
On Short Fastest Paths in Temporal Graphs

Umesh Sandeep Danda
Zippr Private Limited, Hyderabad

India

G. Ramakrishna
Indian Institute of Technology Tirupati

India

Jens M. Schmidt
Hamburg University of Technology

Institute for Algorithms and Complexity, Germany

M. Srikanth
Indian Institute of Technology Tirupati

India

Abstract

1 Temporal graphs equip their directed edges with a departure time
and a duration, which allows to model a surprisingly high number of
real-world problems. Recently, Wu et al. have shown that a fastest
path in a temporal graph G from a given vertex s to a vertex z can be
computed in near-linear time, where a fastest path is one that mini-
mizes the arrival time at z minus the departure time at s.

Here, we consider the natural problem of computing a fastest path
from s to z that is in addition short, i.e. minimizes the sum of durations
of its edges; this maximizes the total amount of spare time at stops
during the journey. Using a new dominance relation on paths in com-
bination with lexicographic orders on the departure and arrival times
of these paths, we derive a near-linear time algorithm for this problem
with running time O(n+m log p(G)), where n := |V (G)|, m := |E(G)|
and p(G) is upper bounded by both the maximum in-degree and the
maximum edge duration of G.

The dominance relation is interesting in its own right, and may be
of use for several related problems like fastest paths with minimum

1The final authenticated version is available online at https://doi.org/10.1007/978-3-
030-68211-8 4.

1

https://doi.org/10.1007/978-3-030-68211-8_4
https://doi.org/10.1007/978-3-030-68211-8_4


fare, fastest paths with minimum number of stops, and other pareto-
optimal path problems in temporal graphs.

1 Introduction

Temporal graphs capture various problems such as message dissemination in
online social networks, epidemics spreading in complex networks and routing
in scheduled public transportation networks [10]. This generality comes with
a price: many standard graph parameters (such as the number of strongly
connected components) are not known to admit polynomial-time algorithms
in temporal graphs, and not even standard results in combinatorics like
Menger’s theorem hold without adapting them adequately [6, 8].

On the other hand, a growing number of positive results has been devel-
oped in recent years for various problems in temporal graphs [1, 4, 6, 7, 9, 12].

In this paper, we focus on path problems in temporal graphs, for which,
in contrast to static graphs, various notions of optimality exist [3, 5, 11]. For
example, one may not only want to find the fastest paths mentioned above,
but also shortest paths, which minimize the sum of durations of their edges
(we give precise definitions in Section 1.2).

It was recently shown in [11] that, given a temporal graph G and two of
its vertices s and z, both fastest and shortest paths from s to z can be com-
puted efficiently in running times O(n+m log cmin) and O(n+m log cin(G)),
respectively, where cin(G) is the maximum number of ingoing edges over all
vertices of G, S is the number of outgoing edges of s with distinct departure
times, and cmin = min{|S|, cin(G)}.

A natural strengthening that we investigate here is to compute a fastest
path from s to z that has minimal duration. To our surprise, no efficient
algorithm seems to be known for this problem.

1.1 Temporal Graphs

A temporal graph G is a pair (V,E), where V is a finite set and E :=
(e1, e2, . . . , em) is a finite sequence such that ei := (vi, wi, ti, di) ∈ V × V ×
N×N>0 and vi 6= wi for every 1 ≤ i ≤ m. For every 1 ≤ i ≤ m, we call ei an
edge of G, vi and wi the source and target vertex of ei, ti the departure time
of ei and di the duration of ei. Hence, in the terminology of usual graphs,
every edge ei of G is directed (as ei is ordered), not a self-loop (parallel
edges may occur), and has positive duration. Every edge ei is equipped
with a departure time ti and a duration di, where ti is the point in time at

2



which one may depart from vi in order to arrive at wi at time ti + di; we
call arr(ei) := ti + di the arrival time of ei.

This model generalizes the models of temporal graphs that were used
in [3]. In the above definition, the edges (ei)i are used in a stream rep-
resentation: for temporal graphs, it is usually assumed that the edges in
this stream (ei)i are ordered with respect to some natural and easy-to-pick
ordering such as their creation, collection or deletion [11, Section 4.1]. Here,
we assume that the edges are ordered monotonically increasing according to
their arrival times, so that we have i < j if and only if arr(ei) ≤ arr(ej).
If for some reason such an ordering cannot be expected in a particular use
case, a sorting routine with additional running time O(m logm) has to be
invoked in advance.

