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Abstract. A graph is planar if and only if it does not contain a Kura-
towski subdivision. Hence such a subdivision can be used as a witness for
non-planarity. Modern planarity testing algorithms allow to extract a sin-
gle such witness in linear time. We present the first linear time algorithm
which is able to extract multiple Kuratowski subdivisions at once. This is
of particular interest for, e.g., Branch-and-Cut algorithms which require
multiple such subdivisions to generate cut constraints. The algorithm
is not only described theoretically, but we also present an experimental
study of its implementation.

1 Introduction

A planar drawing of a graph is an injection of its vertices onto points in the
plane, and a mapping of the edges into open curves between their endpoints.
These curves are not allowed to touch each other, except in their common end-
points. Graphs which admit such a planar drawing, are called planar graphs, and
recognizing this graph class has been a vivid research topic for the past decades.
Hopcroft and Tarjan [12] showed in 1974 that this problem can be solved in lin-
ear time, using sophisticated data structures and intricate algorithms. Current
planarity testing algorithms like the ones by Boyer and Myrvold [4,5] and de
Fraysseix, Ossona de Mendez and Rosenstiehl [9,10,11] are less complex but still
quite involved.

As shown by Kuratowski [15] in 1930, a graph is planar if and only if it
does not contain a K3,3 or a K5 subdivision, i.e., a complete bipartite graph
K3,3 or complete graph K5 with edges replaced by paths of length at least one.
Such subgraphs are called Kuratowski subdivisions. The efficient extraction of
such a witness of non-planarity was non-trivial in the context of the first linear
planarity tests. Linear algorithms for such an extraction were later presented by
Williamson [17] and Karabeg [14]. Modern planarity testing algorithms like the
ones by Boyer and Myrvold, and de Fraysseix et al. can directly extract a single
Kuratowski subdivision, if the given graph is non-planar.

In ILP-based Branch-and-Cut approaches which try to solve, e.g., the Maxi-
mum Planar Subgraph problem [13] or the Crossing Minimization problem [6,7],
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the identification of multiple such witnesses is a crucial part. Thereby, we look
at some intermediate solution and try to find Kuratowski subdivisions. For each
such subdivision, we can try to generate a cut constraint, necessary to efficiently
solve the ILP. Experience shows that it is desirable to find multiple Kuratowski
constraints at once, as they strengthen the LP-relaxation of the problem.

In the following, let G = (V,E) be a non-planar undirected graph, without
selfloops and multi-edges. Current planarity tests are able to extract a single
Kuratowski subdivision in linear time O(n), n := |V |. We address the problem
of finding multiple Kuratowski subdivisions in efficient time. As there may ex-
ist exponentially many Kuratowski subdivisions in general, it is not practical
to enumerate all of them. A basic approach would be to obtain k Kuratowski
subdivisions through calling a planarity test k times and subsequently deleting
an involved Kuratowski edge. This approach has a superlinear runtime of O(kn),
but we are not aware of any algorithm faster than this approach, up until now.

In this paper, we propose an algorithm which extracts multiple Kuratowski
subdivisions in optimal time O(n + m +

∑
K∈S |E(K)|), with S being the set

of identified Kuratowski subdivisions and m := |E|. This runtime is linear in
the graph size and the extracted Kuratowski edges. The algorithm is based on
the planarity test of Boyer and Myrvold [5] which is one of the fastest planarity
tests today [3]. We will only give a short introduction into this planarity test
in Section 2; for a full description of the original test see [5]. The main part
of this paper focuses on the description on how to modify and extend all steps
to obtain multiple subdivisions in linear time, which requires both algorithmic
changes, as well as a heavily modified runtime analysis. Finally, Section 4 gives
a short computational study which shows the effectiveness of this algorithm.

2 The Boyer-Myrvold Planarity Test

The test starts with a depth first search on the (not necessarily connected) input
graph, which divides the edge set into DFS-forest edges and into backedges,
pointing to nodes with smaller depth first index DFI. The aim is to construct a
planar drawing based on the DFS-forest, by successively embedding all backedges
in descending DFI order of their end vertices. Throughout this paper, let v be
the current vertex to embed. Any backedge in the embedding step of vertex v
ending on v is called pertinent and will be embedded, if this is possible while
maintaining planarity. In the beginning, each DFS-edge is separated from its
adjacent vertex with lower DFI and joined to a new virtual vertex. Therefore
it represents a biconnected component (bicomp) in the beginning, which grows
when backedges are embedded.

