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Abstract

It is well-known that every graph with maximum degree 4 has an orthogonal
drawing with area at most 49

64 n2 + O(n) ≈ 0.76n2. In this paper, we show that
if the graph is 3-connected, then the area can be reduced even further to 9

16 n2 +
O(n) ≈ 0.56n2. The drawing uses the 3-canonical order for (not necessarily planar) 3-
connected graphs, which is a special Mondshein sequence and can hence be computed
in linear time. To our knowledge, this is the first application of a Mondshein sequence
in graph drawing.

1 Introduction
An orthogonal drawing of a graph G = (V, E) is an assignment of vertices to points
and edges to polygonal lines connecting their endpoints such that all edge-segments are
horizontal or vertical. Edges are allowed to intersect, but only in single points that are not
bends of the polygonal lines. Such an orthogonal drawing can exist only if every vertex
has degree at most 4; we call such a graph a 4-graph. It is easy to see that every 4-graph
has an orthogonal drawing with area O(n2), and this is asymptotically optimal [17].

For planar 2-connected graphs, several authors showed independently [15, 10] how to
achieve area n × n, and this is optimal [16]. We measure the drawing-size as follows.
Assume (as we do throughout the paper) that all vertices and bends are at points with
integral coordinates. If H rows and W columns of the integer grid intersect the drawing,
then we say that the drawing occupies a W × H-grid with width W , height H, half-
perimeter H + W and area H ·W . Some papers count as width/height the width/height
of the smallest enclosing axis-aligned box. This is one unit less than with our measure.

For arbitrary graphs (i.e., graphs that are not necessarily planar), improved bounds
on the area of orthogonal drawings were developed much later, decreasing from 4n2 [11]
to n2 [1] to 0.76n2 [9]. (In all these statements, we omit lower-order terms for ease of
notation.)
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Our results: In this paper, we decrease the area-bound for orthogonal drawings further to
0.56n2+O(n) under the assumption that the graph is 3-connected. The approach is similar
to the one by Papakostas and Tollis [9]: add vertices to the drawing in a specific order,
and pair some of these vertices so that in each pair one vertex re-uses a row or column
that was used by the other. The main difference in our paper is that 3-connectivity allows
the use of a different, stronger, vertex order.

It has been known for a long time that any planar 3-connected graph has a so-called
canonical order [7], which is useful for planar graph drawing algorithms. It was mentioned
that such a canonical order also exists in non-planar graphs (e.g. in [4, Remark on p.113]),
but it was not clear how to find it efficiently, and it has to our knowledge not been used for
graph drawing algorithms. Recently, the second author studied the so-called Mondshein
sequence, which is an edge partition of a 3-connected graph with special properties [8],
and showed that it can be computed in linear time [13]. A Mondshein sequence is the
appropriate generalization of the canonical order to (not necessarily planar) 3-connected
graphs [13] and is most naturally defined by ear decompositions. However, in order to
highlight its relation to canonical orders, we define a Mondshein sequence here as a special
vertex partition and call it a 3-canonical order.

We use this 3-canonical order to add vertices to the orthogonal drawing. This almost
immediately lowers the resulting area, because vertices with one incoming edge can only
occur in chains. We then mimic the pairing-technique of Papakostas and Tollis, and pair
groups of the 3-canonical order in such a way that even more rows and columns can be
saved, resulting in a half-perimeter of 3

2n + O(1) and the area-bound follows.
No previous algorithms were known that achieve smaller area for 3-connected 4-graphs

than for 2-connected 4-graphs. For planar graphs, the orthogonal drawing algorithm by
Kant [7] draws 3-connected planar 4-graphs with area (2

3n)2 + O(n) [14], while the best-
possible area for planar 2-connected graphs is n2 [16].

2 Preliminaries
Let G = (V, E) be a graph with n = |V | vertices and m = |E| edges. The degree of a
vertex v is the number of incident edges. In this paper, all graphs are assumed to be
4-graphs, i.e., all vertex degrees are at most 4. A graph is called 4-regular if every vertex
has degree exactly 4; such a graph has m = 2n edges.