We inherit standard graph-theoretic notions like paths and cycles (both
are always given as edge sequences) for temporal graphs G. A path from
a vertex s to a vertex z (s = z is possible) is called an s-z-path. For any
G = (V,E), we define V (G) := V , E(G) := E and n := |V (G)| (note that
m := |E(G)| by definition of E).

1.2 Our Result

A path P := (ej1 , . . . , ejk) of a temporal graphG is temporal if tji+dji ≤ tji+1

for every 1 ≤ i < k. We call dep(P ) := tj1 the departure time of P and
arr(P ) := tjk + djk the arrival time of P if k > 0. The journey time of such
a temporal path P is journey(P) := arr(P ) − dep(P ), and the duration of
P is dur(P) :=

∑k
i=1 dji (see Figure 1).

x1

x2

x3

x4

x5

(3,
4)

(4, 3)

(3, 5)

(5, 1)(10, 3)

(9, 3)

(9,
2)

Figure 1: A temporal graph G in which the departure time ti and the
duration di of every edge ei is shown. The path P := (x1x3, x3x5) is a fastest
path that has journey time 8 = 9 + 3− 4, and Q := (x1x4, x4x5) is another
fastest path from x1 to x5 that has journey time 8 = 9 + 2 − 3. However,
only P is a short fastest path, as dur(P ) = 6 = 3 + 3 < dur(Q) = 7 = 5 + 2.

3



Definition 1. A temporal s-z-path P of a temporal graph G is called

(i) fastest if every temporal s-z-pathQ ofG satisfies journey(P ) ≤ journey(Q),

(ii) shortest if every temporal s-z-path Q of G satisfies dur(P ) ≤ dur(Q),
and

(iii) short fastest if P is fastest and every fastest temporal s-z-path Q of
G satisfies dur(P ) ≤ dur(Q).

In other words, P is short fastest if P is fastest and has minimum du-
ration among all fastest s-z-path of G. Note that all three notions fix the
start- and end-vertex of the paths in question, while allowing an arbitrary
departure time at vertex s. Short fastest paths arise naturally when we
want to travel from s to z in the fastest journey time possible such that the
total amount of time spent traveling is minimized (this maximizes the total
amount of spare time at stops during the journey).

For an edge ei, let p(ei) := |{arr(ej) : wj = vi and ti ≤ arr(ej) ≤
arr(ei)}| be the number of integers in [ti, arr(ei)] that are arrival times for
at least one incoming edge to vi. In particular, we have p(ei) ≤ di and p(ei)
is at most the in-degree of vi. Let p(G) := max{p(ei) : 1 ≤ i ≤ m} and
let δ−(G) be the maximum in-degree of G. Given two vertices s and z of
a temporal graph G, the problem ShortFastestPath(s, z,G) asks for a
short fastest temporal s-z-path of G. We solve this problem as follows.

Theorem 2. Given a source vertex s of a temporal graph G on n vertices
and m edges, short fastest paths from s to every vertex z 6= s can be computed
in total time O(n+m log p(G)), where p(G) ≤ min{δ−(G),max{di : 1 ≤ i ≤
m}}.

As the duration in public-transport networks is often bounded by a con-
stant, the factor log p(G) in our running time is typically insignificant for
applications. The algorithm of Theorem 2 may easily be adapted to compute
short fastest paths in given time intervals, and to allow rational departure
and duration times (e.g. by multiplying with the greatest common divisor
in advance). Further, the algorithm may also be customized to solve related
problems such as computing a fastest path with minimum waiting time,
computing a fastest path with minimum fare, and computing a fastest path
with minimum number of transfers at intermediate stations.

While our algorithm is inspired by the algorithm in [11] for fastest paths,
it deviates from this algorithm by using a new dominance relation on paths
and lexicographic orderings on the departure and arrival times of these

4



paths. These two ideas allow us to perform various operations on domi-
nating paths such as searching, insertion, and deletion efficiently. Another
difference is that our algorithm processes the edges of G by increasing arrival
time.

