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We study two fundamental parameters of Schnyder woods by exploiting structurally 
related methods. First, we prove a new lower bound on the total number of leaves in 
the three trees of a Schnyder wood. Second, it is well-known that Schnyder woods can 
be used to find three compatible ordered path partitions. We prove new lower bounds on 
the number of singletons, i.e. paths that consists of exactly one vertex, in such compatible 
ordered path partitions. All bounds that we present are tight.
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1. Introduction

We are interested in gaining more insights into the structure of 3-connected planar graphs. It is well-known that these 
graphs admit Schnyder woods, which have many applications and implications for planarity and graph drawing, see for 
example [1–4,8–10,16,18–20]. We study two fundamental parameters of Schnyder woods, namely the number of leaves and 
the number of singletons, and provide new lower bounds for them. We also give a characterization of the minimal element 
of the Schnyder wood lattice that allows for easy verification.

Schnyder woods and ordered path partitions A Schnyder wood of a 3-connected planar graph is a triple (T1, T2, T3) of oriented 
spanning trees such that every edge is contained in at least one and at most two trees and certain conditions on the edge 
order around each vertex hold (we give a precise definition in Section 2). For every pair (Ti, T j), i �= j, the edges that are 
contained in both Ti and T j induce paths. The third tree Tl , l /∈ {i, j} may then be used to arrange these paths in an order. 
This way we obtain a so-called ordered path partition compatible to the Schnyder wood (T1, T2, T3), which is nothing else 
than an ordered partition of the vertices of a graph into vertex sets of paths. By choosing (Ti, T j) in all possible ways, 
every Schnyder wood generates three such compatible ordered path partitions; Fig. 1 provides an illustration. Ordered path 
partitions may also be seen as a generalization of canonical orderings [2,5,6]. We give a formal definition of Schnyder woods, 
ordered path partitions and how these two concepts relate in Section 2.

Our first result gives a new lower bound on the total number of leaves of the three trees of the unique minimal Schnyder 
wood (in the sense of the definition in Section 2), from which also a bound for one of these trees can be derived by 
pigeonhole principle (see Section 4). For the special case of triangulated planar graphs, a result of Bonichon et al. [3] shows 
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Fig. 1. A 3-connected planar graph and one of its Schnyder woods. The three trees of the Schnyder wood are depicted in colors red, blue and green, and 
are oriented towards the roots r1, r2 and r3, respectively. One of the three compatible ordered path partitions, namely the one partitioning into green-blue 
paths, is marked in fat yellow; this ordered path partition contains exactly two singletons. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

that there is such a tree with at least n − ⌊n−1+�
3

⌋
leaves for any Schnyder wood, where � is the number of three colored 

faces in the Schnyder wood and n is the number of vertices. He and Zhang [19] also considered triangulated planar graphs 
and proved that there is such a tree with at least (n + 1)/2 leaves for the minimal Schnyder wood. They used this to show 
that every plane graph has a visibility representation by non-overlapping horizontal segments of height at most �15n/16�. 
They also gave the so far best bound of 2n/3 + O (1) for the height of such a visibility representation [20]. An upper bound 
of 2n +1 on the total number of leaves of any Schnyder wood of a 3-connected planar graph has been given by Kindermann 
et al. [16].

We consider the general case of 3-connected planar graphs and show that the minimal Schnyder wood has a tree with 
at least n/5 leaves; this bound is tight. As corollaries, we obtain slightly better results for triangulated planar graphs than 
the known ones before.

Our second result uses similar proof techniques and concerns singletons, that is, paths that consist of exactly one vertex, 
in compatible ordered path partitions of Schnyder woods. To the best of our knowledge, we are the first to investigate this 
parameter. Let G be a 3-connected plane graph of order n and let f �=6 be the number of faces of G that are not of size 6. 
We show that at least one of the three compatible ordered path partitions contains f �=6/6 singletons. We also show that 
for the minimal Schnyder wood of G at least one of the three compatible ordered path partitions contains n/5 singletons. 
Both bounds are tight and are given in Section 3. However, if we allow to choose a Schnyder wood of the given graph, we 
can give a bound that is slightly better. We show that there is a Schnyder wood of G (possibly different from the minimal 
one) that has a compatible ordered path partition with strictly more than n/5 singletons.

2. Schnyder woods and ordered path partitions

We define Schnyder woods and ordered path partitions, show how these two relate and give some basic properties that 
we need for the proofs. We only consider simple undirected graphs. A graph is plane if it is planar and embedded into the 
Euclidean plane.

2.1. Schnyder woods

Let r1, r2 and r3 be three vertices of the outer face boundary of a plane graph G in clockwise order. The {r1, r2, r3}-
suspension Gσ of G is the graph obtained from G by adding at each vertex of {r1, r2, r3} a half-edge, an arc pointing into 
the outer face. We call r1, r2 and r3 roots and will often omit the quantifier {r1, r2, r3} if it is clear from the context.

Definition 1. Let Gσ be the {r1, r2, r3}-suspension of a 3-connected plane graph. A Schnyder wood of Gσ is an orientation 
and coloring of the edges of Gσ (including the half-edges) with the colors 1, 2, 3 (red, green, blue) such that

(a) Every edge e is oriented in one direction (we say e is unidirected) or in two opposite directions (we say e is bidirected). 
Every direction of an edge is colored with one of the three colors 1, 2, 3 (we say an edge is i-colored if one of its 
directions has color i) such that the two colors i and j of every bidirected edge are distinct (we call such an edge 
i- j-colored). Throughout the paper, we assume modular arithmetic on the colors 1, 2, 3 such that i + 1 and i − 1 for a 
2
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Fig. 2. Properties of Schnyder woods. Condition 1(c) at a vertex. Color 1 is depicted in red, color 2 in green and color 3 in blue as for the rest of the paper.

color i are defined as (i mod 3) + 1 and (i + 1 mod 3) + 1 respectively. For a vertex v , an incident uni- or bidirected 
edge is ingoing (i-colored) in v if it has a direction (of color i) that is directed toward v , and outgoing (i-colored) of v
if it has a direction (of color i) that is directed away from v .

(b) For every color i, the half-edge at ri is unidirected, outgoing and i-colored.
(c) Every vertex v has exactly one outgoing edge of every color. The outgoing 1-, 2-, 3-colored edges e1, e2, e3 of v occur 

in this clockwise order around v . For every color i, every ingoing i-colored edge of v is contained in the clockwise 
sector around v from ei+1 to ei−1 (see Fig. 2).

(d) No inner face boundary contains a directed cycle (disregarding possible opposite directions) in one color.

For ease of notation, let Nl(v) for a vertex v be the neighbors of v that share a bidirected edge with v . Also, if the 
choice of the roots is clear from context, we might speak of Schnyder woods of a graph G instead of Schnyder woods of the 
suspension of G .

Lemma 2 (e.g. Felsner [10]). Every 3-connected plane graph admits a Schnyder wood.

For a Schnyder wood and color i, let Ti be the directed graph that is induced by the directed edges of color i. The 
following result justifies the name of Schnyder woods.

Lemma 3 (Schnyder [18], Felsner [11]). For every color i of a Schnyder wood of a graph G, Ti is a directed spanning tree of G in which 
all edges are oriented towards the root ri .

Although, the following lemma is widely known, we give a short proof for the sake of self-containedness of the paper.

Lemma 4. Consider a Schnyder wood of a 3-connected planar graph G. Then G is internally triangulated (i.e. every face except the 
outer face is a triangle) if and only if every internal edge of G (i.e. an edge that is not incident to the outer face) is unidirected in the 
Schnyder wood.

Proof. Assume that G is internally triangulated. Every edge on the boundary of the outer face of G is bidirected [11, 
Theorem 2.3]. Let n, e and f be the number of vertices, edges and faces of G , respectively. Let C be the boundary of the 
outer face. Observe that G is internally triangulated if and only if every internal edge is on the boundary of two faces and 
every internal face is a triangle. We obtain that every internal edge is on the boundary of two faces and every internal face 
is a triangle if and only if 3( f − 1) = 2(e − |C |) + |C |. Together with Euler’s formula we obtain

3( f − 1) = 2(e − |C |) + |C |
⇔ 3 f = 2e − |C | + 3

⇔ 3n − 3e + 2e − |C | + 3 = 6

⇔ 3n − 3 = e + |C |.
Remember that at every vertex which is not a root vertex there are exactly three outgoing edges by Definition 1(c). The 
three root vertices have two outgoing edges and one outgoing half-edge each. So the left hand side of the above formula 
is the sum of the out-degrees. Since the edges on C are bidirected, this formula holds if and only if every internal edge is 
unidirected. �
3
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Fig. 3. The completion of G obtained by superimposing Gσ and its suspended dual Gσ ∗
(the latter depicted with dotted edges). The primal Schnyder wood 

in Fig. 3i is not the minimal element of the lattice of Schnyder woods of G , as this completion contains a clockwise directed cycle (marked in yellow). In 
Fig. 3ii this clockwise cycle has been flipped.

2.2. Dual Schnyder woods

Let G be a 3-connected plane graph. Any Schnyder wood of Gσ with roots r1, r2 and r3 induces a Schnyder wood of a 
slightly modified planar dual of Gσ in the following way [8,12] (see [15, p. 30] for an earlier variant of this result given 
without proof). As common for plane duality, we will use the plane dual operator ∗ to switch between primal and dual 
objects (also on sets of objects).

Extend the three half-edges of Gσ to non-crossing infinite rays and consider the planar dual of this plane graph. Since 
the infinite rays partition the outer face f of G into three parts, this dual contains a triangle with vertices b1, b2 and b3
instead of the outer face vertex f ∗ such that b∗

i is not incident to ri for every i (see Fig. 3). Let the suspended dual Gσ ∗
of G

be the graph obtained from this dual by adding at each vertex of {b1, b2, b3} a half-edge pointing into the outer face.
Consider the superposition of Gσ and its suspended dual Gσ ∗

such that exactly the primal dual pairs of edges cross 
(here, for every 1 ≤ i ≤ 3, the half-edge at ri crosses the dual edge bi−1bi+1).

Definition 5. For any Schnyder wood S of Gσ , define the orientation and coloring S∗ of the suspended dual Gσ ∗
as follows 

(see Fig. 3):

(a) For every unidirected (i − 1)-colored edge or half-edge e of Gσ , color e∗ with the two colors i and i + 1 such that e
points to the right of the i-colored direction.