A graph G is called connected if, for any two vertices u, v, there is a path in G connecting
u and v. It is called 3-connected if n > 3 and, for any two vertices u, v, the graph G−{u, v}
is connected.

A loop is an edge (v, v) that connects an endpoint with itself. A multi-edge is an edge
(u, v) for which another copy of edge (u, v) exists. When not otherwise stated, the graph G
that we want to draw is simple, i.e., it has neither loops nor multi-edges. While modifying
G, we will sometimes temporarily add a double edge, i.e., an edge for which exactly one
other copy exists (we refer always to the added edge as double edge, the copy is not a
double edge).
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2.1 The 3-canonical order

Definition 1. Let G be a 3-connected graph. A 3-canonical order (or Mondshein se-
quence) is a partition of V into groups V = V1 ∪ · · · ∪ Vk such that

• V1 = {v1, v2}, where (v1, v2) is an edge.

• Vk = {vn}, where (v1, vn) is an edge.

• For any 1 < i < k, one of the following holds:

– Vi = {z}, where z has at least two predecessors and at least one successor.
– Vi = {z1, . . . , z`} for some ` ≥ 2, where

– z1, . . . , z` is an induced path in G (i.e. edges z1 − z2 − · · · − z` exist, and
there are no edges (zi, zj) with i < j − 1),

– z1 and z` have exactly one predecessor each, and these predecessors are
different,

– zj for 1 < j < ` has no predecessor,
– zj ∈ Vi for 1 ≤ j ≤ ` has at least one successor.

Here, a predecessor [successor] of a vertex in Vi is a neighbor that occurs in a group
Vh with h < i [h > i]. See Figure 1 for a 3-canonical order.

We call a vertex group Vi a singleton if |Vi| = 1, and a chain if |Vi| ≥ 2 and i ≥ 2. We
distinguish chains further into short chains with |Vi| = 2 and long chains with |Vi| ≥ 3.
A 3-canonical order imposes a natural orientation on the edges of the graph from lower-
indexed groups to higher-indexed groups and, for edges within a chain, from one (arbitrary)
end of the path to the other. This implies in-degree indeg(v) ≥ 2 for any singleton,
indeg(v) = 2 for exactly one vertex of each chain, and indeg(v) = 1 for all other vertices
of a chain.

Numerous related methods of ordering vertices of 3-connected graphs exist, e.g. (2,1)-
sequences [8], non-separating ear decompositions [2, 13], and, limited to planar graphs,
canonical orders for maximal planar graphs [6], canonical orders for 3-connected planar
graphs [7] and orderly spanning trees [3]. A Mondshein sequence (i.e. a 3-canonical order)
of a 3-connected graph implies all these orders, up to minor subtleties.

The most efficient way known to compute a Mondshein sequence (proving in particular
that one exists) uses non-separating ear decompositions [2, 13]. This is a partition of the
edges into ears P1 ∪ · · · ∪ Pk = E such that P1 is an induced cycle, Pi for i > 1 is a non-
empty induced path that intersects P1∪· · ·∪Pi−1 in exactly its endpoints, and G−

⋃i
j=1 Pj

is connected for every i < k. Such a non-separating ear decomposition exists for any 3-
connected graph [2], and we can even fix two edges v1v2 and v2vn and require that v1v2 is
in the cycle P1 and that vn is the only vertex in Pk; hence, Pk will be a singleton.