2 Dominating Paths

From now on, let a temporal graph G and a source vertex s of G for the prob-
lem ShortFastestPath be given. We first provide structural properties
of temporal paths that are useful to reduce the search space.

Definition 3. For temporal x-y-paths P and Q of G, P dominates Q if
either

(i) dep(P ) > dep(Q) and arr(P ) ≤ arr(Q),

(ii) dep(P ) = dep(Q), arr(P ) < arr(Q) and dur(P ) ≤ dur(Q), or

(iii) dep(P ) = dep(Q), arr(P ) = arr(Q) and dur(P ) < dur(Q).

dep(Q) arr(Q)

dep(P ) arr(P )

(a) dep(P ) > dep(Q) and arr(P ) ≤ arr(Q)

dep(Q)

dep(P )

arr(Q)

arr(P )

(b) dep(P ) = dep(Q), arr(P ) < arr(Q) and dur(P ) ≤ dur(Q)

dep(P )

dep(Q) arr(Q)

arr(P )

(c) dep(P ) = dep(Q), arr(P ) = arr(Q) and dur(P ) < dur(Q)

Figure 2: Three instances of a path P that dominates Q. Solid and dot-
ted lines depict the duration of edges and the waiting times for the next
departure, respectively.

5



The three cases of Definition 3 are depicted in Figure 2. A temporal
x-y-path is dominating if it is not dominated by any other temporal x-y-
path, and non-dominating otherwise. In order to motivate these definitions,
observe that every short fastest path is dominating (Definition 3(i) and (ii)
strictly decrease the journey time, while Definition 3(iii) strictly decreases
the duration). We therefore are interested in computing all dominating
paths. Definition 3 and the resulting properties of the dominance relation
on paths will be crucial for establishing the structural properties that allow
the algorithm to be efficient in the remainder of the paper.

For a path, a prefix subpath of this path is a subpath of this path that
starts at the same start vertex. The correctness of shortest path algorithms
in traditional graphs such as Dijkstra’s algorithm rely heavily on the fact
that subpaths of shortest paths are again shortest. For temporal graphs
however, such properties are bound to fail (in fact, they fail for fastest as
well as for shortest paths). For example, any prefix subpath of a fastest
path in which the departure time of the last edge is sufficiently far away
from the arrival time of the second last edge may not be fastest (as the
second last vertex may be reached by much faster paths). The next lemma
shows that paths that are dominating (as defined in the last paragraph)
obey this property.

Lemma 4. Every prefix subpath of every dominating path is dominating.

Proof. Assume to the contrary thatQ′ is a (temporal) non-dominating prefix
x-y-path of a dominating path Q. Then Q′ 6= Q, since Q is dominating,
and there is a temporal x-y-path P ′ that dominates Q′. Let P be the
path obtained from Q by replacing the subpath Q′ with P ′; in particular,
arr(P ) = arr(Q).

Since P ′ dominates Q′, Q′ satisfies exactly one of the Conditions 3(i)–
(iii). The first is not satisfied, as dep(P ′) > dep(Q′) implies dep(P ) >
dep(Q), which contradicts that Q is dominating due to arr(P ) = arr(Q).
Condition 3(ii) is not satisfied, as arr(P ′) < arr(Q′) and dur(P ′) ≤ dur(Q′)
imply dur(P ) < dur(Q) due to dep(P ′) = dep(Q′), which contradicts that Q
is dominating. Condition 3(iii) is not satisfied, as dur(P ′) < dur(Q′) implies
dur(P ) < dur(Q), which contradicts that Q is dominating. This gives the
claim.

3 An Algorithm for Short Fastest Paths

Given any vertex s of a temporal graph G, we describe an efficient one-pass
algorithm by dynamic programming that computes the journey time and

6



duration of a short fastest path from s to any other vertex z 6= s in G.
For every temporal x-y-path P , we call (dep(P ), arr(P ),dur(P )) a tem-

poral triple from x to y. This allows to inherit the dominance relation of
temporal paths to temporal triples as follows: a triple (t, a, d) from x to y
dominates a triple (t′, a′, d′) from x to y if there is a temporal x-y-path P
with temporal triple (t, a, d) that dominates a temporal x-y-path Q with
temporal triple (t′, a′, d′). The dominating triples from x to y 6= x are then
defined analogously to paths that are dominating; in addition, for every
1 ≤ i ≤ m such that vi = s, let (ti, ti, 0) be an artificial dominating triple
from s to s. These artificial dominating triples will later allow the algorithm
to start at s using any outgoing edge ej of s at its departure time tj .