To identify involved bicomps during such an embedding, the Walkup is called
for each start node of a pertinent backedge. A bicomp consisting of only one
DFS-edge and its adjacent vertices is called degenerated. The Walkup marks the
involved subgraph and classifies nodes as pertinent, external or inactive. A node
w is called pertinent, if there exists a pertinent backedge {w, v} or if w has a
child bicomp in the DFS-tree which contains a pertinent node. A node w is called
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external, if there exists a backedge {w, u} with u having a smaller DFI than v,
or if w has a child bicomp containing an external node. A node that is neither
pertinent nor external is called inactive. Bicomps are called pertinent or external
if they contain pertinent or external vertices, respectively. The Walkup traverses
a unique path from w to v on the external face of bicomps for every pertinent
backedge {w, v}. We denote this path as the backedge path of {w, v}.

The Walkdown attempts to embed all pertinent backedges and merges the
bicomps between their start and end vertex in the DFS-tree to a new, larger bi-
comp. It is invoked twice for each child bicomp of v: once in a counterclockwise
direction around the external face of the child bicomp, and once in the clockwise
direction. Using the classification of nodes from the Walkup, the Walkdown em-
beds only backedges which preserve planarity in the embedding. If any backedge
cannot be embedded, the graph is not planar and a subdivision is extracted; oth-
erwise a planar embedding is found. Since non-embeddable backedges can only
occur when both Walkdowns stop on external vertices which are not pertinent,
such a situation is called a stopping configuration. We call unembedded pertinent
backedges caused by a specific stopping configuration critical. Let b = {w, v} such
a critical backedge. The first node in the backedge path of b which is contained
in the same bicomp as both stopping vertices are, is called critical node. We
denote the part of the backedge path from w to this critical node critical back
path.

3 Extracting Multiple Kuratowski-Subdivisions in Linear
Time

As opposed to the Boyer-Myrvold planarity test, the number of edges cannot be
bounded linearly by the number of vertices. Since every algorithm has to read
the input graph and to output all identified Kuratowski subdivisions, Ω(n+m+∑

K∈S |E(K)|) is a lower bound for the runtime and our algorithm is therefore
optimal for the extracted number of Kuratowski edges.

3.1 Overview

The original planarity test terminates when a stopping configuration is found.
It is possible to extract a Kuratowski subdivision for each critical backedge of
this stopping configuration. To obtain more, we have to proceed with the algo-
rithm. This bears problems, because the embedding has to be maintained planar,
which is impossible if it contains Kuratowski subdivisions. The idea is to iden-
tify all critical backedges in the given stopping configuration and delete them.
After that, the bicomp B containing the stopping configuration is not pertinent
anymore and it is necessary to continue at the situation directly before the pla-
narity test descended to B. This allows finding the next stopping configuration,
provided that there exists any on the current embedding step of vertex v. See
Algorithm 1 for an overview of these steps in the embedding process of a single
vertex v.
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Algorithm 1 Embedding tasks of a vertex v
1: for all pertinent backedges p ending at v do
2: Walkup(p) . Sect. 3.3
3: end for
4: for all DFS-children c of v do
5: stop ← Walkdown(c) . original Walkdown
6: while stop 6= ∅ do
7: Find all critical backedges of the stopping configuration stop . Sect. 3.4
8: Extract multiple subdivisions for each critical backedge . Sect. 3.4
9: Delete critical backedges and update the classification of nodes . see [5]
10: Find reentry_point for further embedding . Sect. 3.2
11: stop ← Walkdown(reentry_point) . iterated Walkdowns
12: end while
13: end for

Unfortunately, almost all time-bounds given in [5] loose validity with this
approach, and a new runtime analysis of this extended algorithm is necessary.
The key to a linear time bound is to compensate additional costs during Walkup,
Walkdown and extraction by the amount of extracted Kuratowski edges. We will
first describe how to find the correct reentry point after a stopping configuration
was found and removed. In Section 3.3, we discuss how to modify the Walkup,
in order to allow efficient operations used in the later steps of the algorithm.
Section 3.4 deals with the efficient extraction phase. Finally, the overall runtime
of the extended algorithm is analyzed in Section 3.5.