(b) Vice versa, for every i-(i + 1)-colored edge e of Gσ , (i − 1)-color e∗ unidirected such that e∗ points to the right of the 
i-colored direction.

(c) For every color i, make the half-edge at bi unidirected, outgoing and i-colored.

The following lemma states that S∗ is indeed a Schnyder wood of the suspended dual. By Definition 5(c), the vertices 
b1, b2 and b3 are the roots of S∗ .

Lemma 6 ([14][12, Prop. 3]). For every Schnyder wood S of Gσ , S∗ is a Schnyder wood of Gσ ∗
.

Lemma 6 gives a bijection between the Schnyder woods of Gσ and the ones of Gσ ∗
. Let the completion G̃ of G be the 

plane graph obtained from the superposition of Gσ and Gσ ∗
by subdividing each pair of crossing (half-)edges with a new 

vertex, which we call a crossing vertex (see Fig. 3). The completion has six half-edges pointing into its outer face.
Any Schnyder wood S of Gσ implies the following natural orientation and coloring G̃ S of its completion G̃ . For every 

edge v w ∈ E(Gσ ) ∪ E(Gσ ∗
), we do the following. Let z be the crossing vertex of Gσ that subdivides v w and consider the 

coloring of v w in either S or S∗ . If v w is outgoing of v and i-colored, we direct vz ∈ E(G̃) toward z and i-color it. We do 
the same for w . In the remaining case that v w is unidirected, ingoing in v and i-colored, we direct zv ∈ E(G̃) toward v and 
i-color it. The three half-edges of Gσ ∗

inherit the orientation and coloring of S∗ for G̃ S . By Definition 5, the construction of 
G̃ S implies immediately the following corollary.

Corollary 7. Every crossing vertex of G̃ S has one outgoing edge and three ingoing edges and the latter are colored 1, 2 and 3 in 
counterclockwise direction.
4
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Using results on orientations with prescribed outdegrees on the respective completions, Felsner and Mendez [7,11]
showed that the set of Schnyder woods of a planar suspension Gσ forms a distributive lattice. The order relation of this 
lattice relates a Schnyder wood of Gσ to a second Schnyder wood if the former can be obtained from the latter by reversing 
the orientation of a directed clockwise cycle in the completion. We refer to such an operation as a flip of that cycle. Such a 
flip also includes the necessary changes of the colors of the edges on the cycle and in its interior. If we flip, for example, 
a clockwise cycle, then an i-colored edge on the cycle is (i + 1)-colored after the flip and an i-colored edge in the interior 
of the cycle becomes (i − 1)-colored (Fig. 3). This gives the following lemma, of which the computational part is due to 
Fusy [13].

Lemma 8 ([7,11,13]). For the minimal element S of the lattice of all Schnyder woods of Gσ , ̃G S contains no clockwise directed cycle. 
Also, S and ̃G S can be computed in linear time.

We call the minimal element of the lattice of all Schnyder woods of Gσ also the minimal Schnyder wood of Gσ . Verifying 
that a given Schnyder wood S of a graph G is indeed minimal can be cumbersome. We give the following tool to facilitate 
this. Let v1, . . . , vl be an order of the vertices of G̃ S such that for every k ∈ {1, . . . , l} and Ak := {v1, . . . , vk} the vertex vk is 
not in a clockwise cycle of G̃ S [Ak]. Call an order like that an elimination order for G̃ S . Now, the following two lemmas allow 
to easily verify that a given Schnyder wood is minimal.

Lemma 9. Let G be a 3-connected plane graph and S a Schnyder wood of G. S is minimal if and only if there exists an elimination 
order of ̃G S .

Proof. If S is minimal, then any order of the vertices is an elimination order.
So assume we have an elimination order v1, . . . , vl of G̃ S . Let Ak = {v1, . . . , vk}. We show by induction that G̃ S [Ak] does 

not have a clockwise cycle for k = 1, . . . , l. G̃ S [A1] is a single vertex and thus it does not have a clockwise cycle. Let 2 ≤ k ≤ l. 
For the sake of contradiction, assume that there is a clockwise cycle C in G̃ S [Ak]. The vertex vk is not in a clockwise cycle 
of G̃ S [Ak]. So C does not contain vk . And hence C has only vertices in {v1, . . . , vk−1}. We obtain that C is also in G̃ S [Ak−1], 
contradicting the induction hypothesis. So G̃ S [Ak] does not contain a clockwise cycle. �
Lemma 10. Every order v1, . . . , vl of the vertices of G̃ S that satisfies one of the following properties for every k ∈ {1, . . . , l} is an 
elimination order of S.

(a) vk has no ingoing or no outgoing edges in ̃G S[Ak].
(b) vk has exactly one outgoing edge e and e appears in counterclockwise direction on the outer face boundary of ̃G S[Ak].
(c) vk ∈ {r1, r2, r3, b1, b2, b3}.

Proof. We need to show that a vertex vk with one of the above properties cannot be on a clockwise cycle in G̃ S [Ak]. If vk
has property (a), then it cannot be on an oriented cycle of G̃ S [Ak] and hence not on a clockwise cycle of G̃ S [Ak].

Now, we consider property (c). Assume that w.l.o.g. vk = b1. The outgoing half-edge at b1 cannot be on a clockwise cycle. 
The vertex b1 has two more outgoing edges e and e′ in G̃ S ending on the crossing vertices x and x′ which subdivide the 
half-edges in Gσ of r2 and r3, respectively. See Fig. 3 for illustration. So if there is an oriented cycle C containing b1, then 
it contains w.l.o.g. x. But x has only one outgoing (half-)edge in G̃ S , namely, the half-edge originating from the half-edge of 
r2 in Gσ . This half-edge cannot be on an oriented cycle and thus x cannot be on an oriented cycle. Similar arguments yield 
that all oriented paths starting at w.l.o.g. r2 with an outgoing edge either pass through b3, b1 or the crossing vertex x. As 
observed above, those vertices cannot be on an oriented cycle. And thus r2 cannot be on an oriented cycle.

It remains to show that if vk has property (b), it cannot be on a clockwise cycle in G̃ S [Ak]. Let e be the outgoing edge 
at vk . If vk is on a clockwise cycle C , then e needs to be an edge of C since it is the only outgoing edge at vk . But 
since e appears in counterclockwise direction on the outer face of G̃ S [Ak] it cannot be on a clockwise cycle in G̃ S [Ak], a 
contradiction. �
2.3. Ordered path partitions

Definition 11 ([2,17]). Let G be a plane 3-connected graph with three vertices r1, r2 and r3 in that clockwise order on the 
outer face. An ordered path partition P = (P0, . . . , P s) of G with base-pair (r j, r j+1) is an ordered partition of V (G) into the 
vertex sets of induced paths such that the following holds for every i ∈ {0, . . . , s − 1}, where V i := ⋃i

q=0 Pq and the contour
Ci is the clockwise walk from r j+1 to r j on the outer face of G[V i].

(a) P0 is the vertex set of the clockwise path from r j to r j+1 on the outer face boundary of G , and P s = {r j+2}.
(b) Every vertex in Pi has at least one neighbor in V (G) \ V i .
(c) Ci is a path.
(d) Every vertex in Ci has at most one neighbor in Pi+1.
5
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Fig. 4. Illustration for Lemma 12. An internal face F and the paths on its boundary. Here, P1,3 has only color 1, P2,1 has only color 2 and P3,2 is 2-3-colored.

For the ease of notation we often refer to vertex sets of paths as paths.
As proven in [2, Theorem 5] and [1, Lemma 1], the vertex sets of the inclusion-wise maximal j-( j + 1)-colored paths of 

any Schnyder wood S of a suspension Gσ , j ∈ {1, 2, 3} form an ordered path partition of G with base pair (r j, r j+1); we call 
this special ordered path partition compatible with S and denote it by P j, j+1 (Fig. 1).

By Definition 11(a) and 11(b), G contains for every i and every vertex v ∈ Pi a path from v to r j+2 that intersects V i
only in v . Since G is plane, this implies that every path Pi is embedded into the outer face of G[V i−1] for every 1 ≤ i ≤ s.

As shown in [1,2,17] compatible ordered path partitions have a specific structure. Consider for example P2,3 =
(P0, . . . , P s). Every path of this ordered path partition is, as stated above, a maximal 2-3-colored path. Let Pi = {v1, . . . , vk}, 
i ∈ {1, . . . , s} be such that v1 is the first vertex of Pi in clockwise direction on the outer face of G[V i] and vk is the last. 
Then there is an edge v1x on the outer face of G[V i] that connects v1 to a vertex x of V i−1. This edge is outgoing 3-colored 
at v1. Similarly, we find an edge vkx′ at vk such that x′ ∈ V i−1 and vkx′ is on the outer face of G[V i]. This edge is outgoing 
2-colored at vk . Every other edge that connects a vertex of Pi with a vertex of V i−1 is unidirected 1-colored and ingoing at 
a vertex of Pi .

A path which has only one vertex is called a singleton. For a vertex v ∈ V (G) define the multiplicity m(v) := |{i ∈ {1, 2, 3} |
v is a singleton in P i,i+1}|.

For a face F of a planar graph define the size |F | to be the number of vertices it is incident to.

3. Singletons

Remember that, given a Schnyder wood of a 3-connected planar graph, the maximal i-(i + 1)-colored paths form the 
compatible ordered path partition P i,i+1. In a compatible ordered path partition, a singleton is a path that consists of 
exactly one vertex. Here, we give two tight lower bounds on the number of singletons in compatible ordered path partitions. 
One lower bound is in terms of f �=6, the number of faces that do not have size 6, and the other is in terms of the number 
of vertices.

Lemma 12 (Di Battista, Tamassia, Vismara [8]). Let G be a 3-connected planar graph and let a Schnyder wood on G be given. An 
internal face of G consists of six clockwise consecutive paths P3,2 , p1,2 , P1,3 , p2,3 , P2,1 and p3,1 (Fig. 4) where:

• for every i, j ∈ {1, 2, 3}, with i �= j, Pi, j consists of one edge that is either clockwise colored i, counterclockwise colored j or both,
• for every i, j ∈ {1, 2, 3}, with i �= j, pi, j consists of a possibly empty sequence of edges all colored clockwise i and counterclockwise 

j.

The external face of G consists of 3 clockwise consecutive paths p2,1 , p3,2 and p1,3 .

