⊆ Xi, and
3. For each vertex v ∈ V , the bags in T containing v form a subtree of T (subtree property).

The treewidth of ({X1, . . . Xr}, T ) is max{|X1|, . . . |Xr|}−1. The treewidth of G is the minimum treewidth
over all possible tree decompositions of G. We call a tree decomposition ({X1, . . . Xr}, T ) optimal if the
treewidth of T is equal to the treewidth of G. To distinguish between the edges of G and T , we refer to
the edges of T as links.

A k-tree is a graph of treewidth k for which the addition of any edge between non-adjacent vertices
would increase the treewidth. Any subgraph of a k-tree is called a partial k-tree. Partial 2-trees are also
known as graphs in which every biconnected component is a series-parallel graph [4]. The partial 2-trees
form a strict superclass of outerplanar graphs, as outerplanar graphs are characterized by the forbidden
minor set {K4,K2,3}, while partial 2-trees have the forbidden minor set {K4}. Equivalently, a partial
2-tree is outerplanar if and only if it does not contain a K2,3-subdivision (as a subgraph). We will need
the following somewhat stronger statement.

Lemma 2 (Lemma 2.4 in [15]). Let G be a weighted partial 2-tree. G is not outerplanar if and only
G contains a K2,3-subdivision with branch vertices u and v such that G−{u, v} has at least 3 connected
components.

2.3 Lex Shortest Paths and Lex Short Cycles

It is known (Proposition 4.5 in [10]) that for any edge-weighted simple graph G the set of so-called lex
short cycles contains a minimum cycle basis. For outerplanar graphs [14] and partial 2-trees [15], the
whole set of lex short cycles forms a minimum cycle basis.

Definition 3 (Lex Shortest Paths). Let G = (V,E) be a graph with weight function w : E → R≥0.
Let σ : V → {1, 2, . . . , n} be an arbitrary ordering of the vertices.

A path P between two distinct vertices u, v ∈ V is called a lex shortest path if for any other path
P ′ between u and v either w(P ′) > w(P ) or (w(P ′) = w(P ) and |E(P ′)| > |E(P )|) or (w(P ′) = w(P ),
|E(P ′)| = |E(P )| and miny∈V (P ′)\V (P ) σ(y) > miny∈V (P )\V (P ′) σ(y)) holds.

It is easily verified (cf. Proposition 4.1 in [10]) that between any two vertices u, v in G there is exactly
one lex shortest path. We refer to this path as lsp(u, v). If the dependence of the graph is not clear from
the context, we write lspG(u, v). Note that every subpath of a lex shortest path is a lex shortest path.

Definition 4 (Lex Short Cycles). A lex short cycle C is a cycle that contains for any two vertices
u, v ∈ C the lex shortest path lsp(u, v). For an edge-weighted graph G, we denote by LSC(G) the set of
all lex short cycles in G.

Lemma 5 ([10, 15]). For any edge-weighted simple graph G, there is a set B ⊆ LSC(G) such that B is
a minimum cycle basis for G. Additionally, the set of lex short cycles LSC(G) forms a minimum cycle
basis if G is a weighted partial 2-tree.
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Abusing notation (since MCB(G) may not be unique) we write MCB(G) ⊆ LSC(G) and MCB(G) =
LSC(G), respectively, for the two statements in Lemma 5. This lemma allows us to restrict ourselves
to compute the set of lex short cycles. For outerplanar graphs, Liu and Lu showed that an implicit
representation of LSC(G) can be computed in linear time.

Theorem 6 ([14]). For any weighted outerplanar graph G an O(n)-space representation of the set
LSC(G) can be computed in O(n) time. From this representation, we can compute a cycle C ∈ LSC(G)
explicitly in time O(size(C)).

3 High-Level Overview of Our Algorithm and Technical Details

We first describe the high-level idea of our algorithm; the proofs and all details are presented in the
subsequent sections. From now on we assume that G is a weighted partial 2-tree.