We will compute dominating triples of G by starting with an edge-less
subgraph of G and updating these triples each time after the next edge
of E(G) in the given ordering of E(G) is added. We therefore define a
sequence of temporal graphs that adheres to this ordering (i.e. adds the
edges of E(G) one by one). For every 0 ≤ i ≤ m, let Gi be the temporal
graph (V (G), {e1, . . . , ei}). Hence, G0 has no edges at all and, for every
1 ≤ i ≤ m, V (Gi) = V (G) and ei is the only edge of Gi that is not in Gi−1.

In every graph, we aim to maintain for every y 6= s the list Ly of all
dominating triples from s to y. The lists Ly are initially empty. We will
store the final journey time and duration of a short fastest s-y-path for every
y 6= s in journey(y) and dur(y), respectively.

Now we add the edges of E(G) one by one, which effectively iterates
through the sequence G0, . . . , Gm (see Algorithm 1). After the edge ei has
been processed, we ensure that Ly stores the set of all dominating triples
from s to y 6= s in Gi. For an edge ei ∈ E(G), we say that (t, a, d) is a
predecessor triple of ei if

• (t, a, d) is a dominating triple from s to vi,

• a ≤ ti, and

• a is maximal among all such triples.

A predecessor triple (t, a, d) thus allows to traverse ei after taking its
corresponding dominating s-vi-path. Note that not every edge has a prede-
cessor triple, and that the artificial dominating triples correspond to tem-
poral paths having no edge (and thus duration 0) that allow to traverse any
outgoing edge of s).

Without loss of generality, we may ignore all edges ei whose target vertex
is s, as s is the start vertex. In order to update Ly during the processing

7



Algorithm 1: Short Fastest Path

Input: A vertex s of a temporal graph G = (V,E), where the
sequence E is ordered increasingly according to arrival time.

Output: For every vertex z 6= s in G, the journey time and
duration of a short fastest path from s to z.

1 Initialize Ly := ∅ and journey(y) := dur(y) :=∞ for every vertex
y 6= s;

2 for i = 1 to m do
3 if wi = s then continue;
4 if vi = s then Append artificial dominating triple (ti, ti, 0) to

Lvi ;
5 if Lvi contains a predecessor triple of ei then
6 Choose a predecessor triple (t, a, d) of ei in Lvi ;
7 T := (t, arr(ei), d+ di);
8 if T /∈ Lwi then
9 Append T to Lwi ;

10 Delete all elements of Lwi that are dominated by an
element of Lwi ;

11 if arr(ei)− t < journey(wi) or (arr(ei)− t = journey(wi)
and d+ di < dur(wi)) then

12 journey(wi) := arr(ei)− t;
13 dur(wi) := d+ di;

14 return journey(z) and dur(z) for every z 6= s;

phase of ei if wi 6= s, we choose a predecessor triple of ei in Lvi (if exists) in
Line 6 of Algorithm 1 and create from it a new triple T in Line 7. The newly
created triple T is then appended to Lwi in Line 9, followed by removing all
triples of Lwi that are dominated by an element of Lwi . Finally, the journey
time journey(wi) and duration dur(wi) that are attained by T are updated
if they improve the solution.

4 Correctness

In order to show the correctness of Algorithm 1, we rely on the next three
basic lemmas, which collect helpful properties of dominating paths with
respect to the sequence G0, . . . , Gm.

8



Lemma 5. For every 1 ≤ i ≤ m, every temporal path of Gi that contains
ei has ei as its last edge.

Proof. Assume to the contrary that Gi has a temporal path P that contains
ei such that the last edge of P is ej 6= ei. Then j < i by definition of
Gi, which implies arr(ej) ≤ arr(ei) by the ordering assumed for E. This
contradicts that P is temporal.

The next two lemmas explore whether dominating and non-dominating
paths are preserved when going from Gi−1 to Gi.

Lemma 6. For every 1 ≤ i ≤ m, every non-dominating path P of Gi−1 is
non-dominating in Gi.