Theorem 13. Let S be a Schnyder wood of a 3-connected plane graph G. Then one of the three ordered path partitions that are 
compatible with S has at least 

⌈
f �=6
6

⌉
singletons, where f �=6 is the number of faces of G that are not of size six.

Proof. Let r1, r2 and r3 be the roots of S . Define

Euni :={e ∈ E(G) | e is unidirected}
Vbi :={v ∈ V (G) | v is incident to two edges that both have the same

two colors}.
6
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v

(i) v is not a singleton, i.e. m(v) = 0.

v

(ii) m(v) = 1, v has one unidirected out-
going edge and v /∈ Vbi .

v

(iii) m(v) = 2, v has two unidirected out-
going edges and v /∈ Vbi .

v

(iv) m(v) = 3, v has three unidirected 
outgoing edges and v /∈ Vbi .

v

(v) m(v) = 2, v has one unidirected out-
going edge and v ∈ Vbi .

v

(vi) m(v) = 1, v has no unidirected out-
going edges and v ∈ Vbi .

Fig. 5. The six possible cases for the outgoing edges of a vertex v ∈ V (G) \ {r1, r2, r3} (up to symmetry).

Now, we show how Euni and Vbi relate to the number of singletons. Consider the outgoing edges of a vertex v ∈
V (G) \ {r1, r2, r3}. Observe that, up to symmetry, there are six possible colorings for those edges. They are depicted in Fig. 5. 
In Fig. 5i, the three outgoing edges of v are all bidirected such that no two have the same two colors. In Fig. 5ii, one of 
the three outgoing edges at v is unidirected and the remaining two do not have the same two colors. In Fig. 5iii, exactly 
two of the three outgoing edges are unidirected. In Fig. 5iv, the three outgoing edges of v are all unidirected. In Fig. 5v, 
one outgoing edge of v is unidirected and the other two have the same two colors. In Fig. 5vi, all the outgoing edges of v
are bidirected and two of those have the same colors. By Definition 1(c), the three outgoing edges at v cannot all have the 
same two colors. So this case distinction is exhaustive.

We observe that a vertex v ∈ V (G) \ {r1, r2, r3} is a singleton in exactly one compatible ordered path partition if and 
only if either v has exactly one unidirected outgoing edge and v /∈ Vbi or v ∈ Vbi , see Fig. 5vi and 5ii. Similarly, v is a 
singleton in exactly two compatible ordered path partitions if and only if it either has exactly two outgoing unidirected 
edges or v ∈ Vbi and it has exactly one outgoing unidirected edge, see Fig. 5iii and 5v. And v is a singleton in exactly three 
compatible ordered path partitions if and only if v has exactly three outgoing unidirected edges, see Fig. 5iv. Additionally, 
we know that each of the roots r1, r2 and r3 is a singleton in exactly one compatible ordered path partition. We therefore 
obtain the following equation.

3∑
i=1

|{v | v is a singleton in P i,i+1}| = 3 + |Euni| + |Vbi|.

In the following, let n := |V (G)|, m := |E(G)|, f be the number of faces of G and f<6, f>6 and f≥6 be the number of 
faces of G of size smaller than 6, larger than 6 and at least 6, respectively. Every vertex v ∈ V (G) \ {r1, r2, r3} has deg(v) − 3
ingoing unidirected edges. A root vertex v ∈ {r1, r2, r3} has deg(v) − 2 such edges. Together with the handshake lemma this 
yields that

|Euni| =
∑

v∈V (G)\{r1,r2,r3}
(deg(v) − 3) +

3∑
i=1

(deg(ri) − 2)

= 3 +
∑

v∈V (G)

(deg(v) − 3) = 3 − 3n + 2m.

Now, we give a bound on |Vbi |. Consider a face F of G . Let v be a vertex of pi,i+1 such that v is incident to two i-(i +1)-
colored edges, for some i in {1, 2, 3}. Here pi,i+1 is defined as in Lemma 12. Observe that v ∈ Vbi . Also, by Lemma 12, for 
every face F of G with |F | ≥ 6 there are at least |F | − 6 such vertices. And thus we obtain that
7
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|Vbi| ≥
∑

F face of G,
|F |≥6

(|F | − 6).

Together with Euler’s polyhedral formula (n − m + f = 2) and 2m = ∑
F face of G |F | this gives

3∑
i=1

|{v | v is a singleton in P i,i+1}| = 3 + |Euni| + |Vbi|

≥ 3 + 3 − 3n + 2m +
∑

F face of G,
|F |≥6

(|F | − 6)

= 6 − 3(2 − f + m) + 2m +
∑

F face of G,
|F |≥6

(|F | − 6)

= 3 f − m − 6 f≥6 +
∑

F face of G,
|F |≥6

|F |

= 3 f − 1

2

∑
F face of G

|F | − 6 f≥6 +
∑

F face of G,
|F |≥6

|F |

= 3 f<6 − 1

2

∑
F face of G,

|F |<6

|F | − 3 f≥6 + 1

2

∑
F face of G,

|F |≥6

|F |

≥ 3 f<6 − 5

2
f<6 − 3 f>6 + 7

2
f>6

= 1

2
f<6 + 1

2
f>6

= f �=6

2
.

By pigeonhole principle, there exists an ordered path partition that has at least 
⌈

f �=6
6

⌉
singletons. �

Remark. The bound of Theorem 13 is tight: there is a sequence of graphs Gk together with a Schnyder wood Sk such that∑3
i=1 |{v | v is a singleton in P i,i+1 of Gk}|
|{ f | f is a face of Gk and | f | �= 6}| −→ 1

2
, for k → ∞.

The graphs Gk , which we define in the following, are symmetric with respect to P1,2, P2,3 and P3,1. Hence, every 
compatible ordered path partition has the same number of singletons. In the end, we obtain that for every ε > 0 there 
exists a graph Gk such that all three ordered path partitions have at most 

⌊( 1
6 + ε

) · |{ f | f is a face of Gk and | f | �= 6}|⌋
singletons each.

We show how to obtain the graphs Gk . First, we define a substructure which we call flower. Using those flowers, we 
iteratively bind a triangular bouquet of flowers of side length k, called Bk . In order to obtain the graph Gk , we only need 
to add three root vertices and their incident edges to Bk . Then we explicitly compute the number of singletons and the 
number of faces and show that our claim holds.

We start with flowers. Let a flower F be a plane graph with oriented and colored edges defined as follows. Let V (F ) =
{c0, . . . , c17, c}. The vertices c0, . . . , c17 form a cycle in clockwise direction. We add the vertex c in the middle of the cycle 
and add the edges cic for i ∈ {0, 3, 6, . . . , 15}. The edges are colored as in Fig. 6.

In order to bind the triangular bouquet of flowers, we need to define how flowers are combined. So let F and F ′ be 
two flowers with V (F ) = {c0, . . . , c17, c} and V (F ′) = {c′

0, . . . , c
′
17, c

′}. In the following, we define three different gluing 
operations. We say that we glue F ′ to the east of F if we identify the vertex pairs (c10, c′

4), (c11, c′
3), (c12, c′

2), (c13, c′
1)

and the edges in between those. Their colors match (see Fig. 7). Gluing F ′ to the southwest of F identifies the vertex pairs 
(c1, c′

7), (c0, c′
8), (c17, c′

9), (c16, c′
10) and the edges in between those pairs. The third gluing operation is gluing F ′ to the 

southeast of F . Here, we identify the vertex pairs (c16, c′
4), (c15, c′

5), (c14, c′
6), (c13, c′

7) and the edges in between. It is easy 
to confirm that the colors of the identified edges match (see Fig. 8).

Now, we iteratively define a triangular bouquet of flowers Bk of side length k. Starting with B1, which is a single flower, 
we call this flower F 1. In order to obtain Bk , take Bk−1 and add k flowers F 1, . . . , F k as follows. Glue F 1 to the east of F 1 . 
1 k k k k−1

8
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c0c1

c2

c3

c4

c5 c6

c7 c8

c9 c10

c11

c12

c13

c14c15

c16c17

c

Fig. 6. A flower and its edge colors.

c0c1

c2

c3

c4

c5 c6

c7 c8

c9
c′

4 = c10

c′
3 = c11

c′
2 = c12

c′
1 = c13

c14c15

c16c17

c

c′
0

c′
5 c′

6

c′
7 c′

8

c′
9 c′

10

c′
11

c′
12

c′
13

c′
14c′

15

c′
16c′

17

c′

Fig. 7. Gluing the flower F ′ to the east of F .

For all i ∈ {2, . . . , k − 1}, glue F i
k to the east of F i

k−1, to the southeast of F i−1
k−1 and to the southwest of F i−1

k . In the end, glue 
F k

k to the southeast of F i−1
k−1 and to the southwest of F i−1

k . See Fig. 8 for an example.
The graph Gk is constructed by taking Bk and adding three vertices r1, r2 and r3 in the outer face. We add the edges r1r2

(1-2-colored), r2r3 (2-3-colored) and r3r1 (1-3-colored). Now, every vertex that does not have an outgoing i-colored edge 
becomes connected to ri with an outgoing i-colored edge for all i ∈ {1, 2, 3}. We also add the half-edges at the vertices r1, 
r3 and r2 and color them accordingly. See Fig. 9 for an example.

It is easy to confirm that the orientation and coloring of Gk is indeed a Schnyder wood. Definition 1(a) and (b) are met 
by construction. In Fig. 9, we observe that Definition 1(c) holds for every vertex. For Definition 1(d) we need to confirm that 
no face has a boundary which is a directed cycle in one color. In Fig. 6, we observe that this holds for all the internal faces 
of flowers. In Fig. 9, we see that this also holds for the remaining faces. So we have a Schnyder wood.

Now, we count the singletons and the faces of Gk . Let v ∈ V (Gk) \ {r1, r2, r3}. Observe, in Fig. 9, that either v has one 
unidirected outgoing edge and two bidirected outgoing edges that are colored differently or v has three bidirected outgoing 
edges such that no two share the same two colors. So, up to symmetry, the situation at v is either as in Fig. 5i or as in 
Fig. 5ii. Thus, every unidirected edge gives rise to exactly one singleton. And, on the internal vertices, this assignment is 
bijective. Every flower has three unidirected edges. There are k·(k+1)

2 flowers in Gk . Together with the edges incident to the 
root vertices, we have 3 · (3k + 1) + 3 · k·(k+1)

2 unidirected edges. Since the root vertices are also singletons in exactly one 
compatible ordered path partition, we obtain that 

∑3
i=1 |{v | v is a singleton in P i,i+1 of Gk}| = 3 + 3 · (3k + 1) + 3 · k·(k+1) .
2

9
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F 1
1

F 1
2

F 1
3

F 2
2

F 2
3

F 3
3

Fig. 8. The triangular bouquet of flowers B3.