Of course there are graphs with exactly one Kuratowski subdivision. Hence,
we do not ensure any lower bound other than 1 for the number of extracted
Kuratowski subdivisions of non-planar graphs. But in practice, the quantity is
high as discussed in Section 4. Formally, our algorithm guarantees:

Lemma 1. We find at least one unique Kuratowski subdivision for each backedge
per stopping configuration.

We also guarantee the following, which can be applied iteratively after each
Kuratowski extraction:

Lemma 2. Whenever the algorithm extracts a Kuratowski subdivision using a
backedge b, and there exist additional Kuratowski subdivisions without b, we will
find at least one more unique Kuratowski subdivisions.

3.2 Finding the Reentry Point for Further Embeddings

Let v′ be the virtual node of v adjacent to the DFS-child c of v from the current
Walkdown. We call the bicomp which has v′ as its root, the forebear bicomp, the
others are called non-forebear bicomps. The Walkdown can be run unmodified,
as long as no stopping configuration occurs. The same holds if a stopping con-
figuration occurs on the forebear bicomp due to embedded pertinent backedges,
since this represents the last stopping configuration in the Walkdown.
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Otherwise, the Walkdown has to be modified. Let A be the non-forebear
bicomp containing the stopping configuration, T the subtree of all pertinent
bicomps with the bicomp containing v′ as root and D the parent bicomp of A
in T (cf. Figure 1). Any bicomp in T has exactly those bicomps as children
which are referenced in the PertinentRoots lists of its nodes, as proposed in
[5]. In Figure 1, the bicomp tree T consists of the (degenerated) forebear bicomp
{v′, c} and the non-forebear bicomps A, B, C and D. The Walkdown stops at
A, deleting the critical backedges incident to w1 and w2 after the extraction of
all Kuratowski subdivisions induced by these backedges. Afterwards, A is not
pertinent anymore and its PertinentRoots list entry on the parent node z1
in D must be deleted. As there exists another item in that list, we continue
the Walkdown at z1 and find another stopping configuration in bicomp B. The
general rule is that the Walkdown continues on z1 until the PertinentRoots list
of z1 is empty.

At last, z1 is not pertinent anymore. Furthermore, short-circuit edges from
the root r of D to both external vertices in each direction (z1 and z2) have been
embedded in the past. Note that z1 and z2 are the first possible parent nodes
of bicomps containing stopping configurations in D; otherwise the Walkdown
would have stopped before.

These short-circuit edges permit a O(1)-traversal to the other external vertex
z2, where the Walkdown extracts all stopping configurations of child bicomps
(bicomp C in Figure 1), analogously to z1. Finally, we check whether D itself
contains a stopping configuration by extracting all remaining critical edges, since
we know that D contains two stopping vertices. In our example, the backedge
starting at w5 induces a subdivision and can be deleted after the subdivision’s
extraction. This procedure is iterated with the next father bicomp in the DFS-
tree until the forebear bicomp is reached or a pertinent backedge is embedded. In
the latter case, all preceding bicomps are embedded and the Walkdown continues
at the forebear bicomp.

The crucial point in this scheme is the traversal to a bicomp, where no
backedge can be embedded, i.e., a bicomp that contains a stopping configu-
ration: we then modify the embedding to what it would have been, if no critical
backedges on this bicomp would have existed. Finally, the Walkdown is restarted
on the very node where the previous Walkdown started to descent to this bicomp,
which – after the modifications – is not necessary anymore.

3.3 Walkup

Additionally to the PertinentRoots list and BackedgeFlags of the original pla-
narity test, we now have to collect some more information during theWalkup. For
every visited node n, we store a link LinkToRoot to the root node of the bicomp of
n. This can be done efficiently by using a stack for all visited nodes of the bicomp
during the Walkup. Furthermore, a list named PertinentNodesAfterWalkup of
all pertinent nodes of each bicomp B is created. This is stored at the root node
of B by collecting the nodes during the Walkup in a list. Whenever we reach the
bicomp root or a node with set LinkToRoot, we can add the collected vertices
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Fig. 1. An example of finding the reentry point in the situation where a stopping
configuration is found by a counterclockwise Walkdown. Square nodes refer to external
vertices whereas circular, light gray nodes denote pertinent vertices. Virtual vertices
are depicted by a dotted line.

in O(1) time to the list of the bicomp root. Once established, this list is not
modified until v is completely embedded.