Further, such a non-separating ear decomposition can be computed in linear time [12,
13]. The sets of newly added vertices for each Pi will be the vertex groups of a 3-canonical
order (additionally, P1 is split into the groups V1 := {v1, v2} and V2 := V (P1)− {v1, v2}).
Although vertices in Vi may have arbitrarily many incident edges in a non-separating ear
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Figure 1: A 4-regular 3-connected graph with a 3-canonical order, and the drawing created
with our algorithm. For illustrative purposes, we show the drawing exactly as created, even
though many more grid lines and bends could be saved with straightforward compaction
steps. V2 is a long chain, V4 is a short chain, V5 is a 2-2-singleton, V3, V6, V7 and V8 are
3-1-singletons.

decomposition, we can easily get rid of these extra edges by a simple short-cutting routine
in linear time (see Lemmas 8 and 12 in [12]). This gives a 3-canonical order. Thus, a
linear-time algorithm for computing a 3-canonical order follows immediately from the one
for non-separating ear decompositions.

2.2 Making 3-connected 4-graphs 4-regular

It will greatly simplify the description of the algorithm if we only give it for 4-regular
graphs. Thus, we want to modify a 3-connected 4-graph G such that the resulting graph
G′ is 4-regular, draw G′, and then delete added edges to obtain a drawing of G. However,
we must maintain a simple graph since the existence of 3-canonical orders depends on
simplicity. This turns out to be impossible (e.g. for the graph obtained from the octahedron
by subdividing two distinct edges with a new vertex and joining the new vertices by an
edge), but allowing one double edge is sufficient.

Lemma 2. Let G be a simple 3-connected 4-graph with n ≥ 5. Then we can add edges to
G′ such that the resulting graph G′ is 3-connected, 4-regular, and has at most one double
edge.

Proof. Since G is 3-connected, any vertex has degree 3 or 4. If there are four or more
vertices of degree 3, then they cannot be mutually adjacent (otherwise G = K4, which
contradicts n ≥ 5). Hence, we can add an edge between two non-adjacent vertices of
degree 3; this maintains simplicity and 3-connectivity.

We repeat until only two vertices of degree 3 are left (recall that the number of vertices
of odd degree is even). Now an edge between these two vertices is added, even if one existed
already; this edge is the only one that may become a double edge. The resulting graph is
4-regular and satisfies all conditions.
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3 Creating orthogonal drawings
From now on, let G be a 3-connected 4-regular graph that has no loops and at most one
double edge. Compute a 3-canonical order V = V1∪· · ·∪Vk of G with Vk = {vn}, choosing
v1vn to be the double edge if there is one. Let xshort and xlong be the number of short and
long chains. Let xj-` be the number of vertices with in-degree j and out-degree `. Since
G is 4-regular, we must have j + ` = 4. A j-`-singleton is a vertex z that constitutes a
singleton group Vi for 1 < i ≤ k and that has in-degree j and out-degree `.

Observation 3. Let G be a 4-regular graph with a 3-canonical order. Then

1. x0-4 = x4-0 = 1

2. x1-3 = x3-1

3. Every chain Vi contributes one to x2-2 and |Vi| − 1 to x1-3.

Proof. (1) holds, since every vertex that is different from vn has a successor, and every
vertex that is different from v1 has an incoming edge from either a predecessor or within
its chain. For (2), observe that 2n = m =

∑
v indeg(v) = x1-3 + 2x2-2 + 3x3-1 + 4x4-0

and n = x0-4 + x1-3 + x2-2 + x3-1 + x4-0, and rearrange. For (3), say Vi = {z1, . . . , z`} is
directed from z1 to z`. Then indeg(z`) = 2 and indeg(zj) = 1 for all j < `.

3.1 A simple algorithm

As in many previous orthogonal drawing papers [1, 7, 9], the idea is to draw the graph
Gi induced by V1 ∪ · · · ∪ Vi in such a way that all unfinished edges (edges with one end in
Gi and the other in G − Gi) end in a column that is unused above the point where the
drawing ends.
Embedding the first two vertices: If (v1, vn) is a single edge, then v1 and v2 are embedded
exactly as in [1]: refer to Fig. 2. If (v1, vn) is a double edge, then it was added only for
the purpose of making the graph 4-regular and need not be drawn. In that case, we omit
one of the outgoing edges of v1 that has a bend.
Embedding a singleton: If Vi is a singleton {z}, we embed z exactly as in [1]: refer to
Fig. 2. For indeg(z) ∈ {2, 3}, this adds one new row and outdeg(z) − 1 = 3 − indeg(z)
many new columns. For indeg(z) = 4, z = vn; if (v1, vn) is a double edge, we omit the
edge having two bends.

z z z

Figure 2: Embedding the first two vertices, and a singleton with in-degree 2, 3, 4. Newly
added grid-lines are dotted.