Proof. Since P is non-dominating, Gi−1 contains a temporal path Q that
dominates P . Since neither Q nor P contains ei, Q dominates P also in Gi.
Hence, P is non-dominating in Gi.

In contrast to Lemma 6, a dominating path of Gi−1 may in general
become non-dominating in Gi, for example by Definition 3(iii) if ei and the
path have the same source and target vertex and the duration of ei is very
small. The next lemma states a condition under which dominating paths
stay dominating paths.

Lemma 7. For every 1 ≤ i ≤ m, every dominating x-y-path P of Gi−1 that
satisfies y 6= wi is dominating in Gi.

Proof. Assume to the contrary that P is non-dominating in Gi. Then an
x-y-path Q dominates P in Gi; in particular, Q is temporal. Since y 6= wi,
ei is not the last edge of Q. By Lemma 5, ei is not contained in Q at all, so
that Q is a path of Gi−1. Since Q dominates P in Gi, Q does so in Gi−1,
which contradicts that P is dominating in Gi−1.

Let Ly(i) be the list Ly in Algorithm 1 after the edge ei has been pro-
cessed. The correctness of Algorithm 1 is based on the invariant revealed in
the next lemma.

Lemma 8. For every 0 ≤ i ≤ m and every vertex y 6= s of Gi, (t, a, d) is a
dominating triple from s to y in Gi if and only if (t, a, d) ∈ Ly(i).

Proof. Due to space constraints, we defer this to the full version of this
paper.

For i = m, we conclude the following corollary.

9



Corollary 9. At the end of Algorithm 1, Ly contains exactly the dominating
triples from s to y in G for every y 6= s.

Theorem 10. Algorithm 1 computes the journey-time and duration of a
short fastest path from s to every vertex z 6= s in G.

Proof. Every short fastest path of G from s to z is dominating. By Corol-
lary 9, Lz therefore contains every short fastest path of G from s to z at the
end of Algorithm 1. By comparing the journey-time and duration of every
path that is added to Lz (this may be a superset of the short fastest paths),
Algorithm 1 computes the journey-time and duration of a short fastest path
from s to z in G.

Now the correctness of Theorem 2 follows from Theorem 10 by tracing
back the path from z to s. This may be done by storing an additional pointer
to the last edge of the current short fastest path found for every vertex z.
Since following this pointer is only a constant-time operation, we may trace
back the short fastest path from z to s in time proportional to its length.

5 Running Time

We investigate the running time of Algorithm 1. If the edge ei satisfies
vi = s, the artificial predecessor triple (ti, ti, 0) of Line 4 will reside at the
end of the ordered list Lv(i), and therefore can be appended to and retrieved
from Lv(i) in constant time. It suffices to clarify how we implement Lines 5–
6 and Line 10, since every other step is computable in constant time. In
particular, we have to maintain dominating triples in Ly and be able to
compute a predecessor triple of ei in Ly efficiently.

For every Ly, we enforce a lexicographic order <lex on the first two
elements of all dominating triples stored. The first two elements suffice, as
two distinct dominating triples (we do not store duplicates) differ always in
their first two elements by Definition 3(iii). The following basic lemma will
be useful.

Lemma 11. Let T = (t, a, d) and T ′ = (t′, a′, d′) be two distinct dominating
triples from x to y such that T <lex T

′. Then a < a′ and either t < t′ or
(t = t′ and d > d′).

Proof. First, assume t < t′. Then a < a′, as otherwise T ′ dominates T by
Definition 3(ii), which contradicts that T is dominating. In the remaining
case, we have t = t′ and a < a′ by the lexicographic order on the first two
elements. Then d > d′, as otherwise T dominates T ′ by Definition 3(ii).

10



Let T1 <lex T2 <lex · · · <lex Tr be the dominating triples of Lwi in
Line 10 and let Tj = (tj , aj , dj) for every 1 ≤ j ≤ r. By Lemma 11,
a1 < a2 < · · · < ar. Let T = (t, arr(ei), d+ di) be the new dominating triple
in Gi that is created in Line 7. Since ei is the currently processed edge
of Algorithm 1 and E(G) is ordered by increasing arrival times, we have
ar ≤ arr(ei). Thus, appending T to Lwi in Line 9 preserves the lexicographic
ordering of Lwi . The next two lemmas determine which elements of Lwi are
dominated by an element of Lwi .