It is useful to be able to distinguish the backedges incident to different vir-
tual vertices v′ of v, since they will be embedded in different subtrees later on.
This can be done by storing v′ as the HighestVirtualNode for each backedge
{w, v}. To obtain v′ for a given backedge p, Walkup(p) marks each visited node
with p. If the Walkup ends on a virtual node of v, we can store this node as the
HighestVirtualNode(p). Otherwise, Walkup(p) stopped on an already visited
vertex which was traversed during the Walkup of another backedge q. Since both
Walkups met, the subtrees are identical and so are the HighestVirtualNodes
of p and q. The latter can be looked up in O(1), and we hence identified
HighestVirtualNodes(p). This allows us to easily generate a list Backedges-
OnVirtualNode for each virtual node v′ of v containing the backedges belonging
to the pertinent subtree with root v′.

3.4 Extraction

Overview. The extraction starts whenever the Walkdown halts on some stop-
ping configuration in a bicomp B. We will first clarify how the critical backedges
which belong to this stopping configuration can be computed in the next sub-
section “Extraction of Critical Backedges”. Each critical back path of those
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backedges induces one or more Kuratowski subdivisions of a specific minor-type,
which has to be known prior to the subdivision’s extraction.

To obtain this minor-type, two unembedded paths in the underlying DFS-
tree from the stopping vertices to nodes with lower DFI than v are selected in
time linearly to their lengths. As different such paths yield different Kuratowski
subdivisions, we can use different ones to obtain multiple unique subdivisions.
Additionally, the highest-xy-pathof the critical node w is needed to determine the
minor-type. As defined by Boyer and Myrvold, the highest-xy-path obstructs the
inner face of B and consists of the external face part on the top of the former,
now embedded, bicomp which contains w. This path can be computed in O(n),
but this would result in a superlinear overall runtime. Hence we develop a more
efficient way by first extracting the more general highest-face-pathefficiently and
use this to obtain the highest-xy-paths for the critical nodes. These steps are
described in the subsections “Extraction of the Highest-Face-Path” and “Extrac-
tion of all Highest-XY-Paths”. After the minor-type is determined, all remaining
parts of the Kuratowski subdivision can be extracted from the DFS-tree using
only external faces of the involved bicomps. This requires time linearly to their
lengths. Finally, all critical backedges of the stopping configuration as well as
the involved PertinentRoots and BackedgeFlags are deleted.

Extraction of Critical Backedges. Let x and y be the two stopping vertices
on the bicomp B, and r the root of B. Neither x, nor y, nor any node on
the external face paths r → x and r → y can be pertinent; otherwise the
Walkdown would not have stopped at x and y. The critical back paths of the
critical backedges end on the external face of B between x and y. We distinguish
between two cases depending on the type of B.

Bicomp B is a forebear bicomp. All pertinent backedges of the current Walk-
down are contained in the BackedgesOnVirtualNode(r) list. For each entry,
we can check in O(1) whether it is embedded. If not, the backedge is critical.
This yields an overall running time of O(n + m) over all embedding steps,
since all critical backedges are deleted afterwards and no further stopping
configuration can exist.

Bicomp B is a non-forebear bicomp. Consider the DFS-subtree T of perti-
nent bicomps with B as root bicomp. We start a preorder traversal through T
by using the PertinentNodesAfterWalkup lists on the roots of all bicomps.
These lists can contain nodes that are not pertinent any more due to extrac-
tions of other stopping configurations. Hence we have to check each item for
pertinence; every non-pertinent entry is deleted. The remaining nodes are
the critical nodes and we check their BackedgeFlag property. If this flag is
set, the associated backedge must be critical and is therefore included in the
list of critical backedges. Note that the remaining nodes, independent of their
BackedgeFlag, may have non-empty PertinentRoots lists. After all critical
backedges starting at the current bicomp were found, the preorder traversal
iterates the process on each child bicomp given by its PertinentRoots lists
recursively.
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All tests on the nodes can be performed in constant time. The size of the tree
T itself is bounded by the costs of the corresponding Walkup invocations,
because at least one node was traversed for each pertinent bicomp. More-
over, a non-pertinent node in the PertinentNodesAfterWalkup list can only
happen as a result of an earlier extracted stopping configuration. The only
other reason would be that a pertinent backedge has been embedded on B,
which is contradictory to the assumption. Each of the at most m stopping
configurations in all embedding steps produces at most one non-pertinent
entry in a PertinentNodesAfterWalkup list. Hence the overall runtime is
bounded by the Walkup time.