Embedding chains: Let Vi be a chain, say Vi = {z1, . . . , z`} with ` ≥ 2. For chains, our
algorithm is substantially different from [1]. Only z1 and z` have predecessors. We place
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the chain-vertices on a new horizontal row above the previous drawing, between the edges
from the predecessors; see Fig. 3. We add new columns as needed to have space for new
vertices and outgoing edges without using columns that are in use for other unfinished
edges. We also use a second new row if the chain is a long chain.

Figure 3: Embedding short and long chains.

Observation 4. The increase in the half-perimeter is as follows:

• For the first and last vertex-group: O(1)

• For a 3-1-singleton: +1 (we add one row)

• For a 2-2-singleton: +2 (we add one row and one column)

• For a short chain: +3 (we add one row and two columns)

• For a long chain Vi: +2|Vi| (we add two rows and 2|Vi| − 2 columns)

Corollary 5. The half-perimeter is at most 3
2n + 1

2x2-2 − xshort + O(1).

Proof. From Observation 4 and using Observation 3.3 the half-perimeter is at most x3-1 +
2x2-2 + 2x1-3 − xshort + O(1). By Observation 3.2 this is at most 3

2x3-1 + 2x2-2 + 3
2x1-3 −

xshort + O(1), which gives the result.

Theorem 6. Every simple 3-connected 4-graph has an orthogonal drawing of area at most
25
36n2 + O(n) ≈ 0.69n2.

Proof. First, make the graph 4-regular, compute the 3-canonical order, and consider the
number x2-2 of 2-2-vertices.

1. If x2-2 ≤ n/3, apply the above algorithm. By Corollary 5, the half-perimeter is at
most 3

2n + 1
6n + O(1) ≤ 5

3n + O(1).

2. If x2-2 ≥ n/3, apply the algorithm from [9]. They state their area bound as 0.76n2 +
O(1), but one can observe (see [9, Theorem 3.1, ll.2–5]) that their half-perimeter
is at most 2n − 1

2(x1-3 + x2-2) + O(1), since they pair at least x1-3 + x2-2 vertices.
Using Observation 3.2 and ignoring O(1) terms, we have x1-3 + x2-2 = 1

2x1-3 +
x2-2 + 1

2x3-1 = 1
2n + 1

2x2-2. Hence, the half-perimeter of their algorithm is at most
7
4n− 1

4x2-2 + O(1) ≤ (7
4 −

1
12)n + O(1) = 5

3n + O(1).

In both cases, we get a drawing with half-perimeter 5
3n + O(1). The area of it is maximal

if the two sides are equally large and thus at most (5
6n + O(1))2.
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3.2 Improvement via pairing

We already know a bound of 3
2n+ 1

2x2-2−xshort +O(1) on the half-perimeter. This section
improves this further to half-perimeter 3

2n + O(1). The idea is strongly inspired by the
pairing technique of Papakostas and Tollis [9]. They created pairs of vertices with special
properties such that at least 1

2(x2-2 + x1-3) such pairs must exist. For each pair, they can
save at least one grid-line, compared to the 2n + O(1) grid-lines created with [1].

Our approach is similar, but instead of pairing vertices, we pair groups of the canonical
order by scanning them in backward order as follows:

1. Initialize i := k − 1. (We ignore the last group, which is a 4-0-singleton.)

2. While Vi is a 3-1-singleton and i > 2, set i := i− 1.

3. If i = 2, break. Else, Vi is a chain or a 2-2-singleton and we choose the partner of Vi

as follows: Initialize j := i− 1. While Vj is a 3-1-singleton whose successor is not in
Vi, set j := j − 1. Now, pair Vi with Vj . Observe that such a Vj with j ≥ 2 always
exists, since i > 2 and V2 is not a 3-1-singleton.