3.1 Preprocessing Steps

We introduce a few preprocessing steps besides 2-connectivity that will simplify the description of our
algorithm. As a first step, we construct an alternative to the weight function w for which every lex
shortest path is the unique shortest path. That this can be done in linear time has been shown in [10].

Lemma 7 (Proposition 4.3 in [10]). If G is a simple graph with edge weight function w, then there
exists a perturbation ŵ of w such that every lex shortest path lsp(u, v) under w is the unique shortest
u− v path under ŵ.

We call an edge {u, v} tight if it is the unique shortest path between u and v, and we call it long otherwise.
The long edges in G will be treated separately. This is based on the following lemma.

Lemma 8. Let G = (V,E) be an edge-weighted graph. Let L be the set of long edges in G. Then
MCB(G) = MCB(G \ L) ∪ {{e} ∪ lsp(u, v) | e = {u, v} ∈ L}.

Proof. For every e = {u, v} ∈ L the cycle {e} ∪ lsp(u, v) is a lex short cycle in G. By definition, it is the
only lex short cycle that contains e. Therefore, LSC(G) = LSC(G\L)∪{e′∪lsp(u′, v′) | e′ = {u′, v′} ∈ L}.
By Lemma 5 we know that MCB(G) ⊆ LSC(G). The independence ofM := MCB(G\L)∪{e′∪lsp(u′, v′) |
e′ = {u′, v′} ∈ L} follows again from the fact that e is contained inM only in this one cycle {e}∪lsp(u, v).

ut

As we shall see in Lemma 15 below, the set L in Lemma 8 can be identified and removed from G in
O(n) time using a suitable data structure. Using these two lemmata, computing the contribution of the
removed long edges to the MCB of G takes at most linear time.

3.2 High-Level Overview of the Main Algorithm

By Lemma 5 it suffices to compute the set of lex short cycles in G. This set forms a minimum cycle basis.
For simplicity, we assume that the simplifications described above have been performed in a preprocessing
step. In particular, all shortest paths in G are unique and G contains only tight edges. As shown above,
the preprocessing steps can be done in time O(n).

The key approach for our algorithm is to iteratively decompose the graph G into outerplanar sub-
graphs G1, . . . , Gr. To these subgraphs we apply the linear time algorithm of Liu and Lu (Theorem 6).
Intuitively, the decomposition is done as follows.

When G is not outerplanar, then there exists a K2,3-subdivision in G with branch vertices u and v
such that (i) {u, v} is a minimum vertex separator of G and (ii) the removal of {u, v} disconnects G into at
least three connected components H1, . . . ,Hk (cf. Lemma 2). We distinguish two cases. If {u, v} ∈ E, we
set Gi := G[V (Hi)∪{u}∪{v}]. Otherwise, let j ∈ {1, 2, . . . , k} such that lsp(u, v) ∈ G[V (Hj)∪{u}∪{v}].
We set Gj := G[V (Hj) ∪ {u} ∪ {v}], and for all 1 ≤ i 6= j ≤ k we set Gi := G[V (Hi) ∪ {u} ∪ {v}] ∪
blue({u, v}), where blue({u, v}) denotes a new “colored” (i.e., marked) edge {u, v}. This blue edge serves
as a placeholder for the lex shortest path between u and v, as this is not contained in Gi. The weight
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w(blue({u, v})) assigned to this new edge is therefore w(lsp(u, v)). Let the operation decomp(G, u, v)
decompose G into G1, . . . , Gk with respect to the vertices u, v.

We now iteratively decompose the graphs G1, . . . , Gk as described above until we are left with graphs
G1, . . . , Gr that do not contain any K2,3-subdivision, i.e., with outerplanar graphs according to Lemma 2.
Since all the edges in Gi are tight, the set of lex short cycles in Gi equals the boundaries of its inter-
nal faces. Extracting the internal faces of Gi can be done in linear time, cf. [14]. We will show in
Lemma 17 that LSC(G) equals the disjoint union of expand(LSC(G1)), . . . , expand(LSC(Gr)), where
expand(LSC(Gi)) replaces the blue edges blue({u, v}) in every cycle by the lex shortest path lsp(u, v).

