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Abstract

We propose a conjecture regarding the lower bound for the number
of edges in locally k-connected graphs and we prove it for k = 2. In
particular, we show that every connected locally 2-connected graph is
M3-rigid. For the special case of surface triangulations, this fact was
known before using topological methods. We generalize this result to
all locally 2-connected graphs and give a purely combinatorial proof.

Our motivation to study locally k-connected graphs comes from
lower bound conjectures for flag triangulations of manifolds, and we
discuss some more specific problems in this direction.

1 Introduction

In this note we study graph connectivity from a local perspective. A simple
graph G = (V,E) is k-connected, for k ≥ 1, if G −W is non-empty and
connected for every set W ⊆ V with |W | ≤ k − 1.1 For a vertex v ∈ V
the link of v in G, denoted lkGv, is the subgraph of G induced by the
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1According to our definition the complete graph Kk is k-connected, which is not the

case if one uses the alternative definition via k vertex-disjoint paths between every pair of
vertices.
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open neighborhood of v (our graphs are simple and loop-less, so the open
neighborhood of v does not contain v).

If P is any graph property then we say a graph G has the property P
locally, in short G is locally P, if for every vertex v ∈ V the link lkGv of v
satisfies P. Various well-studied graph properties have local descriptions; for
instance triangle-free graphs are locally edge-less and quasi-line graphs are
defined as locally co-bipartite. Local graph properties of the kind concerned
in this paper are notoriously difficult to study because of the possibly intri-
cate ways the vertex neighborhoods can intersect. The purpose of this note
is to propose the following conjecture and study some of its special cases.

Conjecture. For every k ≥ 1 there exists a constant F (k) for which the
following holds. For any connected, locally k-connected graph G,

|E(G)| ≥ (k + 1)|V (G)| − F (k) .

It is known that F (1) = 3, that is every n-vertex, connected, locally
connected graph has at least 2n−3 edges [12]. Our main result, Theorem 5,
gives the lower bound of 3n − 6 for the number of edges in a connected,
locally 2-connected graph on n vertices. That establishes F (2) = 6. For
k ≥ 3 the conjecture, as of now, is open.

Note that if G is connected, locally k-connected and different from Kk+1,
then every vertex has degree at least k + 1, so trivially G satisfies |E| ≥
k+1
2 |V |. Our conjecture is then an attempt to improve this bound by roughly

a factor of 2. The conjecture is the strongest possible, in the sense that the
linear term (k+ 1)|V | cannot be replaced with (k+ 1 + ε)|V | for any ε > 0,
see Example 6.

If G is a graph of a triangulation of a surface (connected, without
boundary) then the link of every vertex in G is Hamiltonian, so in par-
ticular G is connected and locally 2-connected. In this case the lower bound
|E(G)| ≥ 3|V (G)| − 6 is a classical consequence of the Euler characteristic
formula. Local 2-connectedness can be seen as a good graph-theoretic gen-
eralization, which leads to a purely combinatorial proof of the same bound.
In fact we will take this analogy even further, showing that a connected,
locally 2-connected graph is M3-rigid (Definition 1) in the sense of Tay [8],
generalizing the same statement for graphs of surfaces [8].

In Sect. 4 we propose further conjectures and briefly explain the moti-
vation behind questions of this kind, which are inspired by the study of flag
manifold triangulations.
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Related work on local connectivity. Zelinka [12] showed F (1) = 3.
Structural properties of locally 1-connected and (globally)m-connected graphs
for various m were studied at depth by Kriesell [6]. Some sufficient condi-
tions for a graph to be locally k-connected are given by Chartrand and
Pippert [3]. Not much is known about lower bounds, except for the result
of Vanderjagt [9], who finds lower bounds for the number of vertices in a
m-connected, locally k-connected graph.

Borowiecki, Borowiecki, Sidorowicz and Skupień [2] show that |E(G)| ≥
(k+1)|V (G)|−

(
k+2
2

)
holds for graphs G that are locally k-trees (A k-tree is

a graph formed from the complete graph Kk by repeatedly adding vertices
so that the neighborhood of every new vertex is a k-clique.). Every k-tree
is k-connected, so Conjecture 1 holds for the smaller class of locally k-trees.
We will discuss the relation between the resulting constant terms in the last
section.