4. Update i := j − 1 and repeat from Step (2) onwards.

In the small example in Fig. 1, the 2-2-singleton V5 gets paired with the short chain
V4, and all other groups are not paired.

Observe that, with the possible exception of V2, every chain is paired and every 2-2-
vertex is in a paired group (either as 2-2-singleton or as part of a chain). Hence there are
at least 1

2(x2-2 − 1) pairs. The key observation is the following:

Lemma 7. Let Vi, Vj be two vertex groups that are paired. Then there exists a method
of drawing Vi and Vj (without affecting the layout of any other vertices) such that the
increase to rows and columns is at most 2|Vi ∪ Vj | − 1.

We defer the (lengthy) proof of Lemma 7 to the next section, and study here first
its consequences. We can draw V1 and Vk using O(1) grid-lines. We can draw V2 using
2|V2| = 2x2-2

V2
+2x1-3

V2
new grid-lines, where x`-k

W denotes the number of vertices of in-degree
` and out-degree k in vertex set W . We can draw any unpaired 3-1-singleton using one
new grid-line. Finally, we can draw each pair using 2|Vi ∪ Vj | − 1 = 2x2-2

Vi∪Vj
+ 2x1-3

Vi∪Vj
− 1

new grid-lines. This covers all vertices, since all 2-2-singletons and all chains belong to
pairs or are V2, and since there are no 1-3-singletons.

Putting it all together and using Observation 3.2, the number of grid-lines hence is
2x1-3 + 2x2-2 + x3-1−#pairs+ O(1) ≤ 2x1-3 + 3

2x2-2 + x3-1 + O(1) = 3
2n + O(1) as desired.

Since a drawing with half-perimeter 3
2n has area at most (3

4n)2 = 9
16n2, we can conclude:

Theorem 8. Every simple 3-connected 4-graph has an orthogonal drawing of area at most
9
16n2 + O(n) ≈ 0.56n2.

We briefly discuss the run-time. The 3-canonical order can be found in linear time.
Most steps of the drawing algorithm work in constant time per vertex, hence O(n) time
total. One difficulty is that to place a group we must know the relative order of the
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columns of the edges from the predecessors. As discussed extensively in [1], we can do
this either by storing columns as a balanced binary search tree (which uses O(log n) time
per vertex-addition), or using the data structure by Dietz and Sleator [5] which allows to
find the order in O(1) time per vertex-addition. Thus, the worst-case run-time to find the
drawing is O(n).

4 Proof of Lemma 7
Recall that we must show that two paired vertex groups Vi and Vj , with j < i, can be
embedded such that we use at most 2|Vi|+ 2|Vj | − 1 new grid-lines. The proof of this is a
massive case analysis, depending on which type of group Vi and Vj are, and whether there
are edges between them or not.1 We first observe some properties of pairs.
Observation 9. By choice of the pairing, the following holds:

1. For any pair (Vi, Vj) such that j < i, Vi is either a 2-2-singleton or a chain.

2. If Vi is paired with Vj such that j < i, then all predecessors of Vi are in Vj or occurred
in a group before Vj.

The following notation will cut down the number of cases a bit. We say that groups Vi

and Vj are adjacent if there is an edge from a vertex in one to a vertex in the other group.
If two paired groups Vi, Vj are not adjacent, then by Observation 9.2 all predecessors of
Vi occur before group Vj . We hence can safely draw Vi first, and then draw Vj , thereby
effectively exchanging the roles of Vi and Vj in the pair. Now, we distinguish five cases:

1. At least one of Vi and Vj is a short chain. Say Vi is the short chain, the other case
is similar. Recall that the standard layout for a short chain uses 3 new grid-lines,
but x2-2

Vi
+ x1-3

Vi
= 2. So the layout of a short chain automatically saves one grid-line.