Fig. 9. The graph G4 with its Schnyder wood.
10
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v

(i) This configuration cannot occur in a 
minimal Schnyder wood.

v

(ii) A clockwise cycle in G̃ S .

v

(iii) Another clockwise cycle in G̃ S .

Fig. 10. The situation in the proof of Lemma 14.

Observe that there are no faces of size six. Every flower has six faces. Hence, the flowers give in total 6 · k·(k+1)
2 faces. 

Counting also the faces incident to the root vertices and the outer face, we obtain that |{ f | f is a face of Gk and | f | �= 6}| =
3 · (3k + 1) + 1 + 6 · k·(k+1)

2 . And hence∑3
i=1 |{v | v is a singleton in P i,i+1 of Gk}|
|{ f | f is a face of Gk and | f | �= 6}|

= 3 · (3k + 1) + 3 + 3 · k·(k+1)
2

3 · (3k + 1) + 1 + 6 · k·(k+1)
2

=
3
2 k2 + 21

2 k + 6

3k2 + 12k + 4
−→ 1

2
, for k → ∞.

Observe that Gk is symmetric with respect to P1,2, P2,3 and P3,1. So every ordered path partition of Gk that is compat-
ible with Sk has the same number of singletons. Hence, for every ε > 0 there exists a graph Gk such that all three ordered 
path partitions have at most 

⌊( 1
6 + ε

) · |{ f | f is a face of Gk and | f | �= 6}|⌋ singletons.

Lemma 14. Let G be a 3-connected planar graph and S be its minimal Schnyder wood. Then no vertex is incident to an edge colored 
outgoing 1 and ingoing 2, an edge colored outgoing 2 and ingoing 3 and an edge colored outgoing 3 and ingoing 1, see Fig. 10i for 
illustration.

Proof. Assume for the sake of contradiction that there exists such a vertex v ∈ V (G). If v has degree three, then, by 
Corollary 7, there exists a clockwise cycle in G̃ S going through the three crossing vertices of the edges incident to v , see 
Fig. 10ii. If v has an ingoing edge in w.l.o.g. color 3, then, by Corollary 7, we can find a clockwise cycle in G̃ S containing v , 
see Fig. 10iii. In both cases, we arrive at a contradiction since the minimal Schnyder wood does not have clockwise cycles 
by Lemma 8. �
Theorem 15. Let G be a 3-connected planar graph of order n and let S be a minimal Schnyder wood of G. Then

3∑
i=1

|{v | v is a singleton in P i,i+1}| ≥ 3n

5
.

Proof. Let r1, r2, r3 ∈ V (G) be the roots of S . Remember that S has exactly three compatible ordered path partitions. For 
i = 1, 2, 3, let

si := |{v |v is a singleton in

exactly i of the compatible ordered path partitions of S}|.
Observe that 

∑3
i=1 |{v | v is a singleton in P i,i+1}| = ∑3

i=1 isi ≥ ∑3
i=1 si . In the following, we give a lower bound on ∑3

i=1 si . The proof is by double counting vertices that are a singleton in one or two of the compatible ordered path parti-
tions. Observe that a vertex that is not a singleton in P i,i+1 needs to be incident to at least one i-(i + 1)-colored edge. So, 
by Lemma 14, a vertex which is no singleton in all three compatible ordered path partitions needs to be incident to an edge 
colored outgoing 1 and ingoing 3, an edge colored outgoing 2 and ingoing 1 and an edge colored outgoing 3 and ingoing 2, 
see Fig. 11. Call a vertex having this property a Type-A vertex. So there are exactly (n − ∑3

i=1 si) Type-A vertices.
Remember that by Nl(v) we refer to the vertices that share a bidirected edge with v . If v ∈ V (G) is a Type-A vertex, then, 

by the definition of Type-A vertices, the three vertices in Nl(v) cannot be Type-A. So those three neighbors are singletons in 
either one or two of the three compatible ordered path partitions. By Lemma 14, a vertex v that is not Type-A has at most 
11
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v

Fig. 11. A Type-A vertex v .

two neighbors in Nl(v) that are Type-A. These two facts together imply the inequality marked by (�) in the subsequent 
equation. Hence, we have

3∑
i=1

si ≥ s1 + s2
(�)≥ 3

2
· |{v ∈ V (G) | v is Type-A}| = 3

2
(n −

3∑
i=1

si)

⇒
3∑

i=1

si ≥ 3n

5
.

Since 
∑3

i=1 |{v | v is a singleton in P i,i+1}| ≥ ∑3
i=1 si , the claim follows. �

By pigeonhole principle, we obtain the following corollary.

Corollary 16. Let G be a 3-connected planar graph of order n and let S be a minimal Schnyder wood of G. There exists a compatible 
ordered path partition P i,i+1 with i ∈ {1, 2, 3} that has at least �n/5� singletons.

Remark. The bound of Theorem 15 is tight. We show this in Theorem 26 of Section 4. The graph we need to show this also 
shows that our bound on the number of leaves is tight. So we present it later.

The following definition and lemmas are in preparation of Theorem 20. This theorem gives a bound on the number of 
singletons which is better than the bound of Theorem 15. But, we need to acquiesce that the respective Schnyder wood 
might not be the minimal Schnyder wood anymore. We do not expect the bound of Theorem 20 to be tight.

Remember that if we flip a counterclockwise cycle in G̃ S , then the orientation of all its edges is reversed and the edges 
on the cycle and in the interior of the cycle are recolored. An i-colored edge on the cycle is (i − 1)-colored after the flip 
and an i-colored edge in the interior of the cycle becomes (i + 1)-colored. Also, remember that by m(v) we denote the 
multiplicity of a vertex v .

Definition 17. Let G be a 3-connected planar graph. For a Type-A vertex v ∈ V (G), define the Type-A-neighborhood as 
N A(v) := {x | x �= v is Type-A and Nl(x) ∩ Nl(v) �= ∅} (Fig. 12).

Note that a vertex that is contained in the Type-A-neighborhood of v is not a neighbor of v , i.e., N A(v) ∩ N(v) = ∅.

Lemma 18. Let G be a planar 3-connected graph with a minimal Schnyder wood. We obtain the following two statements.

(a) For every x ∈ V (G), the neighborhood Nl(x) contains at most two Type-A vertices.
(b) For every Type-A vertex v, we have that |N A(v)| ≤ 3 (Fig. 12).
(c) And if |N A(v)| = 3 for a Type-A vertex v, then for every x ∈ Nl(v), the neighborhood Nl(x) contains exactly two Type-A vertices.

Proof. Consider the first statement. Assume for the sake of contradiction that there exists a vertex x ∈ V (G) such that Nl(x)
contains at least three Type-A vertices. Remember that Nl(x) consists of the vertices that are joined with x by a bidirected 
edge. Hence, |Nl(x)| = 3 by Definition 1(c). And, by Definition 1(c) and the definition of Type-A vertices, we obtain that 
the bidirected edges incident to x form exactly the configuration that is forbidden due to Lemma 14, a contradiction. This 
proves the first statement.

Now, we prove the second and third statement. Let v be a Type-A vertex. Nl(v) contains three vertices and for those 
three vertices statement (a) applies. So every vertex x in Nl(v), is adjacent to at most one Type-A vertex that is different 
from v . And thus, we obtain that |N A(v)| ≤ 3 by Definition 17. This proves the second statement. We also observe that if 
|N A(v)| = 3, then every vertex x in Nl(v), needs to be adjacent to exactly one Type-A vertex that is different from v . This 
shows the third statement. �
12
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v

x

Fig. 12. A Type-A vertex v with its Type-A-neighborhood N A(v). Vertices of N A(v) are depicted in yellow.

v

x

y

(i) The situation around v before flipping the cycle around v
(marked in yellow).

v

x

y

(ii) The situation around v after flipping the cycle around v .

Fig. 13. Flipping the cycle around the vertex v does not decrease the number of singletons.

Lemma 19. Let G be a planar 3-connected graph and S be its minimal Schnyder wood. Let v be a Type-A vertex of degree 3 with 
|N A(v)| = 3. Then there exists a counterclockwise cycle C as depicted in Fig. 13i. We refer to C as the cycle around v. For every 
x ∈ Nl(v), flipping C does not decrease m(x) (see Fig. 13).

Proof. Let x be a vertex in Nl(v) and suppose w.l.o.g. that x is connected to v by the 1-2-colored edge. Flipping C changes 
the colors of vx and it becomes 1-3-colored, see Fig. 12 and 13. Observe that, as |N A(v)| = 3, there are exactly two Type-A 
vertices in Nl(x) by Lemma 18(c).

Consider the edge xy that is outgoing 3-colored at x (Fig. 13). If xy is 1-3-colored, then x is incident to a 1-3-colored 
edge before and after the flip. So, before and after the flip, x is not a singleton in P3,1. The outgoing 2-colored edge at x
is not changed by the flip. The outgoing 1-colored edge at x is 1-2-colored before the flip and 1-3-colored after the flip. So 
if the outgoing 2-colored edge at x is 1-2-colored, then before and after the flip x is a singleton only in P2,3. And if the 
outgoing 2-colored edge at x is not 1-2-colored, then it is unidirected by Lemma 14. Thus, before the flip, x is a singleton 
only in P2,3 and afterwards it is a singleton in P2,3 and P1,2. So m(x) does not decrease.

If xy is not 1-3-colored, then y /∈ Nl(x) or y is not Type-A. As observed at the beginning of the proof, there are two 
Type-A vertices in Nl(x). And hence, the edge leaving x in color 2 needs to be 2-3-colored. So, before and after flipping C , x
is a singleton in exactly one compatible ordered path partition. See Fig. 13 for illustration. Thus, also in this case m(x) does 
not decrease. And hence, for every x ∈ Nl(v), flipping C does not decrease m(x). �
Theorem 20. Every 3-connected planar graph G admits a Schnyder wood such that

3∑
|{v | v is a singleton in P i,i+1}| ≥ 19n

31
≥ 0.6129 · n.
i=1

13
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Proof. The proof basically uses the same arguments as in the proof of Theorem 15. We simply improve one counting 
argument. In the proof of Theorem 15, we use the minimal Schnyder wood. Remember that for every Type-A vertex v every 
vertex in Nl(v) is a singleton in either one or two of the compatible ordered path partitions. In the proof of Theorem 15, 
we show that

3∑
i=1

si ≥ |{x ∈ V (G) | x ∈ Nl(v) for a Type-A vertex v .}|

≥ 3

2
· |{v ∈ V (G) | v is Type-A}|.