2 Preliminaries

Let us first establish additional notation. For a graph G, let V (G) denote
its set of vertices and E(G) its set of edges. Let G be a graph. For subsets
W ⊆ V (G), let G[W ] denote the subgraph of G induced by W . To simplify
notation we writeG−W forG[V (G)\W ] andG−v forG−{v}. For v ∈ V (G)
let NG(v) = {w ∈ V : vw ∈ E} and NG[v] = NG(v) ∪ {v}. We define the
degree and link of v in G as degG(v) = |NG(v)| and lkGv = G[NG(v)]. A
graph H is a spanning subgraph of G if V (H) = V (G) and E(H) ⊆ E(G).

We use standard symbols for special graphs: Pn for a path, Cn for a cycle
and Kn for a complete graph with n vertices. If H is a graph on at most n
vertices then Kn − H denotes the graph obtained from Kn by removing a
set of edges which forms a subgraph isomorphic to H.

For k ≥ 1, we define

βk(G) = |E(G)| − (k + 1)|V (G)| . (1)

For vertex sets W ⊆ V (G) we denote by E(G,W ) the subset of E(G)
consisting of those edges which have at least one end in W . The following
definition is adapted from Tay [8] and Whiteley [11].

Definition 1. For d ∈ N, a graph G is Md-rigid if for every set W ⊆ V (G)
for which |V (G) \W | ≥ d, we have |E(G,W )| ≥ d|W |.

It is easy to see that an Md-rigid graph G which contains at least one
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clique of size d satisfies the lower bound

|E(G)| ≥ d|V (G)| −
(
d+ 1

2

)
, (2)

i.e., βd−1(G) ≥ −
(
d+1
2

)
. Indeed, if C = {v1, . . . , vd} is a clique then

|E(G)| = |E(G,V (G)\C)|+
(
d

2

)
≥ d(|V (G)|−d)+

(
d

2

)
= d|V (G)|−

(
d+ 1

2

)
.

3 Locally 2-connected graphs

In this section we establish Conjecture 1 for k = 2. To show that a locally
2-connected graph G cannot be too sparse we employ a recursive approach,
which we now outline. If the degree of every vertex in G is at least 6 then
we have even more than we need, since then |E(G)| ≥ 3|V (G)|. Otherwise,
we choose a vertex v of degree at most 5 and remove it. This can affect
the 2-connectivity of certain links, but we fix it by adding some new edges
between the vertices of NG(v). If the number of new edges is not too large
then the whole process does not increase β2 and induction follows. This
reduction step takes place in Proposition 4, after which the main result of
this section, Theorem 5, is a simple consequence.

We proceed with the technical lemmas used to describe the modifications
of the graph. The next lemma is classical (a proof of its second claim was
also given by West [10, Lemma 4.2.3]).

Lemma 2. Let k ≥ 1, let G be a graph and let v ∈ V (G).

a) If G and lkGv are k-connected, then G− v is k-connected.

b) If degG(v) ≥ k and G− v is k-connected, then G is k-connected.

Proof. a) The claim is obvious when k = 1. Now suppose that k ≥ 2 and
let W ⊆ V (G) \ {v} be any set with |W | ≤ k − 1. The graphs G − W
and lkG−W v = lkGv −W are connected by assumption. By the claim for
1-connectivity, the graph (G −W ) − v = (G − v) −W is connected. Since
the choice of W was arbitrary, we get that G− v is k-connected.

b) Let W ⊆ V (G) be any set with |W | ≤ k− 1. If v ∈W then G−W =
(G − v) − (W \ {v}) is non-empty and connected, by the k-connectivity
of G − v. If v 6∈ W then (G − v) −W is non-empty and connected, and
moreover degG−W (v) ≥ 1. This implies that G−W is connected. Since the
choice of W was arbitrary, we obtain that G is k-connected.
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We will say that a graph transformation is 2-admissible if it transforms
a 2-connected graph into a 2-connected graph. For clarity, we remind the
reader that according to our definition the graph K2 is 2-connected.

Lemma 3. The following graph operations are 2-admissible:

• del(v): remove a vertex v whose link is 2-connected.

