Efficient Extraction of Multiple Kuratowski Subdivisions

Jens Schmidt

Outline

- 1. Introduction
- 2. The planarity test of Boyer and Myrvold
- 3. Extracting multiple Kuratowski subdivisions
- 4. Experimental results

Planarity

• Definition:

A graph G=(V,E) is planar if and only if it can be embedded in the plane with no edge intersections.

 $K_{3,3}$ -subdivision

K₅-subdivision

Kuratowski (1930):

A graph is planar if and only if it contains neither a $K_{3,3}$ -subdivision nor a K_{5} -subdivision.

Motivation

Why multiple Kuratowski subdivisions?

Motivation:

Generation of cut constraints for Branch-and-Cut approaches:

- Crossing Minimization problem (NP-hard)
- Maximum Planar Subgraph problem and variants (NP-hard)

Planarity Tests

- Hopcroft and Tarjan (1974):
 - First planarity test in linear running time O(n)
 - Complex
 - No Kuratowski subdivision for non-planar graphs

• Boyer and Myrvold (2004):

- Linear running time, very small constant factor
- Computes planar embedding or Kuratowski subdivision (but only one)
- Yet quite involved (though not as complex as former planarity tests have been)

Outline

- 1. Introduction
- 2. The planarity test of Boyer and Myrvold
- 3. Extracting multiple Kuratowski subdivisions
- 4. Experimental results

The Boyer-Myrvold Planarity Test

DFS-based

The Boyer-Myrvold Planarity Test

3

6

- DFS-based
- Starts with separating all DFS-tree edges:
 - Backedges are ignored
 - Tree edges now represent degenerated biconnected components (bicomps)

The Boyer-Myrvold Planarity Test

3

6

3

- DFS-based
- Starts with separating all DFS-tree edges:
 - Backedges are ignored
 - Tree edges now represent degenerated biconnected components (bicomps)
- Idea:

For each node v in decreasing DFI-order:

 Embed all backedges at v to form new, larger bicomps while preserving planarity

Pertinent vs. Externally Active

6

- A node is pertinent, if the node itself or any child bicomp has a backedge to v.
- A node is externally active, if the node itself or any child bicomp has a backedge to a node with smaller DFI than v.

Stopping Configurations

- But how are non-planar graphs identified?
- Stopping configuration:
 - Bicomp with two externally active vertices on the external face and a pertinent vertex in between
 - Witness for non-planarity

Boyer & Myrvold:

A graph is planar if and only if no stopping configuration is found.

Outline

- 1. Introduction
- 2. The planarity test of Boyer and Myrvold
- 3. Extracting multiple Kuratowski subdivisions
- 4. Experimental results

The Goal

Extraction of multiple Kuratowski subdivisions in efficient time

Solutions

- Simple approach:
 - Find one subdivision with a planarity test, delete edge of subdivision, iterate...
 - Number of unique subdivisions is limited by m, but may grow exponentially in general
 - $\Theta(mn)$
- Better approach:
 - $\Theta(n+m+\sum_{K\in S} |E(K)|)$, S = set of extracted subdivisions
 - Linear
 - Optimal in terms of output complexity
 - Extends the Boyer-Myrvold planarity test

Extensions

- Find multiple stopping configurations
 - Each stopping configuration contains several minor-types (at least one).
 - Each minor-type induces several Kuratowski subdivisions (at least one).
- Find additional minor-types
- Make the whole extraction efficient

Many extensions and a heavily modified runtime analysis are necessary.

Multiple Stopping Configurations

- Assume a stopping configuration was found on bicomp A.
- Idea:
 - Delete pertinent edges in A
 - Iterate planarity test until next stopping configuration
- Problems:
 - Update underlying data structures efficiently
 - Find next node for reentry

Additional Minor-Types

- A stopping configuration may contain up to 9 different minor-types.
- The 7 additional minor-types below increase the number of extracted subdivisions.
- Delete the dotted lines to get K_{3,3}'s.

Additional Minor-Types

- A stopping configuration may contain up to 9 different minor-types.
- The 7 additional minor-types below increase the number of extracted subdivisions.
- Delete the dotted lines to get K₃₃'s.
- Most of them contain the so-called highest face path.

Highest Face Path

Highest Face Path

Highest Face Path

• We can bound all green parts by a small term.

Obtaining Linear Running Time

Computation step	Overall running time
Extended Walkup	$O(n+m+\sum_{K\in S} E(K))$
Extended Walkdown	$O(n+m+\sum_{K\in S} E(K))$
– Short-circuit edges	O(n+m)
Additional backedgepaths	$O(\sum_{K \in S} E(K))$
Classification of minor-types	$O(n+m+\sum_{K\in S} E(K))$
Extraction of	
$- \dots$ nodes v, r, x and y	O(m)
–critical backedgepaths	$O(n+m+\sum_{K\in S} E(K))$
– …external backedgepaths	$O(\sum_{K \in S} E(K))$
–highest face path	O(n+m)
–position of the highest face path	$O(\sum_{K \in S} E(K))$
-external z-nodes (E/AE)	$O(\sum_{K \in S} E(K))$
Extraction of all minor-types	$O(\sum_{K \in S} E(K))$

Overall running time:

$$\Theta(n+m+\sum_{K\in S}|E(K)|)$$

(S = set of extracted Kuratowski subdivisions)

Outline

- 1. Introduction
- 2. The planarity test of Boyer and Myrvold
- 3. Extracting multiple Kuratowski subdivisions
- 4. Experimental results

Experimental Setup

- Implemented as part of the Open Graph Drawing Framework (OGDF, open source, C++)
- Tested on DualCore 1.83GHz, gcc 3.4.4 -O1
- Random graphs:
 - 10-500 nodes
 - m = 2n
- Rome Library:
 - 10-100 nodes
 - Sparse
 - >8000 graphs of real world applications

Random Graphs

Random Graphs

Rome Library

Rome Library

The End