We observe that for a Type-A vertex v every vertex x ∈ Nl(v) contributes 1/2 to 3/2 · |{v ∈ V (G) | v is Type-A}|. So if a 
vertex x ∈ Nl(u) ∩ Nl(w) for two Type-A vertices u �= w , then it contributes 1 to 3/2 · |{v ∈ V (G) | v is Type-A }|. So we have

3

2
· |{v ∈ V (G) | v is Type-A}| =

∑
x∈V (G)

m′(x)

with

m′(x) =

⎧⎪⎨⎪⎩
1 if x ∈ Nl(u) ∩ Nl(w) for two Type-A vertices u �= w ,

1/2 if x ∈ Nl(u) for exactly one Type-A vertex u,

0 otherwise.

In the following proof, we will determine a constant c = 1/12 such that

3∑
i=1

isi ≥
(

3

2
+ c

)
· |{v ∈ V (G) | v is Type-A}|.

Observe that we take the multiplicity of the singletons into account, i.e. we consider isi instead of si . Our strategy is to 
start with the counting argument of the proof of Theorem 15, i.e. every vertex x contributes m′(x) to our count. Then we 
consider the Type-A vertices one by one. For each Type-A vertex v , we search for a vertex x with m(x) > m′(x) that is close 
to v , i.e., the actual multiplicity of x is higher than the contribution of x to 

∑
x∈V (G) m′(x). Then we spread m(x) − m′(x)

among Type-A vertices that are close to v . If we cannot find such a vertex x close to v , we show that we can locally change 
the Schnyder wood such that the overall singleton count 

∑
w∈V (G) m(w) increases. Again, we spread the surplus among 

Type-A vertices that are close to v .
So we start with the minimal Schnyder wood S of G and perform the counting argument as in Theorem 15. We obtain 

that

3∑
i=1

isi ≥
3∑

i=1

si ≥ 3

2
· |{v ∈ V (G) | v is Type-A}|.

For every Type-A vertex v , initialize c(v) = 0. Refer to c(v) as the additive of v . We realize the spreading of the surplus by 
increasing c(v) for the respective vertices. So we want to achieve that c(v) ≥ 1/12 for every Type-A vertex of S . Throughout 
the proof, we refer for a vertex v of G by Nl

S(v) and N A
S (v) to Nl(v) and N A(v) with respect to the minimal Schnyder 

wood S , respectively.
We start by considering the Type-A vertices v that have at least one neighbor x ∈ Nl(v) such that there is only one 

Type-A vertex in Nl(x). Since every vertex x′ in Nl(v) has at most two Type-A vertices in Nl(x′) by Lemma 18(a) and x has 
only one Type-A vertex in Nl(x), we obtain that this set of Type-A vertices is exactly the set of the Type-A vertices with 
|N A(v)| ≤ 2. Denote this set of Type-A vertices by B and say that x is bound to v by Case 0. For such a neighbor x we have 
m′(x) = 1/2 but m(x) ≥ 1, and hence m(x) − m′(x) ≥ 1/2. We increase c(v) by 1/12 and for every w ∈ N A

S (v) we increase 
c(w) by 1/(3 · 12). This way, the amount that we spread is at most 1/6. In the following, we refer to this as increasing the 
additive around v . Hence, if we increase the additive around a vertex a in the remainder of the proof, we perform exactly 
those changes for c(a) and c(w) for w ∈ N A

S (a).
Now, consider the Type-A vertices in V (G) \ B that have degree at least four. Initialize D≥4 to be this set of Type-A 

vertices. Then, for v ∈ D≥4, there is w.l.o.g. an ingoing 3-colored edge v y such that the next edge in clockwise direction 
around v is bidirected, see Fig. 14i. Observe that, in this case, there is a counterclockwise cycle C in G S , which is marked 
yellow in Fig. 14i. Now, proceed iteratively for vertices v in D≥4. Initialize F = ∅. Vertices in F will not be considered in 
Case 3. We use this set in order to assure that certain configurations cannot apply later on in the proof.

Case 1 Assume that Nl
S (y) contains at most one Type-A vertex of S . Then, m′(y) ≤ 1/2 by the Definition of m′ . But, since 

y has a unidirected outgoing edge it is a singleton in at least one compatible ordered path partition (Fig. 5). Hence, 
m(y) ≥ 1 and we obtain that m(y) − m′(y) ≥ 1/2. We found a vertex y that is close to v such that m(y) − m′(y) ≥ 1/2. 
14
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v

p

y

u
q

(i) A Type-A vertex v with degree at least 4. The counterclock-
wise cycle is marked in yellow.

v

p

y

x

+1 0/+1

0
w

(ii) The situation in Case 2. The numbers next to the vertices 
indicate how the multiplicity of the vertices changes.

Fig. 14. The situation around v as in Case 1 and 2 in the proof of Theorem 20.

As we have this surplus which we can spread we do not need to locally change the Schnyder wood. Hence, in this case 
there is no need to flip C . We increase the additive around v , i.e., as defined above, we increase c(v) by 1/12 and for 
every w ∈ N A

S (v) we increase c(w) by 1/(3 · 12). The amount that we spread is at most 1/6 in total. Finally, add v to F
and delete it from D≥4. We say y is bound to v by Case 1.

Case 2 Assume that Nl
S (y) contains two Type-A vertices of S . Let yx be the outgoing 2-colored edge at y. Since Nl

S(y)

contains two Type-A vertices and the outgoing 3-colored edge of y is unidirected, we know that the endvertices of the 
other two outgoing edges of y need to be of Type-A and those edges need to be bidirected. Hence, x is of Type-A and the 
edge yx is incoming 2-colored at x and bidirected. By the definition of Type-A vertices we know that there is only one 
such edge incident to x. This edge is 2-3-colored. Let vp be the 2-1-colored edge at v . Observe that flipping C increases 
the total number of singletons by at least one. The edge v y becomes 2-3-colored and the edge vp becomes 1-colored. 
In the following we show that m(y) does not change, m(v) increases by 1 and m(p) does not decrease, see Fig. 14ii for 
illustration. Remember that a vertex is a singleton in P i,i+1 if and only if it is not incident to an i-(i + 1)-colored edge.

The only edge incident to y that is changed by the flip of C is the edge yv . Before the flip yv is unidirected 3-colored 
and after the flip it is 2-3-colored. As y is incident to the 2-3-colored edge yx before the flip of C , we know that y is 
incident to a 2-3-colored edge before and after the flip of C . Hence, it is not a singleton in P2,3 before and after the flip. 
The other edges incident to y do not change. Hence, for the other compatible ordered path partitions P1,2 and P3,1 y
is a singleton after the flip of C if and only if y was a singleton before. Thus, m(y) does not change.

Consider v . Before the flip v is incident to a 1-2-colored, a 2-3-colored and a 3-1-colored edge. Therefore, v is not a 
singleton in any of the compatible ordered path partitions before the flip of C and hence, m(v) = 0 before the flip of C . 
After the flip v is incident to a 2-3-colored and a 3-1-colored edge but not to a 1-2-colored edge. Hence, v is a singleton 
in P1,2 but not in P2,3 and P3,1 after the flip of C . Thus, m(v) = 1 after the flip of C . And we obtain that m(v) increases 
by 1.

Let us consider p. The only edge incident to p that is changed by the flip of C is vp. It is 1-2-colored before the flip 
of C and unidirected 1-colored after the flip of C . Hence, p is not a singleton in P1,2 before the flip and p is a singleton 
in P1,2 after the flip if and only if it is not incident to a 1-2-colored edge that is different from vp. Also, since vp is the 
only edge incident to p that is changed by the flip of C , p is a singleton in P2,3 and P3,1 before the flip of C if and only 
if p is a singleton in P2,3 and P3,1 after the flip, respectively. Hence, m(p) either increases by 1 or does not change, i.e., 
m(p) does not decrease.

So m(y) does not change, m(v) increases by 1 and m(p) does not decrease. Hence, we flip C and thus obtain a 
changed Schnyder wood. Say y is bound to v by Case 2.

Let pu be the outgoing 2-colored edge in S at p and let pq be the outgoing 3-colored edge at p (Fig. 14i). Let yw
be the outgoing 1-colored edge at y (Fig. 14ii). Now, we need to assure that the change in the Schnyder wood does not 
affect our future operations, i.e., the operations that we perform for the remaining vertices in D≥4 and the vertices in 
V (G) \ (B ∪ F ). In order to achieve this, we add the vertices in {v, w, x, u, q} that are Type-A in S to F and delete them 
from D≥4. Remember that vertices in F will not be considered in Case 3. We now argue why we need to add exactly 
those vertices to F and delete them from D≥4.

Deleting v from D≥4 assures for every Type-A vertex of S in D≥4 that the incident edges were not affected by flipping 
C . Now, consider the Type-A vertices that remain in V (G) \ (B ∪ F ) after having processed D≥4. They are then considered 
in Case 3. Adding v to F assures that for every Type-A vertex of S in V (G) \ (B ∪ F ) the incident edges were not affected 
by flipping C . If q and u are both of Type-A and qp and up are colored as in Fig. 14i, then p ∈ Nl

S(q) ∩ Nl
S (u) and flipping 

C did change an edge incident to p. In Case 3, we consider pairs of Type-A vertices a, b ∈ V (G) \ (B ∪ F ) together with 
a vertex z ∈ Nl (a) ∩ Nl (b), and we want that the now changed Schnyder wood coincides locally at a, b and z with the 
S S

15
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q

p

u

v

Fig. 15. The situation around q if p was bound to q by Case 2 in the proof of Theorem 20.

minimal Schnyder wood, i.e., the orientation and coloring of the edges incident to a, b and z coincides. Since we add 
v to F this holds for the edges incident to a and b. But as observed, p, q and u form such a triple and the edge vp is 
incident to p and flipping C changes the orientation and coloring of vp. Hence, we add the Type-A vertices of {q, u} to F . 
For the same reason, we add the Type-A vertices in {w, x} to F . The vertices p and y can each be contained in at most 
one such triple by Lemma 18(a). Since v y and vp are the only edges changed by flipping C , those two triples are the 
only such triples. Thus, this assures that for every pair a and b of Type-A vertices of S in V (G) \ (B ∪ F ) and every vertex 
z ∈ Nl

S(a) ∩ Nl
S(b), the incident edges of z were not affected by flipping C . The following observation becomes important 

later in the proof (Situation 3).