Furthermore all critical nodes in B are necessary for the minor-type classi-
fication and for the extraction of Kuratowski subdivisions. We can obtain all
critical nodes in B efficiently by testing the BackedgeFlag for each entry of the
PertinentNodesAfterWalkup list of r.

From this description we can conclude:

Lemma 3. The asymptotic runtime for obtaining all critical backedges of a
stopping configuration is bounded by the Walkup costs.

Extraction of the Highest-Face-Path. In order to extract all highest-xy-
paths efficiently, we first require a highest-face-pathof the bicomp B. See Figure 2
for a visualization of the following explanations. We obtain the highest-face-path
by temporarily deleting all edges incident to its root r except for the two edges
s = (r, a) and t = (r, b) on the external face (ignoring any short-circuit edges).
Thereby, B breaks into multiple sub-bicomps; we also delete all separated sub-
bicomps, i.e., the sub-bicomps which do not contain r. Consider the inner face f
containing a, r, and b. The highest-face-path is the path a → b on the boundary
of f not traversing r.

It is possible to extract the highest-face-path in time O(|B|), if B is prop-
erly embedded. But since the planarity test performs implicit flips on bicomps,
we do not know whether the adjacency lists of the nodes are in clockwise or
counterclockwise order, and we would have to establish the correct orientation
for each node of B first. This would require a traversal of the underlying DFS-
tree and would result in a superlinear overall computation time. Hence, this
approach is not suitable and instead we have to identify the highest-face-path
with inconsistent node orientations.

Therefore, it is not possible to easily walk along f . The idea is to use the
still existing external face links – introduced in the original planarity test – of
the former, now merged bicomps in B. These external-links of a node referred
to the two incident edges on the boundary. These edges can be compared in a
traversal of the external face in order to find the correct direction to proceed,
even when some nodes are not oriented correctly. To use the former external-
links in a traversal inside of B, we have to analyze the general structure of B
first:
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Fig. 2. The structure of the bicomp B containing former bicomps. The hatched former
bicomps form the bottom chain. The extraction of the highest-face-path starts at the
inner vertex c in both directions (thick dotted arrow lines) and ends on nodes a and b.

Bicomp structure. The external face of every non-degenerated forebear bicomp
contains at most one embedded backedge for each of the two Walkdowns formerly
started at r. It also may contain an edge connecting the root and the non-root
node with least DFI. However, in all cases these edges are incident to the virtual
root node. The remaining set of edges on the external face consists of the lower
parts of now connected, former bicomps. We denote this sequence of former
bicomps which lie on the external face the bottom chain of B, cf. Figure 2. A
merge node is a node shared between two adjacent bicomps of the bottom chain
(e.g. the nodes p and q in Figure 2), or one of the two end nodes a and b.
Given a former bicomp U in the bottom chain, the path on the upper part of U
connecting the two contained merge nodes is identical to the highest-xy-path of
a critical back path ending at U . This fact is the key for the later extraction of
all highest-xy-paths.

As B is not degenerated, the bottom chain exists. Let c be the unique non-
virtual node of B with least DFI. Let E be the former bicomp of the bottom
chain which contains the node with smallest DFI: if c is not contained in E,
inner bicomps exist. The goal is to traverse these inner bicomps from c to the
bicomp E on their boundaries by using the former external-links. Since the node
orientation is unknown, both directions on the boundary are traversed in parallel.
When both traversals reach the root node of E, these traversals continue with
paths to the left and to the right on the top of the bottom chain, i.e., they
identify the highest-face-path of B.
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The main issue is that we somehow have to choose the proper successor
bicomps. Moreover, most of the former external-links at merge nodes and end
nodes of embedded backedges have been modified during the Walkdown. On
merge nodes, only those former external-links remain unmodified, which refer to
the external face of B.

Therefore, we store a backup copy old-links of the former external-links
on each bicomp root traversed during the Walkup. These roots will become
merge nodes during the Walkdown, and all old-links on them refer to the former
external-links of the last embedded successor bicomp in the DFS-tree.

Hence, the traversal works as follows: We start with the traversal at c, check-
ing each external-link of c for identity with s and t. The type of the traversal is
determined by the number of such external links:

One external-link refers to s or t: The node c lies on the external face of
B and the first Walkdown was able to embed a backedge to r. Then, c is
contained in E as its root node and it is sufficient to start a single walk
following the unique old-link of c, which is not identical to an external-link
of c. Note that it is possible that more than one bicomp has been merged to
c and that the old-links always refer to the last one.