• add(v; v1, . . . , vs): add a new vertex v adjacent to existing vertices
v1, . . . , vs with s ≥ 2.

• add(xy): add a new edge between existing vertices x, y.

• v → x: rename an existing vertex v with a new label x, not used for
any other vertex of the graph.

• sub(xy; v): subdivide the edge xy with a new vertex v, as long as the
initial graph had at least 3 vertices.

Proof. The transformations del(v) and add(v; v1, . . . , vs) are 2-admissible
by Lemma 2. For add(xy) the connectivity can only improve while v → x
preserves the isomorphism type of the graph. Finally for sub(xy; v) the
property is easily seen directly.

Note that if G is a 2-connected graph and there is a sequence of 2-
admissible transformations which carries G into a spanning subgraph of
some graph H, then H is also 2-connected.

Proposition 4. Let G be a connected, locally 2-connected graph other than K3

and let v ∈ V (G) be a vertex with degG(v) ≤ 5. Then there exists a con-
nected, locally 2-connected graph H such that

V (H) = V (G) \ {v}, E(G− v) ⊆ E(H) and β2(H) ≤ β2(G) .

Note that the last two conditions imply a double inequality

0 ≤ |E(H)| − |E(G− v)| ≤ degG(v)− 3 . (3)

Proof. For brevity let n = |V (G)|, m = |E(G)| and d = degG(v). If G
is connected, locally 2-connected and contains a vertex of degree at most
2 then it is easy to conclude that G = K3, contradicting our assumption.
Hence, 3 ≤ d ≤ 5. There are 14 possible isomorphism types that lkGv can
have. We will show that in each of those 14 cases,

one can add at most d − 3 edges between the vertices
of NG(v), so that if G′ is the graph thus obtained and
H = G′ − v, then H is connected and locally 2-connected.

(?)
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This will complete the proof, since H has n− 1 vertices and H has at most
m− d+ (d− 3) = m− 3 edges; hence

β2(G) = m− 3n = (m− 3)− 3(n− 1) ≥ β2(H) .

It is obvious that H satisfies the other required properties.
We proceed to describe how to perform the operation (?). Note that if

u ∈ V (G) \NG[v] then lkGu is a spanning subgraph of lkHu, hence lkHu is
2-connected regardless of which edges are actually added to NG(v). More-
over, H is connected by Lemma 2 applied to G′ with k = 1. The only non-
trivial fact to be checked in order to prove (?) is that lkHu is 2-connected for
vertices u ∈ NG(v). For this, we will verify the following refinement of (?):

in (?), one can additionally ensure that for all u ∈ NG(v)
the link lkHu contains a spanning subgraph that is obtained
from lkGu by a sequence of 2-admissible operations. More-
over, those operations involve only the vertices of NG[v].

(??)

This proves (?), since all graphs lkGu are 2-connected. We will now check (??)
directly for all the possible isomorphism types of lkGv.

If lkGv is one of K3, K4, K4−e, K5, K5−e, K5−2e or K5−P3, then one
can add at most d−3 edges between the vertices of NG(v) making H[NG(v)]
the complete graph Kd. Then, for every vertex u ∈ NG(v) we can pass from
lkGu to a spanning subgraph of lkHu using the following operations: adding
edges, adding new vertices of degree at least 2 and removing the vertex v
whose link is a clique of size d ≥ 3. All these operations are 2-admissible,
so the claim is proved.

For the remaining 7 possibilities of lkGv the proof is continued in Ta-
ble 1. We read it as follows. The first column shows lkGv. The second
column shows additionally the new (dashed) edges which will be added to
NG(v), as required in (??). In other words, the second column is lkG′v. The
remaining columns depict the graphs (lkHu)[NG(v)] for u ∈ NG(v), ignoring
the cases which differ just by a symmetry of the configuration. In each case
the shaded/dashed elements represent vertices and edges which did not exist
in lkGu but appear in lkHu. The only element from lkGu missing in lkHu
is the vertex v. Below each figure there is a sequence of 2-admissible op-
erations which transforms (lkGu)[NG[v]] into (lkHu)[NG(v)], and therefore
transforms lkGu into a spanning subgraph of lkHu.