Observation 1. Since we delete the Type-A vertices of {w, x, q, u} from D≥4, p cannot be bound by Case 2 and y cannot 
be bound by Case 2 to a vertex other than v .

Consider y. By deleting the Type-A vertices of {w, x, q, u} from D≥4, we delete all Type-A vertices from D≥4 that are 
joined to y with an edge that is outgoing at y. If y is bound to a Type-A vertex by Case 2, this vertex is joined to y with 
an edge that is outgoing at y. Thus, y is not bound to any other Type-A vertices by Case 2.

Now, we show the statement for p. Assume, for the sake of contradiction, that p is bound by Case 2. Let w.l.o.g. p be 
bound to q. Then pq is unidirected and incoming 3-colored at q such that the next edge in clockwise order is bidirected 
and u and q are Type-A by the requirements of Case 2 (Fig. 15). Since we delete the Type-A vertices of {w, x, q, u} from 
D≥4, q has been considered before v . Hence, at the time we considered q, the Type-A vertex v was still in D≥4. But, 
observe that after treating q we delete by our procedure for Case 2 the Type-A vertices of the set {v, u} from D≥4 as vp
and pu are the outgoing 1- and 2-colored edges at p, respectively (Fig. 15). As v is a Type-A vertex it is deleted from 
D≥4, contradicting the fact that we consider it after q. Hence, p cannot be bound by Case 2.

Finally, for every Type-A vertex z in {v, u, q, w, x} we increase the additive around z, i.e., as defined above, we increase 
c(z) by 1/12 and for every w ∈ N A

S (z) we increase c(z) by 1/(3 · 12). The amount that we spread is at most 5/6 in total.

For the remaining Type-A vertices, we again proceed iteratively. So let v ∈ V (G) \ (B ∪ F ) be Type-A. We have that v is 
of degree three and that every vertex a ∈ Nl

S (v) has two neighbors in Nl
S (a) that are Type-A vertices, i.e. |N A

S (v)| = 3, since 
we considered the other Type-A vertices in the previous cases. If N A

S (v) \ (B ∪ F ) = ∅, we simply add v to F , say we skip
v . Later on we show that for vertices that we skipped we already increased the additive sufficiently. Otherwise, there is a 
vertex w ∈ N A

S (v) \ (B ∪ F ). As w ∈ N A
S (v) \ (B ∪ F ), w is of degree 3 and |N A

S (w)| = 3.
As w ∈ N A

S (v), there is a vertex s ∈ Nl
S (v) ∩ Nl

S(w). W.l.o.g. we may assume that s is connected to v by a 1-2-colored 
edge and to w by a 2-3-colored edge. As we can observe in Fig. 16, the outgoing 3-colored edge of s is neither incident to 
v nor to w . The following case distinction is by the colors of this edge (Fig. 16).

Case 3.1 s has an edge that is outgoing 3-colored and ingoing 1-colored. Then, there is a configuration around s which 
cannot occur due to Lemma 14, see Fig. 16i.

Case 3.2 s has an edge st that is outgoing 3-colored and ingoing 2-colored. Then, by Lemma 14, Nl
S(t) cannot contain two 

Type-A vertices, see Fig. 16ii. As for vertices that are bound by Case 0, we obtain that m(t) − m′(t) ≥ 1/2. We increase 
the additive around v and add v to F . Say t is bound to v by Case 3.2.

Case 3.3 s has an unidirected outgoing 3-colored edge. Observe that s is incident to a 1-2-colored and a 2-3-colored edge 
but not to a 3-1-colored edge. Hence, s is a singleton in exactly one compatible ordered path partition. Observe that, 
since w is a Type-A vertex of degree 3, there is a counterclockwise cycle C ′ around w . After flipping C ′ the edge sw
is 2-1-colored (Fig. 16iv). For an illustration of such a flip we refer the reader to Fig. 13. Hence, after flipping C ′ , s is 
incident to two 1-2-colored edges and no 2-3-colored and 3-1-colored edge. Thus, s is a singleton in two ordered path 
partitions and flipping C ′ increases m(s) by 1, see Fig. 16iii and 16iv.

Now, we show that this flip increases the overall singleton count. This flip only changes the coloring and orientation 
of edges that join vertices of Nl(w) with w . Hence, for a vertex not in Nl(w) ∪ {w} the multiplicity does not change. 
For w itself, we observe that it is incident to a 1-2-colored, a 2-3-colored and a 3-1-colored edge before and after the 
16
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v

s

w

(i) In Case 3.1 the situation around s is forbidden by 
Lemma 14.

v

s

w

t

a b

(ii) If in the situation of Case 3.2 t has two Type-A vertices 
a and b in Nl(t), we have a configuration around t which is 
forbidden by Lemma 14.

v

s

w

(iii) The situation in Case 3.3.

v

s

w

+1

(iv) The situation in Case 3.3 after flipping the cycle C ′ around 
w . The multiplicity of s increases by 1.

Fig. 16. The situation around v as in Case 3 of the proof of Theorem 20.

flip, compare Fig. 13. Hence, m(w) = 0 before and after the flip. By Lemma 19, we also obtain that for each vertex in 
Nl(w) flipping C ′ does not decrease the multiplicity. As observed above, flipping C ′ increases m(s) by 1. Hence, flipping 
C ′ increases the overall singleton count by 1.

Therefore, we flip the cycle C ′ . For every q ∈ N A
S (w), we increase the additive around q. Observe that since |N A

S (w)| =
3, c(w) increases by 3 · 1/(3 · 12) = 1/12. The amount that we spread is at most 3/6. Add w ∪ N A

S (w) to F . Say s is bound 
by Case 3.3 to w .

Now, we need to show that this process implies the constant c = 1/12. The additive is at least 1/12 for every Type-A vertex 
in B and for every Type-A vertex which we added to F in Cases 1, 2, 3.2 and 3.3.

Consider the Type-A vertices that we skipped. Assume, for the sake of contradiction, that there are two Type-A vertices a
and b that we skipped such that a ∈ N A

S (b) (this directly implies that b ∈ N A
S (a)). W.l.o.g. we skipped a before b. Then, at the 

moment we skipped a in our procedure b has not yet been added to F . Hence, N A
S (a) \ (B ∪ F ) contains b and thus, is non-

empty. This contradicts the fact that we skipped a. Therefore, the Type-A-neighborhood of a Type-A vertex that we skipped 
does not contain another Type-A vertex that we skipped. Hence, we have that for a Type-A vertex w that we skipped there 
are three vertices in N A

S (w) and we increased the additive around each of those three. Thus, c(w) ≥ 3 · 1/(3 · 12) = 1/12. 
Hence, we indeed have c(v) ≥ 1/12 for every Type-A vertex v .

It is left for us to show that if a vertex is bound to multiple Type-A vertices, then the surplus that we have at that vertex 
suffices for each of the Type-A vertices. So let x be some vertex that is not of Type-A. The following three situations might 
occur.

Situation 1 Assume x = s is bound to w by Case 3.3. We show that s is not bound to any other vertex. There are two Type-
A vertices in Nl

S(s) (v and w in Fig. 16iii), so s cannot be bound by Case 0, 1, or 3.2, since in those cases Nl
S(s) contains 

at most one Type-A vertex. If s was bound by Case 2, then w would have been added to F in Case 2. Hence, it would 
17
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not have been available for Case 3.3, a contradiction. So s is bound only by Case 3.3. Observe that s cannot additionally 
be bound by Case 3.3 to a vertex different from w since we add both Type-A vertices in Nl

S(s) to F in Case 3.3. We 
have m′(s) = 1 and m(s) = 1. But, by flipping the cycle C ′ , we increase the total number of singletons by at least one in 
Case 3.3. The sum of the additives is increased by at most 3/6 in Case 3.3. Thus, our counting works in this situation.

Situation 2 Assume x is bound to v by Case 0, Case 1 or Case 3.2. In Case 0, Case 1 and Case 3.2, x has at most one Type-A 
vertex in Nl

S(x). So x cannot be bound by Case 2 or Case 3.3, since in those cases there are two Type-A vertices in Nl
S(x). 

The remaining cases are Case 0, Case 1 and Case 3.2.
We show that x can be bound to at most three different Type-A vertices in total. Observe that xv is outgoing at x

(uni- or bidirected) if x is bound to a Type-A vertex v by Case 0 or Case 1. If x = t is bound to w by Case 3.2, we have 
a path consisting of x = t , s and w such that ts is outgoing i-colored at t , s is not a Type-A vertex and sw is outgoing 
i-colored at s, for some i ∈ {1, 2, 3} (Fig. 16ii). Since x has exactly three outgoing edges by Definition 1(c), the above facts 
yield that x is bound to at most three different Type-A vertices.

In each of those three Case 0, Case 1 and Case 3.2, the increase of the additive is at most 1/6. Thus, in this situation 
the additive is increased by at most 3/6 in total. As m(t) −m′(t) ≥ 1/2 = 3/6 in Case 0, Case 1 and Case 3.2, our counting 
argument is correct in this situation.

Situation 3 Assume x = y is bound by Case 2 to a Type-A vertex v . As observed in Situation 1, y cannot be bound by 
Case 3.3. Also, as observed in Observation 1 of Case 2, y cannot be bound by Case 2 to an additional vertex different 
from v . And, as observed in Situation 2, y cannot be bound by Case 0, Case 1 or Case 3.2. By flipping the cycle C in 
Case 2, the total number of singletons increases by at least 1. We increase the sum of the additives by at most 5/6. So 
our counting is correct.

This situation distinction shows that our counting argument is indeed correct. So we have with the same arguments as 
in the proof of Theorem 15 that

3∑
i=1

isi ≥
(

3

2
+ 1

12

)
· |{v ∈ V (G) | v is Type-A}| = 19

12

(
n −

3∑
i=1

si

)

≥ 19

12

(
n −

3∑
i=1

isi

)

⇒
3∑

i=1

isi ≥ 19

31
n.