Otherwise: None of the external-links refer to s or t and c is therefore either
an inner vertex or the root of E which lies on the external face of B. The
former induces inner bicomps along a non-empty path from c to the root of
E. Either way, both directions on the boundary of former bicomps have to
be traversed to obtain the highest-face-path of B. These traversals start on
the neighboring edges of r → c in the adjacency list of c. Note that this is
independent of the orientation of c.
During the traversals, E can be determined as the last bicomp, whose root
node is visited by both traversals. Starting with this root, all traversed nodes
are stored in two separate lists, one for each traversal direction. We obtain
the highest-face-path of B by appending the reversed second list to the first
one. All walks check on each visited node z whether z is identical to a or b
in O(1). If so, the walk is finished.

We clarify how to obtain the correct next node in all traversals and how
to descent to the correct bicomps while deleting node sequences from separated
bicomps, as those are not part of the highest-face-path of B. Therefore, we distin-
guish between three cases for a visited node z, depending on the last embedding
operation performed on z by any of the two Walkdowns which started at r:

None: (See, e.g., node g in Figure 2). The external-links can be used to walk
on the external face of the current former bicomp in O(1).

Embedding of a backedge on z: (See, e.g., node h in Figure 2). This backedge
has been embedded inside of B, since z is not an end node of the bottom
chain. None of both external-links of z refer to the edge from which we came
on our traversal. Instead, the embedded backedge is linked and we can use
the other external-link.
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Embedding of a child bicomp of z: (See, e. g., nodes i and q in Figure 2).
Both external-links of z have lain on the former external face directly after
the merge operation due to an embedded backedge on a successor bicomp.
Since we want to traverse the inner face containing r, we have to choose the
unique old-link which is not identical to an external-link.

All nodes can be classified in O(1) according to these three cases. During the
whole traversal, all visited nodes are saved on a stack. If a node is visited twice,
this node is a merge node to an inner, separated sub-bicomp, whose boundary is
not part of the highest-face-path. Then, all nodes between the two occurrences
are deleted from the stack.

Note that it is possible that former bicomps are degenerated. In that case
some old-links refer to the same edge. However this does not result in ambiguity.

We store the highest-face-path on the unique vertex c in B, since later extrac-
tions might need it as well. Whenever a highest-face-path has to be computed
in consequence of an embedding of B within a larger bicomp B∗, B will play
the role of a former bicomp. Since we only traverse the external faces of former
bicomps, we will never again traverse the interior of B. Hence, and since the
traversals require O(1) time for each vertex, we obtain:

Lemma 4. All highest-face-paths which occur during the algorithm can be com-
puted and maintained in O(n+m).

Extraction of all Highest-XY-Paths. For every given critical node w be-
tween two stopping vertices of a stopping configuration, we have to compute
its highest-xy-path. As before, see Figure 2 for a visualization of the following
descriptions. Due to the discussed structure of bicomps, the node w is contained
on the external face of a former bicomp D of the bottom chain of B. Let p and
q be the two merge nodes in D. It is not clear whether the highest-xy-path of
w actually exists, because, e.g., D could be degenerated. However, this can be
checked in O(1) by testing w 6= p and w 6= q. Furthermore, all merge nodes on the
bottom chain can be marked with increasing positive numbers for the left-hand
traversal and with decreasing negative numbers for the right-hand traversal.

It would not be efficient to walk along both paths starting on w and traversing
the external face of B: there are multiple Kuratowski minor-types which do not
require both paths and we would therefore loose our linear runtime. Therefore,
we use the shorter path by starting walks with the external-links of w in both
directions in parallel, until a node marked with a number was found. It may
happen that a short-circuit edge to r will be traversed due to a stopping vertex
in D. In that case, the neighboring edge not being an external-link is chosen in
order to stay on D.

Let p be that merge node we find first, and let it be marked with a positive
number. Therefore p lies on the traversal to the left. As the node orientation
is still unknown, we do not know in which direction the highest-xy-path of w
starts on p in the highest-face-path. Once more, we can use the old-links: if the
last traversed edge is not identical to an old-link of p, we know that p lies on the
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left-hand site of D. In that case, the highest-xy-path has to be the part of the
highest-face-path which starts with p and ends with the node marked with an
increased absolute value by one. Otherwise, the end node has to be the node with
a decreased absolute value by one. The reverse holds, if the node p is marked
with a negative number.