A direct verification of the entries in the table completes the proof of (??)
and hence of the proposition.
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1

2

3

4

1

2

3

4

lk(1)

2

3

4

lk(2) 1

3

v → 3 add(13)
del(v)

1

2

34

5

1

2

34

5

lk(1)

2

34

5

lk(2) 1

3

lk(3) 1

2

4

v → 4
sub(24; 3)

add(13)
del(v)

v → 1

1

2

34

5

1

2

34

5

lk(1)

2

4

5

lk(2) 1

34

5

lk(3)

2

4

add(24)
add(25)
del(v)

v → 4
add(5; 1, 4)

add(24)
del(v)

lk(4) 1

25

lk(5) 1

2

v → 2 v → 2
1

2

34

5

1

2

34

5

lk(2) 1

34

5

lk(3) 1

2

4

lk(4)

5

3

1

2

v → 4 add(14)
add(24)
del(v)

v → 1
add(2; 1, 3, 5)

1

2

34

5

1

2

34

5

lk(1)

2

34

5

lk(2) 1

34

lk(3)

5

1

2

4

add(35)
add(24)
del(v)

v → 4 add(24)
add(5; 1, 4)
del(v)

1

2

34

5

1

2

34

5

lk(1)

2

34

5

lk(2) 1

5

v → 5 add(15)
del(v)

1

2

34

5

1

2

34

5

lk(1)

2

34

5

lk(2) 1

5

3

lk(3) 1

5 2

4

add(23)
add(34)
del(v)

v → 3 v → 2
add(4; 1, 5)

Table 1: The essential part of the proof of Proposition 4.
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Theorem 5. Every connected, locally 2-connected graph G is M3-rigid. As
a consequence, β2(G) ≥ −6.

Proof. Let G be a connected, locally 2-connected graph. Let W ⊆ V (G)
with |V (G) \W | ≥ 3. We wish to show that |E(G,W )| ≥ 3|W |. If G = K3

then the inequality holds, since we must necessarily have W = ∅. Now we
proceed by induction on |V (G)|.

If every vertex v ∈W satisfies degG(v) ≥ 6, then we are done, since

|E(G,W )| ≥ 1

2

∑
v∈W

degG(v) ≥ 3|W | .

If v ∈ W is a vertex with degG(v) ≤ 5 then consider the graph H provided
by Proposition 4. It is connected, locally 2-connected and satisfies V (H) =
V (G) \ {v}. Since v ∈W , we have

|V (H) \ (W \ {v})| = |V (G) \W | ≥ 3,

so the inductive assumption applies to the pair (H,W \ {v}), and we have

|E(H,W \ {v})| ≥ 3(|W | − 1) .

Combining this with (3) we obtain

|E(G,W )| = degG(v) + |E(G− v,W \ {v})|
≥ degG(v) + |E(H,W \ {v})| − (degG(v)− 3)

≥ 3(|W | − 1) + 3 = 3|W |,

which proves the M3-rigidity of G and completes the inductive step.
To prove the second assertion, note that in a locally 2-connected graph G

the link of every vertex is, in particular, a connected graph with at least two
vertices. This means that every vertex of G belongs to a triangle, and the
inequality β2(G) ≥ −6 follows from (2).

Remark. Theorem 5 is not true if “locally 2-connected” is replaced with
“locally 2-edge-connected”. The smallest example is the graph K6 −C4. In
this graph the link of each vertex is either K3 or K5 − C4, the latter being
the only 2-edge-connected, but not 2-connected graph on at most 5 vertices.

We also have a more general construction. The graph K6 − C4 has two
edges e1 and e2 which connect pairs of vertices of degree 3. Let Gn denote
the graph constructed from n copies of K6−C4 arranged in a cyclic fashion
and glued so that the edge e2 of the i-th copy is identified with the edge e1
of the (i+ 1)-th copy (indices modulo n). In the graph Gn the link of every
vertex is K5−C4, hence Gn is a sequence of locally 2-edge-connected graphs
with increasing |V (Gn)| and with |E(Gn)| = 2.5 · |V (Gn)|.
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4 Remarks and conjectures

Local 1-connectivity. Using the same method one can show that a con-
nected, locally 1-connected graph G is M2-rigid. This implies, and strength-
ens, the lower bound β1(G) ≥ −3 for such graphs [12]. We leave this as an
exercise for the reader.