Lemma 12. (i) T does not dominate any element of {T1, T2, . . . , Tr−1}.

(ii) If an element of {T1, T2, . . . , Tr−1} dominates T , then Tr dominates
T .

Proof. By Lemma 11 and since E(G) is ordered by increasing arrival times,
a1 < a2 < · · · < ar ≤ arr(ei). Then aj < arr(ei) for every 1 ≤ j < r, so that
T does not dominate Tj by Definition 3. This gives the first claim.

For the second claim, let Tj dominate T for some 1 ≤ j < r. Then either
Definition 3(i), (ii) or (iii) holds. In Case (i), we have tj > t and aj ≤ arr(ei),
which implies t < tr by the lexicographic ordering. Since ar ≤ arr(ei), Tr
dominates T . In both Cases (ii) and (iii), we have tj = t, aj ≤ arr(ei)
and dj ≤ d + di. By Lemma 11, either tj < tr or tj = tr. If tj < tr, we
have t < tr and ar ≤ arr(ei), so that Tr dominates T . If otherwise tj = tr,
we have dj > dr by Lemma 11. Then, since dj ≤ d + di, we have tr = t,
ar ≤ arr(ei) and d+ di > dr, so that Tr dominates T .

Lemma 13. There is no element of {T1, . . . , Tr} that dominates another
element of {T1, . . . , Tr}. After Line 10, Lwi consists of

(i) (T1, . . . , Tr−1, T ) if T dominates Tr (then Line 10 deletes only Tr from
Lwi),

(ii) (T1, . . . , Tr−1, Tr, T ) if no element of {Tr, T} dominates the other ele-
ment of {Tr, T} (then Line 10 deletes nothing from Lwi), and

(iii) (T1, . . . , Tr−1, Tr) if Tr dominates T (then Line 10 deletes only T from
Lwi).

Proof. Since T is the only triple that was added to Lwi , every element of
{T1, . . . , Tr} was dominating in Gi−1. Thus, no element of {T1, . . . , Tr}
dominates another element of this set in Gi. By Lemma 12(i), T does not
dominate any element of {T1, T2, . . . , Tr−1}.

11



Consider Claim (i). Since T dominates Tr, Tr does not dominate T . Then
the contrapositive of Lemma 12(ii) implies that no element of {T1, . . . , Tr}
dominates T . Together with the first claim, this gives Lwi = (T1, . . . , Tr−1, T ).

Consider Claim (ii). Since Tr does not dominate T , the same argument as
before implies that no element of {T1, . . . , Tr} dominates T . Since T does not
dominate Tr, the first claim of this lemma implies Lwi = (T1, . . . , Tr−1, Tr, T ).
Claim (iii) follows directly from the first claim and the fact that Tr domi-
nates T .

Algorithm 2: Deleting Dominating Triples (Line 10 of Algo-
rithm 1)

Input: A list Lwi of dominating triples ordered by <lex, and the
new triple T of Gi from Line 7.

1 Retrieve the last element Tr of Lwi if Lwi 6= ∅;
2 if Lwi = ∅ or T 6= Tr then append T to Lwi ;
3 if |Lwi | ≥ 2 then
4 if T dominates Tr then delete Tr from Lwi ;
5 if Tr dominates T then delete T from Lwi ;

Lemma 13 allows us to implement Line 10 of Algorithm 1 very efficiently
by comparing just the last element Tr of Lwi with T . This can be done in
constant time by Algorithm 2.

It remains to show how a predecessor triple (t, a, d) of ei in Lvi in
Lines 5+6 of Algorithm 1 can be computed efficiently. By Lemma 11 and
its preceding remark, the arrival times of all triples in Lvi are for every i
distinct. Hence, for every i, the number of elements in Lvi is at most the
maximum in-degree δ−(G) of G.

Since the triples in Lvi are ordered by <lex, the last triple in Lvi (if
exists) whose arrival time is at most ti is a predecessor triple of ei, so that
we only have to compute this unique predecessor triple for every i. In order
to do this, we might use binary search on the arrival times of triples of Lvi .
We achieve however the slightly better running time O(log p(G)) when first
using an exponential search [2] that starts with the triple having highest
arrival time (which is at most arr(ei) due to the edge-ordering) until some
triple with arrival time at most ti is found (see Figure 3 for an example).