The challenging part of the algorithm is to find a data structure that allows to identify all the K2,3-
subdivisions and to do the respective decompositions in linear time. To this end, we define suitable tree
decompositions.

3.3 Suitable Tree Decompositions

We define suitable tree decompositions and we show how they help in efficiently computing our decom-
position. Let the label of a link ` = (X,Y ) in a tree decomposition be X ∩ Y .

Definition 9 (Suitable Tree Decomposition). An optimal rooted tree decomposition of G is suitable
if it satisfies the following properties:

1. The size of every bag Xi is 3 and every two adjacent bags Xi, Xj in T differ by exactly one vertex;
i.e., |Xi ∩Xj | = 2 (this property is called smooth in [3]).

2. Any two links with the same label have a common parent in T .

Observe that for any internal bag in T , the number of children could be arbitrary, but there are at most
three different labels associated with the links to its children.

Our algorithm will perform all computations in a suitable tree decomposition of the tight induced
subgraph of G. It is therefore important that such a tree decomposition can be computed in linear time.

Lemma 10. Given a weighted partial 2-tree G, a suitable tree decomposition can be computed in linear
time and has linear space.

Proof. The number of bags of a smooth tree decomposition of a partial 2-tree G is n− 2 (see Lemma 2.5
in [3]). As every bag contains exactly 3 vertices, this gives a linear space representation of the tree
decomposition. A rooted tree decomposition ({X1, . . . , Xr}, T ) of G that is additionally smooth can be
computed using Bodlaender’s algorithm [3]. We make T suitable (i.e., we add Property 9.2) as follows.
By the subtree-property of tree decompositions, it suffices to give a smooth tree decomposition T ′ in
which no two links {A,B} and {B,C} that have the same label satisfy that A is a parent of B and B is
a parent of C.

Traverse T in any order that starts on the root and in which parents precede their children. Whenever
a bag B with parent A and child C is visited such that the links {A,B} and {B,C} have the same labels,
we modify T by attaching the subtree of T that is rooted on C to A; i.e., after the modification C is
a sibling of B. This causes B and C to have the same parent. It is straight-forward to see that the
modified tree is still a smooth tree decomposition. After the traversal is finished, we have a suitable tree
decomposition. Clearly, all modifications can be computed in constant time per step, leading to a total
running time of O(n). ut

One of the underlying key observations of our algorithm is the fact that for all K2,3-subdivisions the
two branch vertices must be contained in a common bag of a suitable tree decomposition. This is shown
using the following result.

Lemma 11 (Lemma 12.3.4 in [8]). Let W ⊆ V (G) and T be a tree decomposition of G. Then T
contains either a bag that contains W or a link {X1, X2} such that two vertices of W are separated by
X1 ∩X2 in G.

Lemma 12 (K2,3-subdivisions in partial 2-trees). For every K2,3-subdivision H in a partial 2-tree
G and every smooth tree decomposition T of G, the two branch vertices u and v of H are contained in a
common bag of T .

Proof. We apply Lemma 11 with W = {u, v}. If u and v are not contained in a common bag, there must
be a link {X1, X2} such that u and v are separated by X1 ∩ X2 in G. Since H is a K2,3-subdivision,
|X1 ∩X2| ≥ 3, contradicting the smoothness of T . ut
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3.4 Suitable Data Structures for Finding the Lex Shortest Paths

Another useful tool in our algorithm will be the following data structure. It supports the query for an
intermediate vertex that lies on the lex shortest path between two nodes. The following lemma is along
the lines of [9].

Lemma 13. Let T be a rooted tree decomposition of G. There is a linear space data-structure with O(n)
preprocessing time that supports the following query: Given a bag A ∈ T and a vertex v ∈ G that is not
in A, find the link incident to A that leads to the subtree of T containing a bag with vertex v. The query
time is O(log d), where d is the degree of A in T .