Since 
∑3

i=1 |{v | v is a singleton in P i,i+1}| = ∑3
i=1 isi , the claim follows. �

4. Leaves

Let T1, T2 and T3 be the three trees of a Schnyder wood. By li we denote the number of leaves of the tree Ti . In 
this section, we consider the number of leafs of the trees of a Schnyder wood. We show that 

∑3
i=1 li ≥ (3n + 6)/5 for the 

minimal Schnyder wood of a 3-connected planar graph of order n. We also give a sequence of graphs that shows that this 
bound and the bound of Theorem 15 are tight.

Lemma 21. Let G be a 3-connected planar graph and let S be a minimal Schnyder wood of G. If a vertex v ∈ V (G) has an edge that is 
outgoing i-colored and ingoing (i + 1)-colored, then v is a leaf in Ti or Ti+2 .

Proof. W.l.o.g. let v be such that it has an edge that is outgoing 1-colored and ingoing 2-colored. Assume, for the sake of 
contradiction, that v is neither a leaf in T1 nor in T3. Then it has an ingoing 3-colored edge e. If e is unidirected, then 
there is a clockwise cycle in S , see Fig. 10iii. This contradicts the minimality of S . So e is also outgoing 2-colored at v . Now, 
symmetric arguments show that the at v ingoing 1-colored edge is 1-3-colored. This contradicts Lemma 14. So v is a leaf 
in T1 or T3. �
Theorem 22. Let G be a 3-connected planar graph and let S be a minimal Schnyder wood of G. Then

3∑
i=1

li ≥ 3n + 6

5
.

Proof. For technical reasons, we assume w.l.o.g. that l1 ≥ l2, l3. Denote the compatible ordered path partition given by the 
maximal 2-3-colored paths by P2,3 = (P0, . . . , P s). We define a, b, c : V (G) → {0, 1} in the following. Those functions help 
us to give a bound on n = |V (G)| in terms of the number of leaves. Recall that Vk = ⋃k

i=0 V (Pi), as in Definition 11.
18
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v = vt

x′
y

v1

x

G[Vk−1]

(i) e = yx′

v = vt

x′
y

x

G[Vk−1]

(ii) e = yv
v = vt

x′
y

v ′

x

G[Vk−1]

(iii) e = yv ′ with v ′ ∈ Pk , v ′ �= v

v = vt

x′
y

x x′′

G[Vk−1]

(iv) e = yx′′ with x′′ being the counterclockwise neighbor of y
on the outer face of Gk−1.

Fig. 17. If v = vt is connected to x′ by a 2-colored edge, then we always find a clockwise cycle. Remember that x′ is a leaf in the 2-colored tree on G[Vk−1].

In this proof, we exploit that we can count the number of leaves of a tree Ti in two different ways. One way is to directly 
count the leaves. The other way is to count the in-degree for every vertex v that is not a leaf, i.e. the number of edges that 
are ingoing at v . Denote by degin

i (v) the number of ingoing i-colored edges at v , for i ∈ {1, 2, 3}. We obtain that

1 +
∑

v∈V (G),
v is not a leaf of Ti

(degin
i (v) − 1) = li .

Let {v1, . . . , vt} = Pk ∈P2,3 for some k ∈ {0, . . . , s} such that vi appears before vi+1 in clockwise order around the outer 
face of G[Vk] for all i ∈ {1, . . . , t − 1}. If P = P0, order P such that v1 = r3 and vt = r2. For a vertex v ∈ Pk , we define the 
value of a, b and c in the following.

Case 1 v = vi for some i ∈ {1, . . . , t − 1} or v = r2. Then v has an edge that is outgoing 2-colored and ingoing 3-colored or 
v = r2. So v is a leaf in T2 or T1, by Lemma 21, or v = r2 is a leaf in T1. We define a(v) = 1 and b(v) = c(v) = 0.

Case 2 v = vt and v �= r2. Then v has an outgoing 2-colored edge vx′ which connects it to G[Vk−1]. And v1 has an outgoing 
3-colored edge v1x which connects it to G[Vk−1].

Case 2.1 x is not a leaf of the subtree of T3 or x′ is not a leaf of the subtree of T2 in G[Vk−1]. Observe that the edges v1x
and vx′ increases the in-degree of x in color 3 and the in-degree of x′ in color 2, respectively. We define b(v) = 1
and a(v) = c(v) = 0.

Case 2.2 The vertices x and x′ are both a leaf of the subtree of T3 and T2 in G[Vk−1], respectively. The edge vx′ is either 
1-2-colored or it is unidirected 2-colored.

We prove that vx′ cannot be unidirected. Assume, for the sake of contradiction, that it has only color 2. The 
vertex x′ has a counterclockwise neighbor y on the outer face of G[Vk−1]. This neighbor has an outgoing 1-colored 
edge e. There are four different possibilities for e either e = yx′ , e = yv , e = yv ′ with v ′ ∈ Pk and v ′ �= v or e = yx′′
with x′′ being the counterclockwise neighbor of y on the outer face of G[Vk−1]. In all four cases, there is a clockwise 
cycle in G̃ S , see Fig. 17. So vx′ is 1-2-colored and x′ is a leaf in T1 or T3, by Lemma 21.

Furthermore, the clockwise cycles in Fig. 17iii and 17iv do not depend on the coloring of vx′ . So even if vx′ is 
1-2-colored, only e = yv and e = yx′ is possible. If e = yx′ , then x′ is not a leaf in T1 and hence it is a leaf in T3. If 
e = yv , then x′ is also a leaf in T3 since otherwise we obtain a clockwise cycle in G̃ S , see Fig. 18. So in any case x′
is a leaf in T3. We set c(v) = 1 and a(v) = b(v) = 0.
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v = vt

x′yx
G[Vk−1]

(i) x′ has an unidirected ingoing 3-colored edge.

v = vt

x′yx
G[Vk−1]

(ii) x′ has an edge which is outgoing 2-colored and ingoing 
3-colored.

Fig. 18. Here vx′ is 1-2-colored and e = yv . If x′ is not a leaf in T3, then it is a leaf in T1 by Lemma 21 and we find a clockwise cycle.

For every vertex v , we either have a(v) = 1, b(v) = 1 or c(v) = 1. Thus, we obtain that n = ∑
v∈V (G)(a(v) + b(v) + c(v)). 

Furthermore, observe that a(v) = 1 if and only if Case 1 applies. In Case 1, v is a leaf in T1 or T2. So 
∑

v∈V (G) a(v) ≤ l1 + l2. 
Also, c(v) = 1 if and only if Case 2.2 applies and in that case x′ is a leaf in T3. Observe that in Case 2.2 vx′ is 1-2-colored 
such that color 2 is outgoing at v . Hence, the function that maps each vertex v for which Case 2.2 applies to the endpoint 
of its outgoing 2-colored edge is a bijection. In the description of Case 2.2 this endpoint is called x′ . This endpoint is a leaf 
in T3. And hence 

∑
v∈V (G) c(v) ≤ l3. As above, b(v) = 1 if and only if Case 2.1 applies. In Case 2.1, we observe that degin

3 (x)

and degin
2 (x′) increase. Furthermore, x or x′ is not a leaf of the subtree of T3 or T2 in G[Vk−1], respectively. This gives∑

v∈V (G)

b(v) ≤
∑

v∈V (G),
v is not a leaf of T3

(degin
3 (v) − 1) +

∑
v∈V (G),

v is not a leaf of T2

(degin
2 (v) − 1).

As observed above, this gives∑
v∈V (G)

b(v) ≤ l3 − 1 + l2 − 1.

Altogether, we obtain that

n =
∑

v∈V (G)

(a(v) + b(v) + c(v)) =
∑

v∈V (G)

a(v) +
∑

v∈V (G)

b(v) +
∑

v∈V (G)

c(v)

≤ (l1 + l2) + (l3 − 1 + l2 − 1) + l3.

By pigeonhole principle, there exists i ∈ {1, 2, 3} such that li ≥ (n + 2)/5. Since l1 ≥ l2, l3 by the assumption at the 
beginning of the proof, we have that l1 ≥ li ≥ (n + 2)/5. So we obtain that

n + 2 ≤ (l1 + l2) + (l2 + l3) + l3

⇒ n + 2 + n + 2

5
≤ 2

3∑
i=1

li

⇒ 3n + 6

5
≤

3∑
i=1

li . �

Remark. Kindermann et al. [16, Lemma 9] showed that 
∑3

i=1 li ≤ 2n + 1. The graph in Fig. 19ii implies that this bound is 
tight. Observe that this graph does not have oriented cycles, so the Schnyder wood is minimal.

Using pigeonhole principle, Theorem 22 implies the following corollary.

Corollary 23. Let G be a 3-connected planar graph and let S be a minimal Schnyder wood of G. Then, one of the trees of the Schnyder 
wood has at least �(n + 2)/5� leaves.

In the following we consider the number of leaves on triangulated planar graphs. A result of Zhang et al. [19] implies 
that one of the trees of the Schnyder wood has at least �(n + 1)/2� leaves. In Corollary 24, we are able to show that 
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there is not only one such tree but at least two. Corollary 25 provides a lower bound on 
∑3

i=3 li . It can be obtained by 
combining Theorem 1 (2.) and Lemma 4 (1.) of [19]. But, since it follows immediately from the proof of Corollary 24, we 
give a different proof. The subsequent remark considers the tightness of those bounds known for the number of leaves of 
triangulated planar graphs, i.e., we give graphs that (almost) attain those bounds. We also argue that the minimality of the 
Schnyder wood is a necessary condition.

Corollary 24. Let G be a triangulated planar graph and let S be a minimal Schnyder wood of G. Then there exist i �= j ∈ {1, 2, 3} such 
that li, l j ≥ �(n + 1)/2�.

Proof. We only need to observe that in the proof of Theorem 22 some cases cannot occur that often. This implies a bound 
on 

∑
v∈V (G) a(v) and 

∑
v∈V (G) c(v).

Since G is triangulated, only the edges on the outer face are bidirected, by Lemma 4. So there is exactly one vertex that 
has an edge which is outgoing 2-colored and ingoing 3-colored, namely r3. Thus, Case 1 applies to exactly r3 and r2 and we 
have 

∑
v∈V (G) a(v) = 2.

Consider Case 2.2. Here, we show in the proof of Theorem 22 that vx′ needs to be 1-2-colored. Since G is triangulated, 
v = r1 and x′ = r2. But, x′ = r2 is not a leaf in T2. Thus, the condition of Case 2.2 is not met and v = r1 is handled in 
Case 2.1. So 

∑
v∈V (G) c(v) = 0.