We do not change the algorithm at all in this case; laying out Vi and Vj exactly as
before results in at most 2x2-2

Vi∪Vj
+2x1-3

Vi∪Vj
−1 new grid-lines. (This is what happens

in the example of Fig. 1.)

2. One of Vi and Vj is a 3-1-singleton. By Observation 9, the 3-1-singleton must be Vj .
By the pairing algorithm, the unique outgoing edge of the 3-1-singleton must lead to
Vi. Draw Vj as before. We can then draw Vi such that it re-uses one of the columns
that were freed by Vj ; see Fig. 4.

3. Vi and Vj are both long chains. In this case, both Vi and Vj can use the same extra
row for the “detours” that their middle vertices (by which we mean vertices that are
neither the first nor the last vertex of the chain) use. Since we can freely choose into
which columns these middle vertices are placed, we can ensure that none of these
“detours” overlap and, hence, one row suffices for both chains. This holds even if
one or both of the predecessors of Vi are in Vj , as these are distinct and the two
corresponding incoming edges of Vi extend the edges that were already drawn for
Vj ; see Fig. 5.

1The constructions we give have been designed as to keep the description simple; often even more
grid-lines could be saved by doing more complicated constructions.
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Vj

Vi

Vj

Vi

Figure 4: Reusing the column freed by a 3-1-singleton with a later chain or singleton. In
this and the following figures, the re-used grid-line is dotted and red.

Vj

Vi

Vj

Vi

Vj

Vi

Figure 5: Sharing the extra row between two long chains when there are 0, 1 or 2 prede-
cessors of Vi in Vj .

4. None of the previous cases applies and Vj is a 2-2-singleton. By Observation 9.1 and
since Case (1) does not apply, Vi is either a 2-2-singleton or a long chain. There
are two columns reserved for edges from predecessors of Vj . Since predecessors of Vi

are distinct, at most one of them can be the 2-2-singleton in Vj . Thus, there also
is at least one column reserved for an edge from a predecessor of Vi not in Vj . We
call these three or four columns the predecessor-columns. We have three sub-cases
depending on the relative location of these columns:

(a) The leftmost predecessor-column leads to Vj . In this case, we save a column
almost exactly as in [9]. Place Vj as before, in the right one of its predecessor-
columns. This leaves the leftmost predecessor-column free to be reused. Now
no matter whether Vi is a 2-2-singleton or a long chain, or whether Vi is adjacent
to Vj or not, we can re-use this leftmost column for one outgoing edge of Vi

with a suitable placement; see Fig. 6.

Vj

Vi

Vj

Vi

Vj

Vi

Vj

Vi

Figure 6: Reusing the predecessor-column freed by a 2-2-singleton Vj in Case 4(a). Left
two pictures: Vi is not adjacent to Vj . Right two: Vi is adjacent to Vj .

(b) The rightmost predecessor-column leads to Vj . This case is symmetric to the
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Vj

Vi Vj

Vi

Figure 7: If the predecessor-columns of Vj are between the ones of Vi, then we can either
revert to Case 4(a) or the long chain Vi can re-use the row of Vj .

previous one.
(c) The leftmost and rightmost predecessor-columns lead to Vi. This implies that

Vi has two predecessors not in Vj . Hence, Vi cannot be adjacent to Vj . If Vi

is a 2-2-singleton, then (as discussed earlier) we can exchange the roles of Vi

and Vj , which brings us to Case 4(a). If Vi is a long chain, then place Vj in the
standard fashion. We then place the long chain Vi such that the “detours” of
its middle vertices re-use the row of Vj . See Fig. 7.

5. None of the previous cases applies. Then Vj is a chain, say Vj = {z1, . . . , z`}, and
` ≥ 3 since Case (1) does not apply. We assume the naming is such that the
predecessor column of z1 is left of the predecessor column of z`.
Since we are not in a previous case, Vi must be a 2-2-singleton, say z. If Vi is not
adjacent to Vj , then we can again exchange the roles of Vi and Vj , which brings us
to Case (4). Hence, we may assume that there are edges between Vj and Vi. We
distinguish the following sub-cases depending on how many such edges there are and
whether their ends are middle vertices.