For the classification of the induced minor-type, the positions of p and q,
relative to the stopping nodes on the external face of B, are important. Since we
cannot afford to walk around D and check whether there are external stopping
nodes, we store a special marker for each node of every path shortened by a short-
circuit edge embedded at r. If p is not marked, the stopping vertex is located
closer to r. Otherwise, the stopping vertex is either p or lies on the external face
path p → w in D. This concludes the following lemma.

Lemma 5. All highest-xy-paths required during the algorithm, as well as the
relative position of their end nodes, can be computed in time linearly dependent
on their lengths.

Extraction of Kuratowski Subdivisions. The prior sections dealt with the
problem of efficiently obtaining multiple stopping configurations. We now ad-
dress the problem to extract multiple Kuratowski subdivisions out of each single
stopping configuration. Whenever a stopping configuration occurs, the appro-
priate critical back path for each critical backedge is computed. Along with the
highest-xy-path, the minor-type of the induced Kuratowski Subdivision is ob-
tained.

Additionally to the basic 9 minor-types by Boyer and Myrvold, we can define
7 more minor-types, by augmenting the types B,C,D and E1–E4 with a non-
empty path v → r as in type A (cf. Figure 3). We call the resulting minor-
types AB,AC,AD and AE1–AE4, respectively. It turns out that the Kuratowski
subdivisions of these additional minor-types constitute the largest part of the
extracted subdivisions in practice, see Section 4. Clearly, more than one minor-
type can exist for a single critical back path.

To further increase the number of extracted Kuratowski subdivisions, we
will start with focusing on the critical back paths, since nearly all minor-types
needs them for constructing the subdivision. In general, such a path consists
of external face parts between the roots of multiple sequential bicomps. We
can therefore also extract the other parts of these external faces and combine
these to obtain potentially exponentially many different critical back paths, and
therefore different Kuratowski subdivisions. As a side effect, those subdivisions
are all similar which can be beneficial for the application area of Branch-and-Cut
algorithms.

The same technique can be used to obtain multiple external backedges, their
backedge paths, and multiple paths starting at so-called external z-nodes (cf. [5])
in the minor-types E1–E5 and AE1–AE4.

All extracted Kuratowski subdivisions of a stopping configuration are unique.
This holds for subdivisions of different stopping configurations as well, except
for the minor-types E2 and AE2, which do not include the critical back path
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Fig. 3. Minor-types causing ambiguous Kuratowski subdivisions.

and thus might be extracted as minor-type A later on (see Figure 3). This
can be avoided by a special marker on the external backedges, to prohibit its
classification as a future critical backedge in A.

Bundle Variant. Moreover, we can extend our algorithm by a bundle variant
in which all root-to-root paths of each involved bicomp on a critical back path
are extracted. This approach increases the number of identified subdivisions dra-
matically, albeit on the cost of the running time. To speed up the backtracking
subroutine, it is possible to use algorithms for dynamic connectivity for pla-
nar graphs [8]. This increases the overall runtime only by a factor of log(n) in
comparison to the linear time approach in terms of output complexity.

3.5 Runtime Analysis

As described in Section 3.2, our strategy to identify the next reentry point needs
O(1) time for each traversed pertinent bicomp in the bicomp-tree T . Hence, its
overall running time is bounded by the Walkup costs. The Walkdown is not
modified except for finding this next reentry point. Additionally, all steps to
find stopping configurations and classify Kuratowski subdivisions can either be
bounded by the Walkup costs as well (e.g., extraction of critical backedges, see
Lemma 3) or can be done in linear total time (e.g., extraction of highest-face-
paths and highest-xy-paths, see Lemmata 4 and 5, respectively).

It remains to show that the modified Walkup can be bound by a linear total
of O(n+m+

∑
K∈S |E(K)|). We will only give a brief sketch of the proof, and
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omit a number of rather technical case differentiations. For a detailed analysis
see [16].

For the minor-types E1–E5 and AE1–AE4 it is necessary to compute at least
one external node strictly below the existing highest-xy-path in the stopping
configuration. Such nodes are called external z-nodes. They are computed by
checking the whole external face of the former bicomp containing the start node
of the chosen critical backedge on external nodes. Since this is expensive, we
restrict this computation to situations, where it is known that a minor-type E
or AE must exist or the whole external face can be checked without losing linear
time due to previous extracted subdivisions.