Proof. Note that the desired link is unique, as T is a tree decomposition. For building the data structure,
we perform a depth first search (dfs) on T , starting at its root, and label every bag X and its vertices
with a dfs-number. For any bag X and the subtree T (X) of T that is rooted at X, the bags in T (X) get
consecutive dfs-numbers. These numbers form an interval (taking constant space), which we can store
at X during the depth first search, i.e., in linear total time. The desired answer for the query is then
obtained by performing a binary search on the neighbors of A (in the same order as the dfs) that searches
for the neighbor with the interval containing the label of v. This takes time O(log d). ut

We are finally ready to show that for any long edge {u, v} the lex shortest path between u and v can
be computed in time O(|E(lsp(u, v))|). The following lemmata will be useful also to identify the subtree
of the tree decomposition that contains lsp(u, v) for two branch vertices u and v with {u, v} /∈ E.

Lemma 14 (Lemma 3.2 in [7]). Given a partial k-tree G and an optimal tree decomposition T of G,
there is an algorithm with running time O(k3n) that outputs the distances of all vertex pairs that are
contained in common bags and that, for each such vertex pair, outputs some intermediate vertex of the
shortest path between the vertices.

Lemma 14 is originally stated for directed graphs in [7]. However, representing each undirected edge
with two edges oriented in opposite directions gives the above undirected variant.

We extend Lemma 14 by giving the following data structure.

Lemma 15. Given a connected partial 2-tree G and a suitable tree decomposition T of G, there is an
O(n)-space data structure requiring O(n) preprocessing time that supports the following queries, given
two vertices u and v and a bag X ∈ T that contains u and v:

– Compute in time O(1) the distance of the shortest path between u and v ( distance query).
– Compute in time O(1) an intermediate vertex w of the shortest path between u or v (if exists) and a

bag Y ∈ T such that Y = {u, v, w} ( intermediate vertex query)
– Compute in time O(|E(P )|) the shortest path P between u and v ( shortest path extraction)

Proof. We perform the algorithm of Lemma 14 and store the distance of every vertex pair {u, v} that is
contained in a common bag, say in X, in a table linked to X. Since T contains only linearly many bags,
this takes O(n) space. The table supports distance queries in constant time, as there are only constantly
many vertex pairs in each bag.

Assume for the moment that we know how to support the intermediate vertex query. Then we can
easily support the shortest path extraction by first applying an intermediate vertex query, which gives
Y , and subsequently recursing on the two intermediate vertex queries {u,w} and {w, v}, both in Y , until
each shortest path is just an edge. This allows to extract the shortest path u and v in time proportional
to its length.

It remains to show how to support intermediate vertex queries. We initialize the data structure D
of Lemma 13 for the tree decomposition T in time O(n) and apply the algorithm of Lemma 14 in time
O(n). Let X be a bag containing u and v. By Lemma 14, we have already found an intermediate vertex
z between u and v, but want to find an intermediate vertex w that is in a common bag Y with u and v.
If z does not exist, the shortest path is just an edge, in which case we just set w to be non-existent as
well. If z ∈ X, we set w = z and Y = X and are done.

Otherwise, we query D with (X, z) and get a link (X,A) such that z is contained in the subtree
of T that is separated by (X,A) and does not contain X (note that A may be the parent of X in T ).
According to Lemma 13, this query takes time proportional to at most the degree of X in T .

6



We now distinguish two cases. In the case that A contains u and v, we iterate this procedure further
on A instead on X. In this iteration, this case cannot happen more than a constant number of times, as
T is suitable, so any path in the subtree of T consisting of bags containing {u, v} has length at most 2.

Otherwise, A contains exactly one vertex of {u, v}, say u. Consider X = {u, v, r} and the subtree T1
of T that is separated by the link (X,A) and contains A. By the subtree property, T1 cannot contain a
bag with v, as then v would also be contained in A. Since T1 contains a part of the shortest path between
u and v, but has only u and r in common with X, r must be an intermediate vertex. Since X contains
u, v, and r, we set w = r and Y = X.