(a) z has exactly one neighbor in Vj , and it is either z1 or z`. We rearrange Vi ∪Vj

into two different chains. Let z be adjacent to z1 (the other case is symmetric).
Then {z, z1} forms one chain and {z2, . . . , z`} forms another. Embed these two
chains as usual. Since {z, z1} forms a short chain, this saves one grid-line; see
Fig. 8(left).

(b) z has exactly one neighbor in Vj , and it is zh for some 1 < h < `. Embed
the chain Vj as usual, but omit the new column next to zh. For embedding z,
we place a new row below the rows for the chain. Using this new row, we can
connect the bottom outgoing edge of zh to the horizontal incoming edge of z;
see Fig. 8(right).

zz1

z2 z`

z

z1 z`zh

Figure 8: Vj is a long chain, Vi is a 2-2-singleton with one predecessor in Vj .
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z
z1 z`

zhzg
z

z1

z2

z`

z1

z`

z

zh

zh−1

z` = zh
z

zh−1

z1

Figure 9: Vj is a long chain, Vi is a 2-2-singleton, and there are exactly two edges between
them. (Top) Cases 5(c) and (d). (Bottom) Case 5(e).

(c) z has two neighbors in Vj , and both of them are middle vertices zg, zh for
1 < g < h < `. Embed the chain Vj as usual, but omit the new columns next
to zg and zh. Place a new row between the two rows for the chain and use it
to connect the two bottom outgoing edges of zg and zh to place z, re-using the
row for the detours to place the bottom outgoing edge of z. This uses an extra
column for z, but saved two columns at zg and zh, so overall one grid-line has
been saved; see Fig. 9(top left).

(d) z is adjacent to z1 and z2 (the case of adjacency to z`−1 and z` is symmetric).
Embed z2, . . . , z` as usual for a chain, then place z1 below z2. The horizontally
outgoing edge of z2 intersects one outgoing edge of z1. Put z at this place to
save a row and a column; see Fig. 9(top right).

(e) z is adjacent to z1 and zh with h > 2 (the case of adjacency to z` and zh

with h < ` − 1 is symmetric). Draw the chain Vj with the modification that
zh is below zh−1, but still all middle vertices use the same extra row for their
downward outgoing edges. This uses 3 rows, but now z can be placed using the
two left outgoing edges of z1 and zh, saving a row for z and a column for the
left outgoing edge of zh; see Fig. 9(bottom), both for h < ` and h = `.

This ends the proof of Lemma 7 and hence shows Theorem 8.

5 Conclusion
In this paper, we gave an algorithm to create an orthogonal drawing of a 3-connected 4-
graph that has area at most 9

16n2+O(n) ≈ 0.56n2. As a main tool, we used the 3-canonical
order / Mondshein sequence for non-planar 3-connected graphs, whose existence was long
known but only recently efficient algorithms for it were found. To our knowledge, this
is the first application of the 3-canonical order on non-planar graphs in graph-drawing.
Among the many remaining open problems are the following:

• Can we draw 2-connected 4-graphs with area less than 0.76n2? A natural approach
would be to draw each 3-connected component with area 0.56n2 and to merge them
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suitably, but there are many cases depending on how the cut-vertices and virtual
edges are drawn, and so this is far from trivial.

• Can we draw 3-connected 4-graphs with (2 − ε)n bends, for some ε > 0? With an
entirely different algorithm (not given here), we have been able to prove a bound of
2n− x2-2 + O(1) bends, so an improved bound seems likely.

• Our algorithm was strongly inspired by the one of Kant [7] for 3-connected planar
graphs. Are there other graph drawing algorithms for planar 3-connected graphs
that can be transferred to non-planar 3-connected graphs by using the 3-canonical
order?

Acknowledgments. We wish to thank the anonymous reviewers for their constructive
comments.
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