Local 2-connectivity. A connected graph G which is locally 2-connected
is (globally) 3-connected [3]. By Tutte’s theorem either G = K3 or G has an
edge e such that G/e is 3-connected, where G/e denotes the graph obtained
by contraction of e. That suggests the next conjecture.

Conjecture. Any locally 2-connected graph G other than K3 has an edge
e such that G/e is locally 2-connected.

Note that an analogous result for locally 1-connected graphs was shown
by Kriesell [6].

Local 3-connectivity. A computational search through small examples
suggests that the following is still true.

Conjecture. A connected, locally 3-connected graph G is M4-rigid. More-
over, we have β3(G) ≥ −10.

However, we were unable to prove an analogue of Proposition 4 for this
case. Note that Conjecture 4 implies Theorem 5. This can be seen by taking
a connected, locally 2-connected graph G and applying Conjecture 4 to the
graph G⊕ 1 (see below), which is connected and locally 3-connected.

Higher local connectivity. We now consider locally 4-connected graphs.
To this end, recall that for k = 1, 2 it follows from Theorem 5 and the work
of Zelinka [12] that any connected, locally k-connected graph G satisfies the
lower bound |E(G)| ≥ (k+1)|V (G)|−

(
k+2
2

)
, which coincides with the bound

for locally k-trees [2] and with the bound (2) for d = k+ 1. Also recall that
for k = 3 we conjecture (Conjecture 4) this lower bound to hold.

If k ≥ 4, this need not be the case. Consider the following examples,
where G⊕H is the graph obtained from the disjoint union of G and H by
adding all the edges between V (G) and V (H). A single natural number h
stands for the graph with h vertices and no edges.
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Example 6. For any n ≥ 4 and k ≥ 2 let

Gk,n =

{
2⊕(k/2) ⊕ Cn, when k is even,

1⊕Gk−1,n, when k is odd.

The graph Gk,n is connected and locally k-connected and one easily com-
putes

|E(Gk,n)| = (k + 1)|V (Gk,n)| − 1

2
(k2 + 4k − [k mod 2]) .

For k ≥ 4 it holds 1
2(k2+4k− [k mod 2]) >

(
k+2
2

)
. Moreover, since |V (Gk,n)|

is an increasing and unbounded function of n, this shows that for k ≥ 4 the
linear term (k + 1)|V | in Conjecture 1 is best possible.

Note that for k ≥ 2, we have inequalities

F (k) ≥ 1

2
(k2 + 4k − [k mod 2]) ≥

(
k + 2

2

)
. (4)

For k = 2, we have equality throughout in (4) by our main result (Theo-
rem 5). Conjecture 4 asserts that we also have equality throughout in (4)
for k = 3. For k = 4, inequalities (4) become F (4) ≥ 16 > 15, and we
conjecture that F (4) = 16.

Conjecture. For any connected and locally 4-connected graph G,

|E(G)| ≥ 5|V (G)| − 16 .

The motivation for the above conjecture is the following. As we explained
in the introduction, Theorem 5 can be seen as a relaxation of the restrictive
condition “surface triangulation” into the more robust “locally 2-connected”.
Here we are pursuing the same analogy, where the more restrictive condition
we are trying to relax is “flag triangulation of a 3-manifold” [5]. To be more
precise, suppose that G is the 1-skeleton of a flag triangulation of the 3-
sphere S3. Then G is connected and locally 4-connected, by a result of
Athanasiadis [1]. It is a deep result of Davis and Okun [4] that Conjecture 4
holds for such graphs.

It is difficult to speculate what the best constant F (k) in Conjecture 1
could be for higher k (assuming it is finite). For example, there is a con-
nected, locally 6-connected graph G for which β6(G) = −32.2 It means that
F (6) ≥ 32, while the last two entries in (4) are 30 and 28, respectively. It
follows that the construction in Example 6 is not optimal for k ≥ 6.

2It is O~~em]uj[vmsZTUrfFwN~ in the notation of the graph package nauty [7].
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