We investigate the preprocessing time of the data structure, i.e., the time spent computing for all
vertex pairs (u, v) the intermediate vertex w and the bag containing all three vertices {u, v, w}. In every
bag X, there are only constantly many vertex pairs. For each such vertex pair, we could find w in time
O(deg(X)), where deg(X) is the degree of X in T . Hence, the preprocessing time sums up to a linear
total. ut

Since a tree decomposition maintains for every edge the bag that contains it, the query of Lemma 15
can also be performed when no bag is given but an edge {u, v}.

3.5 Obtaining LSC(G) from LSC(G1), . . . ,LSC(Gr)

As a last technicality, we show that—as claimed in the high-level overview of our algorithm—the set of
lex short cycles in G equals the disjoint union expand(LSC(G1)) ] . . . ] expand(LSC(Gr)). This follows
from iteratively applying Lemma 17 below.

Definition 16. For any cycle C of G, let expand(C) be the cycle obtained from C by replacing the blue
edges blue({u, v}) in C (if exist) by the lex shortest path lsp(u, v). For a set of cycles C, let expand(C) :=
{expand(C) | C ∈ C}.

As mentioned above, we obtain a minimum cycle basis of G by expanding the cycles in the MCBs of
the subgraphs.

Lemma 17. Let G be a weighted partial 2-tree in which every edge is tight. Let u and v be the two
branch vertices of a K2,3-subdivision in G. Let k ≥ 3 and let G1, . . . , Gk be the subgraphs resulting from
the decomposition decomp(G, u, v). Then LSC(G) = expand(LSC(G1)) ] . . . ] expand(LSC(Gk)).

The proof of Lemma 17 is based on the following observation.

Lemma 18 (Lemma 2.5 and Corollary 2.8 in [15]). Let G be a weighted graph and let G′ be a
subgraph of G. Let P be a path in G′. If P is lex shortest in G, it is lex shortest in G′.

Furthermore, for G, k, and G1, . . . , Gk as in Lemma 17, we have expand(LSC(Gi)) ⊆ LSC(G),
1 ≤ i ≤ k.

Proof (of Lemma 17). The disjointness of the sets follows immediately from the facts that only cycles
are contained in these sets and that the subgraphs H1, . . . ,Hk in G− {u, v} are disjoint. The inclusion⋃k

i=1 expand(LSC(Gi)) ⊆ LSC(G) follows from Lemma 18.

It thus remains to show LSC(G) ⊆
⋃k

i=1 expand(LSC(Gi)). To this end, let C ∈ LSC(G). We need
to show that E(C) \ E(lspG(u, v)) is contained in one of the Gi; Lemma 18 implies that for any such
cycle either C itself or the cycle shrink(C) with the lex shortest path lspG(u, v) replaced by the edge
blue({u, v}) must be contained in LSC(Gi).

Since the decomposition is done along the vertices u and v, there is nothing to show in case |C ∩
{u, v}| ≤ 1. Indeed, any such C or its short version shrink(C) is contained in exactly one connected
component Gi.

Let us therefore assume that both vertices u and v are contained in C. Since C is a lex short cycle
in G, it must contain the lex shortest path lsp(u, v) between u and v. The cycle C is complemented by
another path P from u to v; i.e., there exists a path P from u to v such that C = lsp(u, v) ∪ P and
V (P ) ∩ V (lsp(u, v)) = {u, v}. By the structure of our decomposition, this path P is certainly contained
in one connected component Gi. Since Gi contains also either lsp(u, v) itself or the placeholder edge
blue({u, v}) we have that either C or shrink(C) is contained in Gi. As mentioned above, by Lemma 18
it follows that C ∈ expand(LSC(Gi)). ut
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4 Computing an MCB in Weighted Partial 2-Trees

Algorithm 1: A linear time algorithm to compute the implicit representation of a minimum cycle
basis of a 2-connected weighted partial 2-tree G