It is sufficient to consider only the costs of the Walkup, which cannot be com-
pensated by new embedded faces or new short-circuit edges. Therefore, we only
consider Walkup costs on critical backedge paths. If these are part of stopping
configurations on non-forebear bicomps, the sum of all critical backedge-path
costs on all forebear bicomps can be estimated as follows: we spend at most
O(n+m+

∑
K∈S |E(K)|) time on the external face, and at most O(m) time on

inner faces containing the forebear root. Moreover, all other costs caused by stop-
ping configurations in non-forebear bicomps are compensated by the inevitably
induced minor A, since this minor-type contains all other traversed edges.

Otherwise, the stopping configuration is contained in a forebear bicomp.
Since most minor-types do not contain the whole external face in their Kura-
towski subdivisions, all not yet compensated costs arise on its external face. The
only exception to this rule are the critical paths on minors E2 and AE2, which
can be bound by a linear total as well. These remaining costs can be compen-
sated by the extracted Kuratowski paths of the different minor-types. Hence we
yield Theorem 1, which is optimal in terms of output complexity.

Theorem 1. The overall running time of the algorithm is O(n+m+
∑

K∈S |E(K)|)
and therefore linear.

Based on this, we obtain the following related result for the computation
time of the bundle variant.

Theorem 2. The overall running time of the bundle variant of the algorithm is
O(n+m+ logn

∑
K∈S |E(K)|).

4 Experimental Analysis

We implemented the algorithm and its bundle variant as part of the open-source
C++-based Open Graph Drawing Framework (OGDF) [1]. All tests were per-
formed on an Intel Core2Duo E6300 with 1.86 GHz and 2GB RAM using the
GNU-compiler gcc-3.4.4 (-o1).

Due to the algorithmic complexities, we simplified the steps to compute the
critical backedges and highest-xy-paths. We correctly orient B in time O(|B|).
Although this simplification breaks the provable linear runtime, our experiments
show that it does not influence the running time negatively in practice, since the
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Fig. 4. Running times of the bundle variant on the Rome Library and the linear vari-
ant on the random graphs. The linear variant for the Rome Library would be nearly
invisible in the very left corner of the figure. Note that the bundle variant is not linear
in general.

number of extracted Kuratowski edges becomes the dominant term. The bundle
variant uses a traditional back-tracking scheme and therefore does not guarantee
the theoretical logarithmic bound.

We use the graphs of the well-known Rome Library [2], which contains 11528
real-world graphs with 10 to 100 nodes, 8249 of which are non-planar graphs. We
also use random graphs (n = 10 . . . 500, m = 2n) generated by OGDF. Thereby
we start with an empty graph on n vertices and iteratively add an edge with
random start and end node, until m unique edges are added.

For the relatively small and sparse graphs of the Rome Library, the algo-
rithm is nearly as fast as the plain planarity test itself. Each Rome graph is
processed in less than 11 ms (on average: 1.3 ms). The average amount of ex-
tracted Kuratowski subdivisions per 100-node graph is 255, containing in total
12214 Kuratowski edges. It is interesting that the average size of the subdivisions
grows approximately with n/2 throughout all tests.

More Kuratowski subdivisions are obtained by the bundle variant. Thereby,
each graph is processed in less than 1 sec (but on average less than 7 ms),
extracting up to 3.5 million Kuratowski edges at some graphs (see Figures 4
and 5). There are 2912 subdivisions on average per 100-node graph with 136027
Kuratowski edges.

On the random graphs, the number of identified Kuratowski subdivisions
increases dramatically for the bundle variant, such that a full computation be-
comes prohibitive. In practice, one can of course stop the computation after a
certain amount of Kuratowski subdivisions has been identified.

Hence, we restrict our test to the linear variant for these random graphs
(see Figures 4 and 5). Each graph needs less than 430 ms (126 ms on average),
extracting up to 25000 Kuratowski subdivisions per graph containing 5 million
Kuratowski edges. The average number of Kuratowski subdivisions is 8813 per
graph with 1.3 million Kuratowski edges.
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Fig. 5. Number of Kuratowski subdivisions of each test.

Overall, the experiments show a linear running time, despite the aforemen-
tioned simplifications of the algorithm. The minor-types are dominated by the
types AE1–AE4, which constitute 60%–90% of all subdivisions on graphs with
at least 100 nodes.
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