If v = r1, then Case 2.1 applies. Also, we observe that x′ = r2 is not a leaf in T2 and x = r3 is not a leaf in T3. The in-
degree of x′ in color 2 and the in-degree of x in color 3 is increased by the path P s = r1. On the other hand 

∑
v∈V (G) b(v) =

1 + ∑
v∈V (G)\r1

b(v). Hence, 
∑

v∈V (G) b(v) ≤ l2 − 1 + l3 − 1 − 1. In total we obtain

n ≤ 2 + l2 − 1 + l3 − 1 − 1 = l2 + l3 − 1.

By pigeonhole principle, w.l.o.g. l2 ≥ �(n + 1)/2�. Symmetrically, we obtain that n ≤ l1 + l3 − 1. Thus, l1 or l3 is at least 
�(n + 1)/2�. This proves the claim. �
Corollary 25. Let G be a triangulated planar graph and let S be a minimal Schnyder wood of G. Then

3∑
i=1

li ≥ 3n + 3

2
.

Proof. As in the proof of Corollary 24, for any i �= j ∈ {1, 2, 3}, we have

n ≤ li + l j − 1.

Summing up gives

3n ≤ 2
3∑

i=1

li − 3

⇒ 3n + 3

2
≤

3∑
i=1

li . �

Remark. As mentioned above, Kindermann et al. [16, Lemma 9] showed that 
∑3

i=1 li ≤ 2n + 1. Together with this bound, 
Corollary 25 implies that for triangulated planar graphs of order n with a minimal Schnyder wood we have

3n + 3

2
≤

3∑
i=1

li ≤ 2n + 1.

Also, for every k ≥ 2, there exists a triangulated planar graph Hk on n = 2k + 3 vertices with a minimal Schnyder wood 
such that

l1 = n + 1

2
,

l2 = l3 = n + 3

2
,

3∑
i=1

li = 3n + 7

2
.
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(i) The graph H4.
(ii) A graph on n = 10 vertices with a Schnyder wood such 
that 

∑3
i=1 li = 2n + 1.

Fig. 19. The graphs that show the tightness of the upper and lower bound on
∑3

i=1 li for triangulated planar graphs.

Fig. 20. The graph H ′
6 of order 39 with a Schnyder wood such that l1 = l3 = 8 and l2 = 13.

See Fig. 19i for H4. It is easy to see how to construct Hk in general. Thus, the bound of Corollary 25 is tight up to a constant. 
As stated before, the upper bound is also tight. See Fig. 19ii for illustration. The graph in Fig. 19ii also shows that we cannot 
give a bound on l1, l2 and l3 simultaneously, as we did in Corollary 24 for two of those.

For Corollary 25, we need the assumption that the Schnyder wood is minimal. For any k ∈ N , there is a triangulated 
plane graph H ′

k of order k2 + 3 with a Schnyder wood such that l1 = l3 = k + 2 and l2 = 2k + 1. Obviously, the statement of 
Corollary 25 does not hold for those graphs. See Fig. 20 for H ′

6. For different k, the graph H ′
k and its Schnyder wood can be 

obtained by adapting the size of the grid.

The next theorem shows that the bounds of Theorem 15 and 22 are both tight.

Theorem 26. There exists a sequence Gk of graphs and minimal Schnyder woods Sk of Gk such that for arbitrarily chosen ordered path 
partitions Pk compatible with Sk, we have

|{v | v is a singleton in Pk}|
|V (Gk)| −→ 1

5
, for k → ∞.

Furthermore, for each of the three trees T k
1 , T k

2 and T k
3 of Sk,

|{v | v is a leaf in T k
j }|

|V (Gk)| −→ 1

5
, for k → ∞.

This shows that the lower bounds of Theorems 15 and 22 are tight.
22
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w1

x1

Fig. 21. The completion of the graph G1, with its Schnyder wood S1. Vertices and edges in the outer face of G1 are suppressed to enhance readability.

u1 v1

x1

Fig. 22. The graph obtained after the described modifications of G1 before we add H .

Proof. We define Gk and its Schnyder wood Sk iteratively. Start with G1 as depicted in Fig. 21. It is easy to verify that S1
is the minimal Schnyder wood using Lemma 10. Define w1, x1 ∈ V (G1) as in Fig. 21.

In order to obtain G2, we split w1 into two vertices u1 and v1, i.e. we delete w1, introduce new adjacent vertices u1
and v1 and connect them as in Fig. 22 to the neighbors of w1. Vertex u1 is connected to all neighbors of w1 that were 
connected to w1 with an unidirected ingoing 2-colored edge or a 2-3-colored edge and v1 is connected only to the neighbor 
of w1 that was connected to w1 with a 1-2-colored edge.

Then we delete r2 and the edge x1r1 (Fig. 22). Let the graph H be as depicted in Fig. 23. We add H with its coloring by 
identifying the vertices and edges of G1 and H along the clockwise and counterclockwise path along the outer face from x1
to u1 and x ∈ V (H) to u ∈ V (H), respectively (see Fig. 24).

We add colored edges and define w2 and x2 as depicted in Fig. 24. The graph we obtain is G2. Observe the following. If 
we now delete r2 and its incident edges, then on the clockwise path on the outer face from r1 to r3 the colors appear in 
the same pattern as on the corresponding path in G1. So we can iterate this procedure. That way we to obtain Gk for every 
k ∈N .

We now need to show that the orientation and coloring which we obtain is a Schnyder wood of Gk . We prove this 
by induction. In G1 we have a Schnyder wood. In order to see that we have a Schnyder wood in Gk , observe that local 
requirements of Definition 1, especially (c) and (d), are met for every vertex and face in the subgraph H of Gk . For the faces 
and vertices that are also in Gk−1 requirements (c) and (d) hold by induction. When we split w1 into u1 and v1 we change 
23



C. Ortlieb and J.M. Schmidt Discrete Mathematics 348 (2025) 114282
u

r2

x

Fig. 23. The graph H with its orientation and coloring.

x2

u1 = u v1

w2

x1 = x

Fig. 24. The graph G2, and its Schnyder wood S2. The graph H is marked in yellow.

one face of Gk−1. Observe that also for this face Definition 1(d) holds. Definition 1(a) and (b) trivially hold. So we do indeed 
have a Schnyder wood.

In order to see that the resulting Schnyder wood Sk of the graph Gk is minimal, we give an elimination order as in 
Lemma 10 by induction. It is easy to show that there exists such an order for G̃1 S1 . In Fig. 25, we gave part of an elimination 
order of G̃2 S2 for illustration.

So let k ≥ 2. We now assign the indices of the elimination order to vertices of G̃k Sk
starting with the highest and ending 

with the lowest. The roots of the primal and dual Schnyder wood get the highest indices; call this set of vertices R . The 
next indices are given to the set C of crossing vertices adjacent to those roots. They satisfy property (a) of Lemma 10. 
Then the set D of dual vertices that are on the boundary of the graph G̃k Sk

[V (G̃k Sk
) \ (R ∪ C)] follows. Those either satisfy 

property (a) or (b) of Lemma 10. Next, we have the remaining vertices of H , its crossing vertices and the dual vertices in 
the interior of H except for uk−1; call that set A. We eliminate the vertices in A in the same order as shown in Fig. 25. It 
is easy to verify that this order satisfies the conditions of Lemma 10.

The graph G̃k Sk
[V (G̃k Sk

) \ (R ∪C ∪ D ∪ A)] can be found as a subgraph in ˜Gk−1 Sk−1
with the same orientation and coloring 

of the edges. As Sk−1 is minimal we have an elimination order on ˜Gk−1 Sk−1
and we can use this order on the vertices of 

G̃k Sk
[V (G̃k Sk

) \ (D ∪ C ∪ B ∪ A)] to obtain an elimination order of G̃k Sk
. Lemma 9 then implies that Sk is indeed minimal.

Now, we calculate the number of singletons of the compatible ordered path partition P i,i+1
k . We explicitly compute the 

number of singletons in P1,2
k . The number of singletons in P3,1

k and P2,3
k follows by similar arguments. The singletons in 

P1,2
k are exactly the vertices in Gk that are not incident to a 1-2-colored edge. Observe that there are only two vertices in 

H that are not incident to a 1-2-colored edge. In Fig. 24, they are the clockwise second and third neighbor of r1 that is 
connected to r1 by a unidirected 1-colored edge. In G1 there are four vertices that are not incident to a 1-2-colored edge. 
And thus we obtain that there are 2k + 2 singletons in P1,2

k . Similar arguments imply that

|{v | v is a singleton in P3,1
k }| = 2k + 4,

|{v | v is a singleton in P2,3
k }| = 2k + 2.
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Fig. 25. The completion of the graph G2, and its Schnyder wood S2. Some vertices and edges in the outer face of G2 are suppressed to enhance readabilit
order, as in the proof of Theorem 26, is given.
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Since |V (Gk)| = 10k + 8 we have that

|{v | v is a singleton in P i,i+1
k }|

|V (Gk)| −→ 1

5
, for k → ∞,

for any choice of i ∈ {1, 2, 3}.
Now, we count the number of leaves. We explicitly count the leaves of one tree, namely T k

2 . The number of leaves of T k
1

and T k
3 follows by similar arguments. In Gk only some vertices have more than one ingoing 2-colored edge. Those are the 

following. The vertex u1 has two ingoing 2-colored edges. For i = {2, . . . , k − 1}, ui has three ingoing 2-colored edges. And 
wk and r2 have four ingoing 2-colored edges each. As in the proof of Theorem 22, we obtain that T k

2 has 2k + 4 leaves. 
With similar arguments, one can show that the number of leaves in the other two trees is also 2k + 4. We obtain that for 
every j ∈ {1, 2, 3}

|{v | v is a leaf in T k
j }|

|V (Gk)| = 2k + 4

10k + 8
−→ 1

5
, for k → ∞. �

5. Conclusion

For 3-connected planar graphs, we gave tight lower bounds of the number of singletons in compatible ordered path 
partitions and of leaves of Schnyder woods. For two of those bounds (Theorem 15 and 22), we additionally know that 
the respective Schnyder wood is the minimal one. It is somewhat surprising that our bound on the number of singletons 
(Theorem 15) and our bound on the number of leaves (Theorem 15) almost coincide. This might suggest that there may be 
an unknown relation linking these two bounds.

In Theorem 20, we gave a slightly better bound on the number of singletons. In exchange, we need to acquiesce that the 
respective Schnyder wood might not be the minimal Schnyder wood anymore. We conjecture that this also holds for the 
number of leaves.
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