1 Do the graph preprocessing steps described in Section 3.1;
2 Compute a suitable tree decomposition of G;
3 for each internal bag Y1 ∈ V (T ) and every u, v ∈ Y1 do
4 Let Y2, . . . Yk be the children of Y1 such that for 2 ≤ i ≤ k, Y1 ∩ Yi = {u, v};
5 if k ≥ 3 then
6 for 2 ≤ i ≤ k do remove the link {Y1, Yi};
7 if {u, v} /∈ E then
8 Find an intermediate vertex y in lsp(u, v) and compute w(lsp(u, v)) ;
9 if there exists a j ∈ {2, . . . , k} such that the subtree rooted at Yj has a bag that

contains the vertex y then let j be that index ; else j = 1;
10 for 1 ≤ i 6= j ≤ k do
11 Add the new blue edge blue({u, v}) to Yi and assign to it weight w(lsp(u, v));

12 Let T1, . . . , Tr be the connected components of T ;
13 Obtain the graphs G1, . . . , Gr that correspond to the tree decompositions T1, . . . , Tr, respectively;
14 Compute LSC(G1), . . . ,LSC(Gr) using [14] ; // LSC(Gi) equals the internal faces of Gi

15 Store (L,LSC(G1), . . . ,LSC(Gr)) ; // L is the set of long edges

Our algorithm, Algorithm 1, can now be described as follows.

Preprocessing. Given a 2-connected weighted partial 2-tree G = (V,E) with edge-weight function
ŵ, we first compute the perturbation w of ŵ such that every lex shortest path is the unique shortest path
(cf. Lemma 7). We then identify the set L of long edges; i.e., the set of edges that are not the shortest
paths between their two endpoints (cf. Lemma 8), and, for the moment, we remove these edges from G.

For the graph obtained from this preprocessing step, we compute a suitable tree decomposition.

Main Procedure. In the main loop of Algorithm 1, we check for every vertex pair {u, v} in every
bag if {u, v} is a vertex separator that decomposes G into at least three different components. By the
Lemmata 2 and 12 and the fact that G is assumed to be 2-connected, this identifies a K2,3-subdivision if
it exists. If so, we decompose along u and v by deleting the appropriate links in T in line 6. Lines 8 and 9
are needed to identify the subtree of T that contains lsp(u, v). In all other subtrees, the edge {u, v} is
marked in blue, and the weight associated to this edge is w(lsp(u, v)). By maintaining the data structure
of Lemma 15, the intermediate vertex can be found efficiently.

When Algorithm 1 stops, we compute the connected components T1, . . . , Tr of T in linear time
by performing a standard graph traversal routine. We can compute the graphs G1, . . . , Gr that are
represented by these tree decompositions in linear total time by just collecting the vertices and edges in
all bags. Note that the total number of edges in G1, . . . , Gr is linear, as we add at most deg(V1) new blue
edges for each bag V1, where deg(V1) is the degree of bag V1 in T . Every Gi is outerplanar and the LSCs
of all these outerplanar graphs can be computed in linear total time. (As mentioned in the high-level
overview, one can simply apply the result of Liu and Lu (Theorem 6) as a black-box. Or one observes
that since all edges in Gi are tight, the set of lex short cycles in Gi equals the boundaries of its internal
faces. Extracting the internal faces of Gi can be done in linear time.)

The set L of long edges together with (the implicit representations) of LSC(G1), . . . ,LSC(Gr) forms
the implicit representation of our minimum cycle basis.

This concludes the presentation of our main result, the first part of Theorem 1. In order to get the
explicit representation of the minimum cycle basis, we apply Lemma 8. It thus suffices to augment every
edge (u, v) in the set L of long edges of the implicit representation by lsp(u, v), which can be done in
time O(|C|) for each constructed cycle C, according to Lemma 15.
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5 Discussion

We have shown that an implicit representation of a minimum cycle basis of a weighted partial 2-tree can
be computed in linear time. It remains a challenging question if our result can be extended to partial
k-trees for k > 2. We remark that it was noted in [15] that already for partial 3-trees the set of lex
short cycles do not necessarily form a minimum cycle basis. Extending our result to partial 3-trees may
therefore require substantially new ideas.
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