If such a triple exists, there is also a predecessor triple of ei, which we
then compute by binary search in the resulting range; see Algorithm 3 for
a detailed description. This takes only time O(log p(G)), which is upper

12



ti arr(ei)

t1

t2

t5

t10

a1

a2

a4

a5

a10

T4

t3 a3

t6

t7

t8

t9

a6

a7

a8

a9

t4

T7

T3

T10

T9

Figure 3: A list Lvi = (T1, . . . , T10) containing dominating triples from s
to vi, ordered by <lex from top to bottom, and the departure and arrival
times of ei. The only predecessor triple of ei is T4 = (t4, a4, d4). In order
to compute T4, Algorithm 3 tests the arrival times of T10, T9 and T7 until
it stops at T3 (because a3 ≤ ti) and computes T4 ∈ {T3, . . . , T6} by binary
search.

bounded by O(min{δ−(G),max{di : 1 ≤ i ≤ m}}). If no such triple exists,
there is no predecessor triple of ei, and this information is given as output.

Algorithm 3: Computing a Predecessor Triple (Lines 5+6 of Al-
gorithm 1)

Input: A list Lvi = (T1, T2, . . . , Tr) of dominating triples in Gi−1
ordered by <lex such that Tj = (tj , aj , dj) for every
1 ≤ j ≤ r, and an edge ei of G.

Output: A predecessor triple of ei if exists, and otherwise the
output “not existent”

1 j := 1;
2 while j ≤ r and ar+1−j > ti do j := 2j;
3 if j ≤ r then
4 Compute the maximal r + 1− j ≤ l < r + 1− bj/2c such that

al ≤ ti by performing binary search (then al is maximal by
Lemma 11);

5 return Tl;

6 else
7 output “not existent”;

13



Lemma 14. The running time of Algorithm 1 for a temporal graph G on n
vertices and m edges is O(n+m log p(G)).

Proof. Apart from Lines 5+6 and 10, every of the m edges can be processed
in constant time. By Algorithms 2 and 3, the running times for Lines 5+6
and 10 amount to O(log p(G)) and O(1) time for every edge, which gives
the claim.

This concludes the proof of Theorem 2.

References

[1] Eric Aaron, Danny Krizanc, and Elliot Meyerson. DMVP: Fore-
most waypoint coverage of time-varying graphs. In 40th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG’14),
pages 29–41, 2014.

[2] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal
algorithm for unbounded searching. Information Processing Letters,
5(3):82–87, 1976.

[3] B.-M. Bui Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. International Journal of
Foundations of Computer Science, 14(2):267–285, 2003.

[4] Guillermo de Bernardo, Nieves R. Brisaboa, Diego Caro, and M. Andrea
Rodŕıguez. Compact data structures for temporal graphs. In Data
Compression Conference (DCC’13), IEEE, page 477, 2013.

[5] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. In-
triguingly simple and fast transit routing. In International Symposium
on Experimental Algorithms (SEA’13), volume 7933 of LNCS, pages
43–54, 2013.

[6] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity
and inference problems for temporal networks. J. Comput. Syst. Sci.,
64(4):820–842, 2002.

[7] Qingkai Liang and Eytan Modiano. Survivability in time-varying net-
works. IEEE Transactions on Mobile Computing, 16(9):2668–2681,
2017.

14



[8] George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal
network optimization subject to connectivity constraints. Algorithmica,
81(4):1416–1449, 2019.

[9] Othon Michail and Paul G. Spirakis. Traveling salesman problems in
temporal graphs. Theoretical Computer Science, 634:1–23, 2016.

[10] John Kit Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora.
Characterising temporal distance and reachability in mobile and on-
line social networks. Computer Communication Review, 40(1):118–124,
2010.

[11] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang,
and Hejun Wu. Efficient algorithms for temporal path computation.
IEEE Trans. Knowl. Data Eng., 28(11):2927–2942, 2016.

[12] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Nieder-
meier. The complexity of finding small separators in temporal graphs.
Journal of Computer and System Sciences, 107:72–92, 2020.

15


	Introduction
	Temporal Graphs
	Our Result

	Dominating Paths
	An Algorithm for Short Fastest Paths
	Correctness
	Running Time

