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Planarity

● Definition:
A graph G=(V,E) is planar if and only if it can be 
embedded in the plane with no edge intersections.

Kuratowski (1930):
A graph is planar if and only if it contains neither a K

3,3
-

subdivision nor a K
5
-subdivision.
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-subdivision K
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-subdivision



Motivation

Why multiple Kuratowski subdivisions?

Motivation:
Generation of cut constraints for Branch-and-Cut 
approaches:
– Crossing Minimization problem (NP-hard)
– Maximum Planar Subgraph problem and variants 

(NP-hard)



Planarity Tests

● Hopcroft and Tarjan (1974):
– First planarity test in linear running time O(n)
– Complex
– No Kuratowski subdivision for non-planar graphs

● Boyer and Myrvold (2004):
– Linear running time, very small constant factor
– Computes planar embedding or Kuratowski 

subdivision (but only one)
– Yet quite involved (though not as complex as former 

planarity tests have been)
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The Boyer-Myrvold Planarity Test

● DFS-based
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The Boyer-Myrvold Planarity Test

● DFS-based
● Starts with separating all DFS-tree edges:

– Backedges are ignored
– Tree edges now represent degenerated 

biconnected components (bicomps)

1

2

3

4

3

1

2

3

46

5

7

6



The Boyer-Myrvold Planarity Test

● DFS-based
● Starts with separating all DFS-tree edges:

– Backedges are ignored
– Tree edges now represent degenerated 

biconnected components (bicomps)

● Idea:
For each node v in decreasing DFI-order:
– Embed all backedges at v to form 

new, larger bicomps while 
preserving planarity
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Pertinent vs. Externally Active

● A node is pertinent, if the node itself or 
any child bicomp has a backedge to v.

● A node is externally active, if the node 
itself or any child bicomp has a backedge 
to a node with smaller DFI than v.
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Stopping Configurations

● But how are non-planar graphs 
identified?

● Stopping configuration:
– Bicomp with two externally active 

vertices on the external face and 
a pertinent vertex in between

– Witness for non-planarity

Boyer & Myrvold:
A graph is planar if and only if
no stopping configuration is 
found.
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The Goal

Extraction of multiple Kuratowski subdivisions in 
efficient time



Solutions

● Simple approach:
– Find one subdivision with a planarity test, delete 

edge of subdivision, iterate...
– Number of unique subdivisions is limited by m, 

but may grow exponentially in general
–

● Better approach:
–                                ,  S = set of extracted subdivisions

– Linear
– Optimal in terms of output complexity
– Extends the Boyer-Myrvold planarity test

nm∑
K∈S

∣E K ∣

mn



Extensions

● Find multiple stopping configurations
– Each stopping configuration contains several 

minor-types (at least one).
– Each minor-type induces several Kuratowski 

subdivisions (at least one).
● Find additional minor-types
● Make the whole extraction efficient

Many extensions and a heavily modified 
runtime analysis are necessary.



Multiple Stopping Configurations

● Assume a stopping 
configuration was found 
on bicomp A.

● Idea:
– Delete pertinent 

edges in A
– Iterate planarity test 

until next stopping 
configuration

● Problems:
– Update underlying 

data structures 
efficiently

– Find next node for 
reentry
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Additional Minor-Types

● A stopping configuration may contain up to 9 different 
minor-types.

● The 7 additional minor-types below increase the number 
of extracted subdivisions.

● Delete the dotted lines to get K
3,3

's.
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Additional Minor-Types

● A stopping configuration may contain up to 9 different 
minor-types.

● The 7 additional minor-types below increase the number 
of extracted subdivisions.

● Delete the dotted lines to get K
3,3

's.

● Most of them contain the so-called highest face path.
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Highest Face Path

● Consider a stopping configuration on 
a bicomp B

● Look at the inner structure of B:
Former bicomps
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Highest Face Path

●         Highest face path
● Traverse the face f
● Problem: Unoriented nodes, 

reorientation too costly
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Highest Face Path

● Idea: Start two traversals on c (       )
● Walk on the external faces of former 

bicomps in O(1) per step!
● We can bound all green parts by a small term.
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Obtaining Linear Running Time

 (S = set of extracted Kuratowski subdivisions)

nm∑
K∈S

∣E K ∣Overall running time:
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Experimental Setup

● Implemented as part of the Open Graph Drawing 
Framework (OGDF, open source, C++)

● Tested on DualCore 1.83GHz, gcc 3.4.4 -O1

● Random graphs:
– 10-500 nodes
– m = 2n

● Rome Library:
– 10-100 nodes
– Sparse
– >8000 graphs of real world applications



Random Graphs
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Rome Library



Rome Library



The End


